SIMPLE LENGTH SPECTRA AS MODULI FOR
HYPERBOLIC SURFACES
AND RIGIDITY OF LENGTH IDENTITIES
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ABSTRACT. In this article, we revisit classical length identities enjoyed
by simple closed curves on hyperbolic surfaces. We state and prove the
rigidity of such identities over Teichmiiller spaces. Due to this rigidity,
certain collections of simple closed curves which minimally intersect are
characterized on generic hyperbolic surfaces by their lengths.

As an application, we construct a meagre set V' in the Teichmiiller
space of a topological orientable surface S, possibly of infinite type.
Then the isometry class of a (Nielsen-convex) hyperbolic structure on
S outside V' is characterized by its unmarked simple length spectrum.
Namely, we show that the simple length spectra can be used as moduli
for generic hyperbolic surfaces. In the case of compact surfaces, an
analogous result using length spectra was obtained by Wolpert.

1. INTRODUCTION

Given a closed Riemannian manifold M, one can define the Laplace-
Beltrami operator A acting on £2(M). The (eigenvalue) spectrum of M is
the collection of eigenvalues of A, counting multiplicities. A closely related
notion is the (unmarked) length spectrum (simple length spectrum, resp.)
of M, the collection of lengths of closed geodesics (simple closed geodesics,
resp.) in M counting multiplicities. A classical result of Huber ([Hub59|,
[Hub61]) asserts that the spectrum determines the length spectrum in gen-
eral, and vice versa in the case of hyperbolic surfaces of constant curvature.

The 99 — 9 theorem implies that the marked length spectrum of a closed
orientable surface determines its isometry class. We note its generalization
to negatively curved surfaces in [Ota90] and [Cro90]. In this spirit, Gel’fand
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conjectured in [Gel63] that the length spectrum of a closed surface deter-
mines its isometry class. (See [Kac66] for an analogous question by Kac for
planar domains.) Since then, various attempts have been made to extract
the Riemannian structure of manifolds from their spectra.

In general, a closed surface of genus ¢ is isospectral to at most finitely
many other surfaces. McKean provided the first upper bound on this number
as a function of g in [McK72]. See [Bus92] and [Parl§| for further develop-
ment. Moreover, Miiller also proved in [M92| that a (possibly non-compact)
hyperbolic surface of finite area is isospectral to at most finitely many sur-
faces. Meanwhile, Vignéras constructed in [Vig78|] the first examples of
isospectral, non-isometric closed surfaces. Sunada explained in [Sun85] a
general recipe for isospectral closed manifolds in general dimensions includ-
ing 2. These works answer Gelfand’s conjecture in the negative.

Meanwhile, the length spectrum indeed determines the isometry class of
some surfaces of low complexity. The case of one-holed torus with a fixed
boundary length was proved by Haas in [Haa85], and the restriction on the
boundary length was removed by Buser and Semmler in [BS88]. We note
that both of their approaches work when the length spectrum is replaced
with the simple length spectrum.

In contrast, it is not known whether the simple length spectrum de-
termines the isometry class of a general hyperbolic surface. In [Maul3],
Maungchang investigated examples of isospectral, non-isometric hyperbolic
surfaces constructed in [Sun85] and showed that their simple length spectra
differ. [ALLX23] observed the relationship between this question and char-
acterizing finite covers of surfaces via simple closed curves. See also [Mon17]
for a variation of this question involving the length-angle spectrum.

One can instead focus on the simple length spectra of generic hyperbolic
surfaces. In [MPOS8], McShane and Parlier asked whether there is a surface
for which all the multiplicities are 1. They showed that the set of marked
hyperbolic surfaces (of a given finite type) that does not have this property
is meagre, providing a strongly affirmative answer. They also related this set
to other questions on low-genus surfaces, including the Markoff conjecture.

The strategy of McShane and Parlier is to investigate the length equality
Ix(a) = Ix(B) for simple closed curves «, 8 over the Teichmiiller space.
If two curves are same, then the equality clearly holds on the entire space;
otherwise, the equality holds only on a submanifold of the Teichmiiller space.
We note that this strategy is not applicable for non-simple closed curves.
Indeed, there are arbitrary many distinct curves on a surface that have the
same length with respect to any hyperbolic structure [Ran80)].

Motivated by McShane and Parlier, we consider other length identities
enjoyed by few-intersecting simple closed curves. As in McShane and Par-
lier’s work, we construct a meagre subset V' of the Teichmiiller space which
is a union of countably many analytic submanifolds; few-intersecting simple
closed curves and their topological configuration are characterized by their
lengths on any hyperbolic surface outside V. In other words, we prove the
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following proposition (which is an interpretation of Proposition in plain
words). This argument does not rely on the finiteness of the surface type. In-
deed, it equally applies to Nielsen-convex hyperbolic structures on surfaces
of infinite type, which means that the hyperbolic structure admits a nice
pants decomposition (see Fact for the precise definition). Teichmiiller
space for such hyperbolic structures is defined in a similar way to the usual
Teichmiiller spaces (Definition [2.6)).

Proposition 1.1 (Interpretation of the main proposition). Let S be a topo-
logical orientable surface. Then there exists a meagre subset V. C T (S) such
that for X € T(S)\'V and a hyperbolic surface X' homeomorphic to either
one-holed torus or p-punctured b-holed sphere where p+b = 4, the following
implication holds:

3 isometric immersion

LX) € £(x) = 7 Bomee

Here, L stands for the simple length spectrum.

As an application of this result, we prove that the simple length spectra
of generic surfaces determine their isometry classes. An analogous result for
the length spectra was obtained by Wolpert in [Wol79]. Wolpert considered
a subvariety V; of the Teichmiiller space T4 of genus g and proved the fol-
lowing: if [f1, X] € T4\Vy and [f2, X'] € T4 have the same length spectrum,
then [f1, X] and [f2, X'] belong to the same orbit of the extended mapping
class group Mod;t.

We note that Wolpert’s argument requires length information of some
non-simple closed curves, which are not available from the simple length
spectrum. In addition, Wolpert’s argument heavily relies on Mumford’s
compactness theorem, which is hard to be generalized to infinite-type sur-
faces. Our main result replaces the length spectrum in Wolpert’s theorem
with the simple length spectrum, using techniques that apply to both finite-
type and infinite-type surfaces.

The following is the main theorem of this paper. By a meagre subset, we
mean a union of countably many analytic submanifolds of positive codimen-
sion.

Theorem 1.2 (Simple length spectra as moduli). Let S be a topological
orientable surface with compact boundaries and with non-abelian fundamen-
tal group and let T(S) be the Teichmiiller space of S. Then there exists a
meagre subset V' of T(S) satisfying the following: if [f1,X] € T(S)\V and
[f2, X'] € T(S) have the same simple length spectra, then [f1, X] and [fa, X']
belong to the same orbit of Mod®(S).

We emphasize again that in the above theorem .S does not have to be of
finite type.
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Organization of the paper. In Section [2| we cover some background for
the paper. It especially includes Teichmiiller spaces and pants decompo-
sitions of infinite-type surfaces, and the fractional Dehn twists. The rela-
tion between topological configurations of curves and identities among their
lengths is dealt with in Section In Section [4] the main theorems for
surfaces of low complexity are proved. They serve as base cases for the in-
duction argument in the proof of the main theorem provided in Section
Further questions are asked in Section [f] For some lemmas which seem to
be well-known to the experts while the authors could not find explicit ref-
erences, we provide their proofs in Appendix [A] B] and [C] for the sake of
completeness.

Acknowledgments. We appreciate Changsub Kim, KyeongRo Kim, Bram
Petri, Philippe A. Tranchida, Scott Wolpert for helpful conversations. We
would like to thank the anonymous referee for valuable comments.

2. BACKGROUNDS

2.1. Surfaces, curves and hyperbolic geometry. In this section, we in-
troduce basic notions. For details, we refer the readers to [FM12] and |[ALP11].

In this article, (topological) surfaces are second-countable, connected, ori-
ented 2-dimensional manifolds with compact boundaries. Those with finitely
generated fundamental groups are said to be of finite type; others are said
to be of infinite type. A finite-type surface is characterized by the genus,
the number of boundary components, and the number of ends. Topologi-
cally, a finite-type surface is homeomorphic to the connected sum of a sphere
and finitely many tori, with finitely many open discs and points removed.
We denote by S, the genus g surface with p punctures and b bound-
aries. Throughout, we only consider surfaces which are not sphere, disc,
and punctured disc.

A homotopy on a surface is required to preserve each boundary component
of the surface setwise, but not necessarily pointwise. A loop on a surface is
a continuous map from S* to the surface. A loop is said to be simple if it is
injective. A curve on a surface is a nontrivial free homotopy class of simple
loops. A curve bounding an annulus is said to be peripheral; otherwise it is
said to be essential. Each peripheral curve either bounds a puncture or a
boundary component.

An arc on a surface is either an essential curve or the homotopy class of an
essential simple arc connecting ends or boundary components. A multicurve
(multi-are, respectively) is a finite union of disjoint essential curves (arcs,
respectively). All curves, arcs, multicurves, and multi-arcs are unoriented
in this article, unless stated otherwise.

A (properly embedded) subsurface of a surface S is the image of a proper
embedding v of a surface S’ into S. The properness forbids an open end
of the subsurface from accumulating on the boundary of the ambient sur-
face. Abusing the notation, we sometimes refer to the image ¥(S’) in S
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as a subsurface. An immersed subsurface of a surface S is the image of a
proper immersion ¢ of a surface S” into S whose restriction on int(S’) is an
embedding. For example, a subsurface of type 5102 can be viewed as an
immersed subsurface of type Sp 4.

The following are terminologies for surfaces with small complexity. A
generalized pair of pants is a surface whose interior is homeomorphic to a
3-punctured sphere. These include Sy, with b+p = 3. A generalized shirt
is a surface whose interior is homeomorphic to a 4-punctured sphere. These
include Sy, with b+ p = 4. Note that some literature use Y -piece and
X -piece to denote the generalized pair of pants and the generalized shirt,
respectively.

Definition 2.1. A pants decomposition P of a surface S is a collection of
disjoint, distinct curves {C;};cs satisfying the following:
(1) each component of S\ |J, C; is a generalized pair of pants without
boundary, and
(2) there exist disjoint tubular neighborhoods N; of C; in S.

Note that a pants decomposition of a surface should include all of its
boundary components. Condition (2) is to prevent the case when some
of the C;’s accumulate to one of the Cj. Such a collection can be made
for instance when S is S? minus a Cantor set. The following notion will
be useful when we discuss Fenchel-Nielsen coordinates in the later section:
recall that an arc on a surface is either an essential curve or the homotopy
class of an essential simple arc connecting ends or boundary components.

Definition 2.2. A seam for a pants decomposition P = {C;};cr is a collec-
tion of mutually disjoint arcs {A4,}cs that satisfies the following:
(1) {4}, and {C;}; are in a general position, i.e., (U, Ci) N (U; 4;) is
a discrete subset of S
(2) On each generalized pair of pants of S\ |J; Ci, U; A; connects each
pair of ends and decomposes the pair of pants into two generalized
hexagons.
When a seam {A;};cs is given for a pants decomposition P = {C;}icr, we
call the pair ({C;}icr, {A;j}jcs) a seamed pants decomposition. By abuse of
notation, we also denote it by P.

Infinite-type surfaces are characterized by their genus, number of bound-
ary components and the nested space of ends [Ric63|. From this character-
ization, we obtain pants decompositions of surfaces that will be used in the
proof of Theorem The construction is apparent in Figure [1} nonethe-
less, we include a proof in Appendix |[A| for the sake of completeness. (See
also [HHMV19].)

Proposition 2.3. Let S be a topological surface. Then there exist a seamed
pants decomposition P = ({Ci}icr, Ajes) and finite-type subsurfaces {Sp}
satisfying the following:
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(1) {Sn} is an exhaustion of S, i.e., Sy, C Sp41 for each n, S = U,S,
and each compact subset of S is contained in some Sy;

(2) each of Sy, is bounded by some C;’s and P restricts to Sy, as a seamed
pants decomposition, and

(3) Sn+1 is made by attaching a generalized pair of pants or a one-holed
torus to Sy along only one curve.

) N\ L N L
A) 7N 7\

~

FIGURE 1. Pants decomposition of a surface of infinite type.

Notation 2.4. From now on, .S shall be reserved for a surface with the non-
abelian fundamental group, equipped with a seamed pants decomposition
P = ({Citier, {Aj}jes) obtained from Proposition Moreover, Iy C I
denotes the set of indices corresponding to the boundary components of S.

A hyperbolic surface is a 2-dimensional Riemannian manifold, possibly
with compact geodesic boundary, of constant curvature —1. Subsurfaces and
generalized subsurfaces of a hyperbolic surface are always assumed to have
geodesic boundary. A hyperbolic surface is convez if every arc is homotoped
to a geodesic arc, fixing endpoints. Convex hyperbolic surfaces are obtained
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as a quotient of a convex subset of H by free, properly discontinuous action
of a subgroup of Isom™ (H). A convex hyperbolic surface is Nielsen-conver if
every point is contained in a (possibly non-simple) geodesic segment whose
endpoints lie on simple closed geodesics. Such hyperbolic structures are
suitable for our purpose due to the following fact.

Fact 2.5 (Theorem 4.5, [ALP™11]). Let X be a hyperbolic surface. Then
the following facts are equivalent:

(1) X is obtained by gluing some hyperbolic pairs of pants along their
boundary components.

(2) X is Nielsen-conver.

(3) Ewery topological pair of pants decomposition of S by a system of
curves {C;}i is isotopic to a geometric pair of pants decomposition
(i.e. if 7; is the simple closed geodesic on S that is freely homotopic
to C;, then {~;}; defines a pair of pants decompositon).

Especially, a Nielsen-convex hyperbolic surface cannot contain a funnel or
a hyperbolic half-plane. Thus, all isolated ends are punctures, that means,
quotients of H by parabolic elements. Conversely, a finite-type hyperbolic
surface is Nielsen-convex if it does not contain funnels, or equivalently, if it
is has finite area. As a result, finite-type subsurfaces of a Nielsen-convex
hyperbolic surface are again Nielsen-convex.

Let X be a Nielsen-convex (hence convex) hyperbolic surface. A curve
C on X not bounding a puncture has a unique geodesic representative. We
denote its length by Ix(C). By an abuse of notation, we sometimes refer
to the geodesic representative as C. Similarly, each arc A on X attains a
unique geodesic representative. If C'is bounding a puncture, it does not have
a geodesic representative, and we conventionally set [x(C') by 0. Instead,
it is associated to a representative called horocycle, a simple loop around
a cusps with curvature 1. Then every geodesic arc A emanating from that
puncture intersects with the horocycle perpendicularly.

For a hyperbolic surface X, we denote by Sim the set of essential or
boundary curves and define its marked length spectrum L£L™(X) € RS™ by
the function sending each essential or boundary curve C' on X to its length
Ix(C). The (unmarked) length spectrum L(X) is the unordered set of curve
lengths on X counting multiplicities. If we consider the quotient map ¢ :
RS™ — RSIM / Sym(Sim) by permutations Sym(Sim), then £(X) is the image
of L™(X) under .

2.2. Teichmiiller space and moduli space. Teichmiller space of S can
be defined in various ways. Those definitions are compatible if the base
surface is of finite type, but may differ if the base surface is of infinite
type. For details, see [FLP79], [[T92], [Hub06] or [ALP™11]. Our definition
follows:

Definition 2.6. The Teichmiiller space T(S) of S is the set of equivalence
classes [h, X] of pairs (h, X), where X is a Nielsen-convex hyperbolic surface
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of topological type S and h : S — X is a homeomorphism. Here, two pairs
(h,X) and (h',Y) are considered equivalent if A’ o h=! is homotopic to an
isometry.

The (extended) mapping class group Mod*(S) of S is the set of equiva-
lence classes [p] of self-homeomorphism ¢ on S, where ¢ and ¢ are considered
equivalent if ¢ o ™! is isotopic to the identity.

The moduli space M(S) is the set of Nielsen-convex hyperbolic surfaces
of topological type S.

We note that Mod*(S) acts on 7(S) by pre-composition, and the quotient
of T(S) by Mod*(S) is equal to M(S).

In contrast to the case of finite-type surfaces, there are several (differ-
ent) ways to give a topology on the Teichmiiller space of infinite-type sur-
faces. Since our argument deals with finitely many curves at one time, our
argument works for any topology on the Teichmiiller space satisfying the
following property. We will come up with a natural topology on 7(S) that
satisfies the following property:

Property 2.7. For each finite-type subsurface S1 C S, the Teichmuailler
space T(S) of the ambient surface S is expressed as the product of the Te-
ichmiiller space T (S1) of S1 and some other space. That means, there exists
a topological space T(S;S1) such that T(S) is homeomorphic to T (S1) X
T(S;S1). We denote the projection to each factor by wg, : T(S) — T(S7)
and mg.s, : T(S) — T(S;51).

An example of such a topology on T (S) satisfying Property can be
constructed by means of Fenchel-Nielsen coordinates. To elaborate, we first
define the length and twist parameters on 7(S) from a given pants decom-
position on S.

Recall that S is equipped with a seamed pants decomposition P = ({C;}, {4,})
and let [h, X] € T(S). The pants decomposition P induces a (topological)
seamed pants decomposition P’ = ({C] := h(C;)},{A} = h(A;)}) on X.
Since X is Nielsen-convex, {C]} can be considered a geometric pants de-
composition. We call [x (C!) the i-th length parameter of [h, X].

We now construct twist parameters of [h, X|. Twist parameters are as-
signed to C;’s which are not boundary components of S as there is nothing
to twist on the boundary of S. Suppose that C; is not a boundary compo-
nent of S, hence C! is not a boundary component of X. We will consider
the signed length of a segment in C] where the the signed distance along C
is defined using the orientation of the surface in a way that the (right) Dehn
twist corresponds to the positive direction (cf. Subsection .

We choose an arc A} that intersects Cj. Along the arc A}, A} passes
through pairs of pants which are components of X — U;C/. Fixing any
orientation on A;, we enumerate the pairs of pants as --- ,P_1, Py, P, -
so that C/ is the intersection of P_; and P,. This enumeration is finite if
the arc A;- is compact and is infinite if A;. is contained in an end of X.
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For each P, A} N P; connects two of the three boundary components of P;.
Let L; be the simple geodesic segment on P; perpendicular to those two
boundary components. Then for each ¢, L;_1 and L; divide the intersection
P,_1NP,; into two (possibly degenerate) simple geodesic segments. We choose
one of them and denote it by K; for each t so that A;- is homotopic to a
concatenation --- Ly 1 KyLiKyy1Li11---. Noting that Cg =P 1 NPF, we
define the i-th twist parameter Tx (C!) of X as the signed length of K, along
C! divided by lx (C?). There are a priori two choices of twist parameter at C,
one defined with A and one defined with another arc AJ passing through
C!. Nonetheless, two values are always equal so no confusion occurs.
Using the Fenchel-Nielsen parameters, we can construct a bijection

FN - T(8) 3 [, X] = ((1og1x(Ch) o> (1 (€7 (C) e 1)

between T(S) and R! x R\, (Recall I, Iy from Notation ) We now
endow the space with the [*°-topology. We consider the following:

Definition 2.8. We define the Fenchel-Nielsen distance dpy between two
points [h, X],[h/,Y] € T(S) by

dFN([h7X] W, Y]) =

L (h(C) e
sg){ PO s Gy b(Co) — 1y (1 (1) y<h<cz>>!}
)

where we set 7x (h(C;)) = v (W' (C;)) = 0 for i € Iy.

Then the balls B,([h, X]) := {[p,Y] € T(S) : dpn([h, X],[W,Y]) < 7}
generate the [*°-topology on 7 (.S). If S is of infinite type, this space contains
uncountably many components, each comprised of elements dgpn-bounded
to each other.

log

Remark 2.9. The Fenchel-Nielsen Teichmiiller space was originally constructed
in [ALP™11], which uses different conventions. Precisely, the convention
in [ALP™11] picks a hyperbolic structure [h, Xy] and considers the com-
ponent of 7(S) containing [h, Xo] as the Fenchel-Nielsen Teichmiiller space
T (Xo). To see how the choice of basepoint X affects the property of T (Xj),
see [ALP™11].

When S is of finite type, 7(S) is homeomorphic to a finite-dimensional
Euclidean space, and there are several equivalent definitions of 7(S). For
instance, 7 (S) can be identified with the set of all discrete faithful represen-
tations 71 (S) — PSL(2,R), modulo conjugations by PSL(2,R), which send
elements represented by curves freely homotopic to punctures to parabolic
elements. Especially, the Fenchel-Nielsen parameters for different seamed
pants decompositions give rise to the same analytic structure on 7(S). The
length of a curve on S then becomes an analytic function on 7(S5).

To see that the Fenchel-Nielsen topology satisfies Property consider
a surface S made by gluing a finite-type surface 57 with another surface S5
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along curves {C;};cr,. Then pants decompositions {C;}icr,ur, on S; and
{Ci}ier,ur, on Sy give rise to a pants decomposition {C;}icr on S, where
I =1 Uly UI3. We can further construct a seamed pants decomposition
P = ({Ci}ier,{Aj}jcs) on S, which gives seamed pants decomposition Q
and R on S; and S, respectively, by restriction. Then the Fenchel-Nielsen
parametrization of 7(S) is decomposed into that of 7(S7), that of 7(S2)
(omitting the length parameters for 1), and twist parameters for I;. By
setting 7 (S;51) to be the parameter space consisting of Fenchel-Nielsen
parameters for Sy together with twist parameters for I7, 7(.5) is the product
space of T(S1) and T(S; S1) as desired.

2.3. Intersection number. Let us first assume that «, § are oriented mul-
ticurves on S. Let A, B be smooth representatives of « and 3, respectively,
transverse to each other at a point p. Let A,, B, be the tangent vectors
along A and B at p, respectively. The index of (A, B) at p is defined as
+1 if the oriented basis (A,, By) agree with the orientation of the surface,
and —1 otherwise. We further define the algebraic intersection number of
a and § by the sum of indices of (A, B) over all intersection points, and
denote it by iqi4(cr, 3). The algebraic intersection number does not depend
on the choice of representatives A and B. It does, however, depend on the
orientations of o and [ and is well-defined up to sign.

However, the total number of intersection points depends on the choice
of representatives. The minimum such number, counted with multiplicity,
is called the geometric intersection number and denoted by igeom (v, §) (or
i(a, B) for short). Note that geometric intersection number is also well-
defined for unoriented multicurves. Representatives A, B of «, [ realizing
i(a, B) are said to be in minimal position. The following fact serves as a
practical criterion for representative curves in minimal position.

Fact 2.10. [FLP79, Proposition 3.10] Representatives A, B of two multic-
urves are in minimal position if and only if A and B do not form a bigon, a
contractible region of S\ (AU B) bounded by one simple segment of A and
one simple segment of B.

We introduce an abuse of notation as follows: curves o and 8 may also
refer to representatives A and B of a and j3, respectively, in minimal posi-
tion. Such representatives are chosen up to simultaneous ambient isotopy
as described follows:

Fact 2.11. [EM12] Lemma 2.9] Let S be a finite-type surface, 1, 2 be
distinct essential curves on S, and ¢;, ¢; be representatives of ;. Then there
exists an isotopy of S that takes c; to ¢; for both i simultaneously.

The intersection numbers with finitely many curves are sufficient to de-
termine a multicurve [FLPT79, Section 4.3]. This fact is due to Dehn and
Thurston (see e.g., [LS04] for the context). We record one variant suited for
our purpose.
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Fact 2.12. ¢f. [FLP79, Théoreme 4.8] Let {B1,...,Bpy,C1,...,Cn} be a
pants decomposition of a finite-type surface, where B;’s are boundary curves.
Then there exist curves {C1,...,Cl,CY,...,Cl'} on the surface satisfying
the following:
(1) i(Ci,C’j‘) =0si#je i(CZ',C]’-') =0, and
(2) if D, D' are distinct essential multicurves (i.e., not containing bound-
ary curves), then we have i(D,C) # i(D',C) for at least one C' €
{Ci, G, ¢}

Here C/ and C/ are used to measure the ‘twist’ of multicurves along C;’s.
See also Fact

2.4. Pinching a curve. Let a be a curve on S. Since « is compact, it
is contained in a finite-type subsurface S;. For each [h, X]| € T(S5). the
curve f(a) has its geodesic representative A on X realising the minimum
length. Abusing notation, we omit the marking and denote [x(A) by Ix ().
Then the function Ix(«) is continuous on 7 (S) and descends to an analytic
function on T (S1).

We state a lemma regarding the pinching process, whose proof is deferred
to Appendix[C] The pinching process is, roughly speaking, choosing a simple
closed curve and then making its length to converge to 0. For a detailed
discussion, see [Wol90].

Let {C1,Cy, ...} be a pants decomposition on S and X € T (S). Pinching
the length of C1 means that we follow the path {X,},~0 C 7(S) asr — 0
where

r 1=1

lXT(Ci) = { lX(Cz) i ?é 1 TXT(Ci> = Tx(Ci) for all 1.

Lemma 2.13. Let « be a multicurve on S with i(a,Cy) = k.
(1) If k =0, then lx, (o) converges to a finite value as r — 0.
(2) If k >0, then lim,_,lx, (a)/Inr = —2k.
The proof of Lemma will be given in Appendix [C]

2.5. Fractional Dehn twists. Let a be a curve and 8 be a multicurve with
i(a, B) = k. We choose their representatives to be curves in minimal position
and denote these curves respectively by a and 3 by abusing notation. To
define the fractional Dehn twist T4(3) for j € Z, let us take an annular
neighborhood N of a in a way that

N =8"x[-1,1] = {(e*™ 1) : s € [0, 1], € [-1,1]}
where « is parametrized by [0,1] — N, s +— (> 0) and NN = {(e

tel-1,1,n=1,...,k}
We now define a homeomorphism ¢ : N — N by

o(z,t) = {(Ze’fat) ,t€0,1]

2mni

ko,t)

(2,1) te[-1,0].
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We then extend ¢ to ® on the whole surface by setting ® to be an identity
outside of N. Even though ® may not be continuous on the surface, ®(5)
is an unoriented multicurve on the surface. We define the fractional Dehn
twist
T3(8) == @(B).

Here, T2(f3) is well-defined up to isotopy, thanks to Fact Note that the
superscript notation is consistent with composition. Indeed, we observe that
TEH(B) = TL(TI(B)) for i,j € Z. Also note that TF(S) precisely defines a
right Dehn twist of 8 along . We now record two facts on the intersection
number and fractional Dehn twists.

Remark 2.14. Fractional Dehn twists should be distinguished from the roots
of Dehn twists that Margalit and Schleimer introduced in [MS09]. The roots
of Dehn twists are mapping classes while fractional Dehn twists are a priori
not induced from a homeomorphism on the surface. As a result, the roots
of Dehn twists always send a single curve to another single curve while
fractional Dehn twists may send a single curve to multicurves.

Fact 2.15. [FM12, Proposition 3.4] Let o, B, v be curves on a surface S
and i(a, f) =k > 1. Then

(T3 (8),7) — nki(a, )| < i(8,7).

Lemma 2.16. i(T(3), ) = i(a, ) and i(T%(B), 8) = |jli(a, B).

Proof. In this proof, we denote by N(+) an annular neighborhood of a curve
.

We temporarily orient 3 and fix a representative C of T3(3) as in Figure
Here, segments of C parallel to 3 (called type B) are drawn on the left side
of B if j is positive, and on the right side otherwise.

C also has segments in N(«a) \ S (called type A), which are classified
further into two subtypes: those that are contained in N(f3) (called type
A1) and the others that are not contained in N(f3) (called type As). See
Figure 8] We observe in Figure [3] that

(1) each type B segment is disjoint from f;

(2) each type B segment either closes itself, or is sandwiched by a type
Ajp segment and a type As segment;

(3) each type A; segment is adjacent to a type B segment and [.

We claim that the curves in Figure are indeed in minimal position. First,
any complementary region of T4 (/) U« can be isotoped to a complementary
region of aU 8. Since a and 3 are assumed to be in minimal position, such
complementary regions are not bigons. Consequently, T2(3) and « are also
in minimal position. '

We now discuss the minimal position of 73 () and 3. To this end, suppose
to the contrary that a segment 7 of T3(3) and a segment o of 8 bound a
bigon. As observed above (1), each type B segment is disjoint from 3, and
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____________

FIGURE 2. «, 8 and

T3(B)-

Here ( is equipped with an

orientation in order to determine a representative of T2(3)
in minimal position with o and 3.

A}

Type As—\,

_________________

\
\

AY

(B) Segment of o homotopic to 7 relative to 8. Note that gray regions are null-

homotopic.

FiGure 3. Configurations of 8 and C

hence 7 must contain at least one type A; or type As segment. Moreover, it
follows from (2) and (3) above that 7 falls into one of the following (Figure

B(B)):

e 7 consists of only one type A segment as;

e T is a concatenation of type A; segment a1, type B segment b; and
type As segment ao; or

e T is a concatenation of type A; segment a1, type B segment b; and
type As segment ao, type B segment by and type Ay segment as.
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In any case, 7 is homotopic (relative to 3) to a segment of '\ 5. We deduce
that o« and 3 bound a bigon, contradicting the minimal position assumption.
Thus, we conclude that T3(3) and 3 are also in minimal position.

Given this conclusion, the intersection numbers follow immediately. [

We will make use of the following variant of Fact later on to charac-
terize fractional Dehn twists.

Fact 2.17. Let S be a surface of finite type and {Cj, C}, C7}]_; be the curves
on S mentioned in Fact . Fiz k and suppose that D, D' are essential
multicurves satisfying i(Cj, D) = i(Cy, D') for all j, i(C}, D) = i(C}, D') for
j#k, and i(C}, D) =1i(C],D’) for j # k. Then D and D" are related by a
fractional Dehn twist along Cy.

Sketch of proof. A step of the proof of [FLPT79, Théoreme 4.8] concerns
the construction of a model multicurve § on S for each admissible value
{i(D,Cy),i(D,C%),i(D,CY)};. Here, the information {i(D,Cj)}; deter-
mines the relative isotopy class of this model multicurve ¢ restricted to
S\ (U;N(Cj)). Furthermore, for each j, the information (i(D, C}),i(D,CY))
determines the relative isotopy class of ¢ restricted to N(Cj;). Hence, under
the assumption of the statement, the proof of [FLP79, Théoréeme 4.8] yields
model multicurves § and ¢, isotopic to D and D’ respectively, such that
S|ls\w(cy) = 9'ls\n(c,) up to isotopy relative to ON(C},). Hence, § and ¢’ are
related by a fractional Dehn twist along Cj, and so are D and D’. O

3. LENGTH IDENTITIES

In this section, we show how length identities of curves keep track of their
topological configuration. This is a converse procedure of previously known
result, introduced in Subsection (3.1

We begin by referring to a theorem of McShane and Parlier.

Theorem 3.1. [MPO08| Theorem 1.1] For each pair of distinct essential or
boundary curves o, 8 on a surface S of finite type, there exists a connected
analytic submanifold E(a, B) of T(S) such that Ix(a) # Ix(B) for X €
T(9) \ E(a, B). Consequently, points in T(S) \ Uapp E(c, B) have simple
simple length spectra (that is, simple length spectra such that multiplicity of
each length is 1).

This theorem asserts that essential or boundary curves on S are faith-
fully labelled by their lengths at almost every point of 7(.S), although not
everywhere. Note that this can be generalized to surfaces of infinite type as
follows. Let a, 8 be distinct curves on a surface S of infinite type. Since
curves are compact, they are contained in some finite-type subsurface S; of
S bounded by some curves C,, ..., C;, . Then Ix(a) — lx(5) becomes a
non-constant analytic function on 7(S7). By Theorem there exists a
submanifold E of 7(S7) such that Ix(a) —Ix(5) does not vanish outside E.
Since F is nowhere dense, E := 7r§11(E) C T(S) is also nowhere dense.
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The key observation for Theorem is that E(«, ) is the zero locus of
a non-constant analytic function Ix () —Ix(8) of X on T(S). The purpose
of this section is proving analogous results for other length identities.

3.1. From topological configurations to length identities. Here we
review classical length identities of curves on hyperbolic surfaces. For details,
see [McK72] or [Luo98|. Given curves 7y, 172 on a surface S, we define the
following functions on 7(S):

Ix (n2)
2 )
Ix(m) Ix(n2)
5 + cosh 5
Both f(X;n1,m2) and g(X;m,n2) are functions on 7(S) with infimum 2.
Moreover, if lim, f(X,;m,n2) = 2 or lim, g(X,;m,72) = 2 for some path
{X,} € T(S), then both lx,(n1), Ix,(n2) converge to 0. We also note that
Ix(n) becomes a constant function over 7 () if n is bounding a puncture.
Now let «, v be two curves on S with i(a,7y) = 1. Then o U~ becomes
a spine of a one-holed /punctured torus with boundary 6 := aya~'y~!. See

Figure [4

Ix(m) cosh

J(X5m1,m2) := 2cosh

g(X;m,m2) := cosh

§ = aya~ty!

FIGURE 4. One-holed torus with spine ow U~y

Fact 3.2. Let a and vy be as above. Then f(X;a,vy) = g(X;Tvl(a),T,Y_l(a))
identically holds on T'(S).

We then set «; := Té(a) and v; := T (7). Note that
i(y, i) = i(ai-1, 04) = 1 and i(a, i) = i(yi-1,7) = 1.

Moreover, one of {Tji1 (aj—1)} is 7y; we denote the other one by ;. Similarly,
one of {T%l(%,l)} is & and we denote the other one by €;. See Figure

Lemma 3.3. For eachi € Z and any of (11,2, 13, 14) = (i, Y0, Xi—1, Qit1),
(eim1, 4,7, Bi), (Vis 20, Yie1,Yi+1), (Vi-1,%), @0, €), the identity

(3.1) F(X5m1,m2) = 9(X5m3,m)

holds on all of T(S).
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y=Ti )™ 5  Bi=Ti ()7 5

FIGURE 5. Fractional Dehn twists of a along «;. Note that
we sometimes have o = ag and v = vp.

This time, we consider o, satisfying iq4(cr,7) = 0 and igeom(a,y) = 2.
Then « U~ becomes a spine of an immersed subsurface ¢ : S" — S where
S’ is a generalized shirt. This shirt is accompanied by peripheral curves
91, ..., 04. They are labelled in such a manner that v separates {d1,d2}
from {d3,04} and « separates {01, 93} from {d2,04}. Note that T$1(a) then
separates {d2, 03} from {41, 04}. See Figure [6]

FIGURE 6. A shirt with spine v Uy

Fact 3.4. Let «, v, {6;} be as above. Then the identity
F(X;5a,7) = g(X; Ty (), Ty (@) + £(X;82,63) + f(X;61,64)
holds on all of T(S).
We now set «; := T,ﬁ(a) and 7; := T’ (). Then
latg(Y; i) = tatg(a, ¥i) = tatg(@i-1, i) = tatg(vi-1,7) = 0
and
igeom (7, ) = Tgeom (@, Vi) = tgeom (-1, %) = igeom (Vi-1,7i) = 2

hold. Consequently, one of {T!(c;—1)} ({Tf_l(%,l)}, resp.) is v (a, resp.)

(3

and the other one is denoted by §; (€;, resp.).
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Lemma 3.5. For each i € Z and any of

(@2i,70, 2i—1, O2i41, 02, 03, 01, 04
(2541, 70, @23, 2542, 01, 03, 02, 04)
(72i> @0, Y2i—15Y2i+1, 02,03, 01, 04
(V2i4+1, @05 Y2i5 Y2425 01, 02, 03, 04
(i1, 4,70, Bi, 01,02, 03, 04)
L (91,7 @0, €, 61, 63, 62, 04)

(m,...,m8) = ; )

the identity

(3.2) F(X5m1,m2) = g(X5m3,m4) + f(X5m5,m6) + f(X517,718)
holds on all of T(S).

3.2. First length identity: one-holed/punctured torus. We now dis-
cuss the converse of Lemma|3.3| For the converse of Lemma [3.5] see Subsec-
tion |3.3l The following lemma partially relates the length identities to the
configuration of the curves involved. Recall that for X € 7(S) and curves
m,n2 C S,
F(X;m,m2) := 2cosh Lx (m) cosh ZX(;D),

(

Ix(m) + cosh Ix 2?72)

Lemma 3.6. Let a_o, a1, o, a1, a2, v, Bo, B1 be essential or boundary
curves on S, where o, a_1, a1 and v are distinct. If the inequalities

g(X;m1,m2) := cosh

(3-3a) f(X50,79) 2 9(X;01, 1),
(3.3b) f(X5a-1,7) 2 g(X;a-2,0),
(3-3¢) f(X501,7) > 9(X; 0, 00),
(3.3d) f(Xsa,a1) > g(X57, B1),
(3-3e) f(X5a-1,a) > g(X;7, Bo)

are satisfied by all X € T(S), then

i(a,y) >0 and {oq, 01} = {Tvl(a),T,Y_l(a)}.

Proof. Suppose first that i(a,y) = 0. We fix a pants decomposition contain-
ing o and 7, and pinch them simultaneously. Since a.t; are neither « nor 7,
their lengths tend to either infinity (if they intersect with a or 7) or a finite
value (if they do not intersect with o and 7). Thus, f(X;«,~) tends to 2
while g(X;a_1,a1) converges to a term greater than 2. This contradicts
Inequality and we conclude i(a,7y) > 0. In particular, both «, v are
essential.

Now we fix a pants decomposition containing « and pinch «. Then
f(X;a,v) grows in the order of I(a)~**") while ¢(X;a_1,a;) grows in
the order of I(a)~ max(i(®a-1)i(ee1))  From this and Inequality we
deduce that i(c, ) > i(a, at1).
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Meanwhile, f(X;a_1, @) grows in the order of I(a) ~(*=1) while g(X;~, o)
grows in the order of l(a)_maX(i(aW)vi(aﬁO)). Then Inequality implies
that i(a,a—1) > (e, ). Similarly, investigating each side of Inequality
yields that i(a, o) > i(cr,y). Thus, we obtain

(3.4) i, ax1) = i(a, 7).

Next, we fix a pants decomposition containing v and pinch v. We again
investigate Inequality to deduce that i(vy,a) > i(v,ax1). The reverse
inequalities are now obtained from Inequality and and we conclude

(3.5) i(a,y) = i(ax1,7).

Finally, we consider an arbitrary interior curve 7 disjoint from =, fix a
pants decomposition containing v and 7, and pinch n. While pinching,
coshlx(7)/2 remains bounded and the LHS of Inequality grows in the
order of 1(n) ~"@"  while the RHS grows in the order of [(n)~ max(i(e—1m).ia1.n)
Hence, from Inequality [3.3a] we obtain i(c,n) > i(a1,n). A similar argu-
ment using and [3.:3¢| leads to the reverse inequality and we deduce

(3.6) i(a,m) = i(at1,m).

Combined with Equations and Fact implies that o, a_1,
a1 differ only by a fractional Dehn twists along «. Now consider a finite-
type subsurface S’ C S containing o, a1,a_1, and . Since we have seen
that ~ is essential, we may also assume that ~ is essential in S’. Let
{B1,...,Bn,C1,...,Cp} be a pants decomposition of S’ where Bj’s are
boundary curves and C; = . We set the curves {C{,...,C},C{,...,C/}
on S’ given by Fact In particular, C and C} are disjoint from C; = v
for all j # 1. Hence, by Equation we have that i(o, Cj) = (a1, Cj),
i(a, C}) = i(ax1,C}), and i(a, Cf) = i(ax1,C}) for all j # 1. In addi-
tion, by Equation and C; = ~, we also have i(«o,C1) = i(ax1,Ch).
Therefore, it follows from Fact that o and a4; are related by a frac-
tional Dehn twist along C1 = . Then Lemma [2.16] reads Equation [3.4] as
{ar,a 1} = {T}(@), T, (a)}. (Here we used the condition that a1 and o

5
are distinct) U

As one can observe, not all points in the entire Teichmiiller space are
involved in the proof. Hence, one can modify the statement so that the
inequalities are checked along paths in the Teichmiiller space along which
certain curves are pinched.

Before stating the next lemma, we first introduce some notation. Let «;,
be two curves on S with k = i(a,7) > 1. Then « is cut by v into k segments
{aj,...,ax} and ~ is cut by « into k segments {ci,...,ct}. Each segment
a; then splits v into two segments, giving a (bi)partition of {ci,...,c;} into
two disjoint collection. The segment with fewer ¢;’s is denoted by v(a;) and
its number of ¢;’s is denoted by N, (a;). If two numbers are equal, then take
either of the two segments. See Figure [7]
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The annular neighborhood of ~ is separated by ~ into two sides, which we
label by left and right. Then {ay, ..., ax} is partitioned into three collections,
Aj, A and Az. A; (Ag, resp.) consists of those segments departing from
and arriving at v on the left side (right side, resp.). As consists of those
segments connecting two sides of ~.

N’Y CL1)

v‘
/?T/'%\ U“ <J D O
o e ot \ l"

N, (az)

(B) Segments in A; and Ay. Boundaries are y. Here
N’Y(al) =3, N’y(a2) =1 and N’y(bl) = 5.

FIGURE 7. Grouping segments

Recall that the index of («,7y) at an intersection point p is +1 if the
oriented basis made by the tangent vectors along « and ~y at p agrees with the
orientation of the surface S, and —1 otherwise. Recall also that a fractional
Dehn twist of a curve along another curve is a priori a multicurve, not
necessarily a curve.

Lemma 3.7. Let o, v be curves on S with k = i(c,y) > 1. If To(v) and
T () are single curves for every i =0,1,...,k —1, then

(1) As =0 and k is even,

(2) the indices of (c,7) keeps alternating between +1 and —1 along each

of a and v, and

(3) Ny(a;) is odd for each segment a; € Ay U As.
If k > 2 moreover, then

(4) Ny(a;) # Ny(ay) for all a; € Ay and ay € As.

Proof. We first suppose that there exists a segment of « \ v joining the two
sides of 4. Then some fractional Dehn twist Tvi will tie this segment up
into a closed curve, and the other segments of « \ v will combine to form at
least one more curve. This contradicts the assumption that a; = Twi () is a
single curve. Thus, A3 = () and « \ 7 is partitioned into A; and As. Since
|A1| = | Az, their sum k is even. This proves (1).

Now pick an arbitrary component a; of a \ 7. Since a; departs from and
arrives at v on the same side, the indices of (a,y) at the two endpoints of
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a; are different. This implies that the indices alternate along «. Similarly,
the indices alternate along v, proving (2).

Now fix an a; with endpoints p and ¢, separating v into two segments I'y
and I's. Without loss of generality, assume that the index of (a,7) is 1 at
p and —1 at g. Since the indices of (a,~) alternate along -, the number of
c;’s along I'y is odd. Similarly, the number of ¢;’s along I's is odd, so their
minimum N (a;) is also odd. Now (3) follows.

Now suppose further that i(o,vy) > 2. If Ny(a;) = Ny(ay) for some
a; € A1 and a; € As, then some twist T§ will tie them into a single curve,
while other segments will combine to form at least one more curve. This
again contradicts the assumption, so it cannot happen. It completes the
proof of (4). O

Proposition 3.8. Let {«;, Bi,7i, € }icz be essential or boundary curves on
S, where each of the collections {a;}icz U {0} and {7vi}icz U {an} consists
of distinct curves.

Suppose that for each of

(ai, Y0, Qi—1, Oéi+1)
(a1, 4,70, Bs)
(V> 0, Vi1, Vit1)
(%’—1, Vi, Q0, Gi)

(- ma) =

Equation |3. 1)
F(X5m,m2) = g(X;5n3,m4)
where

f(Xim1,m2) := 2cosh

l
9(X;m1,1m2) := cosh % + cosh ———=
holds for every X € T(S). Then
i(ai,v0) =1 and {ag, a1} = {Twlo(ao),Tv_Ol(ao)}.

Proof. For convenience, we will denote ag by « and g by . Since f and
g are symmetric with respect to the curves involved, the assumption still
holds after relabelling a; as a—; and 5; as B_;11. We will perform such a
relabelling in the case a; is equal to T !(a). Similarly, we relabel 7; into
v_i and ¢; into €_; 41 in case v; is equal to T (7).

Step 1. Proving that o; = T7 () and ; = T () for i > —1.

Using Lemmawe deduce that i(c, v) > 0and {a, 1} = {7 (), T (@) }.
However, ay is not equal to T L(a) due to the relabelling procedure. Thus
we obtain that a; = T2 () for i = —1,0, 1.

We further assume «; = T2 () for i = —1,0,...,n as the induction hy-
pothesis. Applying Lemma to curves (ap—2,...,Qn4+2,7, Bn, Bnt1), We

deduce that a1 = Ty (ey) = T2 (a). Thus, by mathematical induction,
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we conclude that a; = T, ;(a) for i > —1. Exactly the same argument shows
that v; = T (v) for i > —1.

Step 2. Proving that i(«,vy) = 1.

Let k :=i(«, ), and assume that k > 2. Since we have proven «; = Té(a)
for each ¢ > —1, these are all single curves, not multicurves composed of
several disjoint curves. Similarly, T (y) = «; are all single curves. Then by
Lemma k is even (hence k/2 is an integer) and the segments of « \ 7y
are partitioned into Ay = {a1,...,a;/2} and Az = {b1,...,by/2}. Moreover,
N1 :={Ny(a;) : a; € A1} and No := {N,(b;) : b; € Az} become disjoint sets
of odd integers.

Without loss of generality, assume min N > min Np and N, (a;) = min V.
We pick b such that Ny(b)) = max{n € Ny : n < minN;}. Note that
1 < Ny(by) < Ny(ay) — 2.

Some fractional Dehn twist 7 VZ ties a; with b; in a manner that (a;),

7v(bi) overlap each other. In other words, a; is adjacent to b; in a; = T/ (a).
by is then adjacent to yet another segment a; in «;. We now define a curve
o by concatenating aj, aj and b; twice, together with two segments ¢, c2

along ~ as in Figure

Ficure 8. Configurations of a; and o. Here a; and v are
presented in minimal position. Note that ¢ and «; are inter-
secting at 6 points.

The number of segments of v \ «; present in Figure (8| is at most
N, (a;)+max{N,(a; ), k—Ny(a;j)}—N(b;) < Ny(aj)+(k—Ny(a;))—1 < k.

Thus, ¢; and ¢z do not overlap and o is indeed a simple curve. We also note
that ¢; contains at least

Ny(aj) — Ny(br) = 2
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segments of v \ «, and so does co. We now claim the following lemma.

Lemma 3.9. Let o be the concatenation of aj,a;,b; and parts of v as
described in Step 2 of the proof of Proposition . Then i(o,v) = 4 and
i(o, Tfl(ai)) <i(o,04) + 2.

We presently postpone the proof of this lemma and first finish the proof of
the theorem. Consider a pants decomposition on S containing ¢ and pinch o.
Then f(ay,~y) grows in the order of I(¢)~®:?)=% while g(Tvl(ai),TW_l(ai))
grows in the order of I(¢)~"®?)=2 at most. This contradiction rules out the
case that i(a,vy) > 2.

In conclusion, a and +y satisfy either

(1) i(a,y) =1or
(2) ia,y) =2.
Let us assume the case (2). Note that Lemma asserts iq1q(cr,y) = 0.
Thus, f(X;a,7) = g(X;TWl(oz),Tv_l(oz)) + f(X;02,03) + f(X;01,64) holds
on all of 7(S5), where d; are curves as in Fact Recall that we also have

an identity f(X;a,v) = g(X; T71 (o), T,y_l(oz)). However, their difference

2 cosh Ix (%) cosh Ix (253) + 2 cosh Ix (251) cosh Ix (264)

never vanishes. This contradiction excludes the case (2), and we conclude
i(a,y) = 1. O

Proof of Lemma([3.9. We claim that o and « in Figure [§] are in minimal
position. Using the bigon criterion, it suffices to show that there is no
embedded disc bounded by a component segment of o \ v and a component
segment of v\ 0. Note that o \ vy consists of 4 segments: one parallel to a;,
one parallel to a;-, one parallel to b; and one parallel to the concatenation of
c1,b; and co. Here, recall that aj, ag- and b; are components of «; \ v. Since
a; and « are drawn in minimal position, none of a;, a; and b; can bound
a disc together with v. Now consider the segment of ¢ that is parallel to
c1, by and co. This segment is adjacent to two complementary regions of
S\ (cU7). One region is a quadrangle composed of two arcs from 7 and two
arcs from o, which does not count as a bigon. Another region is homotopic
to a complementary region made by b; and . Again, since o; and 7 is in
a minimal position, this region also cannot be a bigon. This concludes the
minimal position of ¢ and v in Figure |8 and i(o,vy) = 4.

We next claim that o and «; are also in minimal position.Note that o \ «;
consists of two components that are near b; and other components that are
parallel to ¢; or ¢y. In Figure [8] o \ «; consists of:

e the long component L passing through region A’s, B’s and A’, con-
taining subsegments parallel to a;, b; and a;, respectively;

e the short component Lo passing through region F’s, containing a
subsegment parallel to by;
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e components parallel to ¢; or ¢z (such as the one passing through
region D).

Suppose first that a component of o \ ; parallel to ¢ forms a bigon with
a;. (In Figure|§] consider the region containing part D.) Then such a bigon
is homotopic to another bigon formed by «; and co. This contradicts the
fact that a; and ~ are in minimal position. Hence, such a bigon does not
exist. Similarly, no component of o \ «; parallel to ¢; can form a bigon with
(6788

Now we are left with complementary regions of ¢ U «; that are close to
b;. These are:

the region containing letter A (and A’);
the region containing letter B;

the region containing letter £, and

the region containing letter F'.

Suppose first that the region containing letter A (and A’) is a bigon. This
means that L; is homotopic (relative to the endpoints) to a component of
a; \ o, which we denote by L. Via homotopy, we can bring L very close to
L1, from the side opposite to a;, b; and a;-. At this moment, the segment of
L parallel to a; is an element of Ay, whole value of NV, is Ny (a;) — 2. This
contradicts the minimality of IV,(a;) among V.

Now suppose that the region containing letter B is a bigon. Then by
pushing the middle of L; toward a; U b U ag- via homotopy, we obtain two
bigons containing letter B. Each of these bigons consist of one segment of
a; \ o and a horizontal segment that can be homotoped to . Hence, we
obtain a bigon bordered by «a; and +, contradicting their minimal position.

The region containing letter E is treated in a similar way. If it were a
bigon, then we can push the middle of Ly toward b; via homotopy. We then
obtain two bigons containing letter F, each homotopic to a complementary
region of «; Uy, which is absurd.

Finally, if the region containing letter F' were a bigon, then b; would be
homotopic to another segment by satisfying N, (by) = N,(b;) + 2. This
contradicts the maximality of b;.

As a result of the discussion so far, the curves in Figure [§] are pairwise
in minimal position. Together with the representative of Tﬁ}(ai) drawn in
Figure 0] we can then deduce that

i(y,0) =4 and i(Tvil(ozi),a) < i(aj,0) + 2.
U

Using this result, we can construct a subset of 7(S5) as follows. Let
k41 A k+1 A k+1 A k+1 -
{og 0 B0 {22,y and {&}; 7", be essential or boundary
curves on S, where {a;} U {7y} and {7} U {ao} consist of distinct curves
and k = i(ap,70) # 1. Since curves are compact, they are contained in a
finite-type subsurface S; of S bounded by some curves Cj,, ..., C;

n*
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FIGURE 9. Configurations of T&(ai) and . Two curves are
intersecting at 8 points.

If we declare the function

H(X5n1,..ma) = f(X5m1,m2) — g(X5m3,74)

for each (11,...,14) among
{(aia Y0, &—1, O‘i+1)}i‘€:—k7 {(a’ia a—1,70, ﬁi)}fz—k‘-i-l’
{(r)/la aQ, Yi—1, ’Yi-‘r-l)}f:_k;v {(71) Yi—1, &0, ni)}i:—k-‘rluk

then it becomes an analytic function on 7(S1). We index them into a single
function (bh;) : 7(S1) — R¥+2. Now the proof of Proposition indicates
that (h;) does not vanish identically on 7(S7). Using Lemma we then
construct a countable family F = {F,,} of submanifolds of 7(S1) such that
(h;) does not vanish outside U, Fj,. Then F,, := 7T§11(Fn) C T(S) is nowhere

dense in 7(S) and their union F = U, F,, becomes a meagre set.

3.3. Second length identity: generalized shirt. We now prove the fol-
lowing converse of Lemma [3.5

Proposition 3.10. Let {«y, Bi,7i, € }icz be essential or boundary curves on
S, where each of the collections {a;}icz U {0} and {7vi}icz U {an} consists
of distinct curves. Further, let {61,...,04} be curves on S.

As in Lemma suppose that Equation [3.9:

F(X5m1,m2) = g(X5m3,m4) + f(X5m5,m6) + f(X5m7,m8)
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holds for all X € T(S) and with each choice of

(024,70, Q2i—1, 2541, 02, 03, 01, 04)
(2541, 70, @24, 2542, 01, 03, 02, 04)
V2i> OO, Y2i—1,V2i+1, 02,03, 01, 04)
V2i415 O05 Y2i5 V2425 01,5 02, 03, 04)
(ai—lv 4,70, /Bia (517 527 53? 64)
(i1, 7%, 0, €, 01, 03, 02, 04)

(mseevm) =4

Then ag U g forms a spine of an immersed subsurface v : 8" — S, where
S" is a generalized shirt. Moreover, {1, 01} = {T ' (ap), T} (ag) }-
Further, we can label the peripheral curves of S’ by {e1,..., €4} such that:
e 0;, € are both bounding (possibly distinct) punctures or §; = €;, and
e ap separates {e€1,€3} from {e2,e4} and o separates {e1,ea} from
{€3,€4}.

Proof. As in the proof of Proposition [3.8], we will denote ag by « and g by
~. Moreover, we may assume that a; # T{l(a) and v # T 1 (7).

We note that Lemma equally applies, since f(X;n,n') > 0 for any
curves ) and 7. As in the proof of Proposition we thus obtain k :=
i(a,y) > 0 and o = T (), vi = T, (7) for i > —1.

We now prove that d; and v are disjoint. From the assumption, we have

f(X506,7) = 9(X5 i1, 1) + f(X;01,04) + f(X; 02, 03)
for even i. Here note that the geometric intersection number i(c;, ) between

«; and «y is equal to k since a; = Tfy(a) for ¢ > —1. Now, if ~ intersects 41,
then
ik, 01) = z'(T,Y"k(a),él) > nki(y,01) —i(a, 1) > nk —i(a, 01)

by Fact Thus, if we take i = nk to be an even integer larger than
i(c, 61) + k + 1 and pinch a4, then f(X;ay,~) grows in the order of I(c;) ™"
while f(X;81,04) grows in the order at least of I(a;)~ 1), a contradiction.
Thus i(7,01) = 0 and similarly i(c,01) = 0. Other ¢;’s can be dealt with
similarly, so we find that §;’s and o Uy are disjoint.

Now, if k = i(c,7y) > 2, then we construct o as in the step 2 of the proof
of Proposition Since 0 C N(a) U N(v) is disjoint from all ;’s, we see
that f(X;d;,0;/) remains bounded while pinching o. Accordingly, the same
contradiction follows from Lemma by comparing each side of

F(X5 i) = 9(X5 @i, i) + f(X505,050) + f(X5 05, 05m).
while pinching o.
We are thus led to the same dichotomy as in the proof of Lemma [3.9}

(1) i(a,y) =1 or

(2) i(c,y) =2 and ig4(a,y) = 0.
As noted before, we cannot simultaneously have f(X;a,vy) = g(X;a-1,a1)
and f(X;,7) = g(X;a-1, 1) + f(X;d2,03) + f(X;01,04) on all of T(5).
The latter is already assumed true, while i(a,y) = 1 forces the former. This
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contradiction rules out the case i(«,v) = 1 and consequently, oo~ must be
a spine of an immersed subsurface of S’ that is a generalized shirt.

Let {67} be the boundaries/punctures of S labelled as in Figure@ At this
moment, Fact and the assumption gives the following set of identities on
all of T(S5);

F(X505,03) + f(X501,04) = f(X;0,7) —g(Xsa-1,00)

(3.7) = f(X;02,03) + f(X;01,04),

(X501, 03) + f(X509,05) = f(X;01,7) — 9(X; , a2)

(3.8) = f(X;01,03) + f(X;02,04).

Let A (T, resp.) be the set of (5}78 (05’s, resp.) that are not punctures. Note
that the LHS (RHS, resp.) of Equation can attain the value 4 at one
and all X € 7(9) if and only if all of &} (d;, resp.) are punctures. This
settles the case when S = S’ is a 4-punctured sphere, and we now assume
AT # 0.

Since S’ is an immersed subsurface, A consists of disjoint curves. Thus we
can fix a pants decomposition including A and pinch simultaneously. The
LHS of Equation [3.7] converges to 4 so the RHS should also do so. This is
possible only when all of the Ix(d;) terms on the RHS tends to 0 during the
pinching, so () # I" C A.

We now pick some §; in I'. Since I' C A, §; = 69 for some j. By applying

one of the following permutations on the indices of §;, 53-

(1,2,3,4) — (1,2,3,4), (1,2,3,4) = (2,1,4,3),

3.9
(3:9) (1,2,3,4) — (3,4,1,2), (1,2,3,4) — (4,3,2,1),

under which Equation and remain unchanged, we may assume that
(51 = 5/1 erl.

We now show ¢; = 6} (up to the permutations above) for all i. We first
increase [x (67) = Ix(d1) to infinity, whilst fixing the lengths of 07 € A\ {41}
as t.

o If 51 = &%, then 8, &) are distinct from ). In this case, the LHS of
Equation grows in the order of ex (¥, This implies that at least
one of d3 = d; = ] or d2 = d4 = 0; = J] holds. However, the latter
case is excluded by comparing f(X;d5,8)) and f(X;d1,03). Thus,
we conclude ] = 04 = ;1 = 03 and f(X;0],04) = f(X;01,03).

At this moment, if 5 and J) are punctures, then we have

{0 =6 =01 =03} CT C A= {8 =0, =6 =33},

which is the desired equality. Next, if 0} is an essential curve, then
we increase Ly (03) to infinity whilst fixing lengths of 07 € A\ {d5} as
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t. Note that
. +00 8y =0}
i (S of Bawation38) _ [ g o) gar a0y C A8 £ 4,
Ix (64)—00 elx(83)/2 ANYA RSV
1 {05, 0,} = {95, puncture},
—+00 09 =04 = (%
lim (RHS of Equation _ cosh(t/2) % € {2,094} C A, 02 # 04
Ix (8,)—00 elx (65)/2 1 {02,04} = {&%, puncture}
0 8% & {02,04}.

Since the two growth rates should match, the case &5 ¢ {d2,04} is
impossible and 05 belongs to {d2,d4}. Similarly, by using Equation
3.7, we deduce that ) € {02, 04} whenever &) is an essential curve. In
conclusion we have {02,904} = {85,094}, and we have (07,5, 95,9)) =
(01,92, d3,04) up to the permutation (1,2,3,4) — (3,4, 1,2) in Equa-
tion

e The case 0] = 0} can be dealt with in the same way, by switching the
role of Equation [3.7]and 3.8 For example, now the LHS of Equation
m grows in the order of e!x (1) which forces 6, = 0, = §f or 6y =
d3 = 01 = 0}, the latter being excluded by comparing f(X;d5,d5)
and f(X, 51, (54)

o If &) = 05, then d5, 0) are distinct from 07. In this case, the LHS
of Equation and grow in the order of ex(1)/2 Accordingly,
both d3, 4 are not ¢]. If moreover dy is not §;, then

(RHS of Equation B 1 3¢
| cosh(t/2) 3T\ {1}

e x (]2

according to whether 03 is a curve or not. However, note

. 2 0%, 0, ¢ A
LHS of Equat . 374
o (LHS of auation 38 _ ] gcosh(t/2) 85,0 € A\ {5}
Ix(81) =00 e X 1 + cosh(t/2) otherwise,

which gives a contradiction. Thus dy = 0]. Now we increase Ix(d5)
and [x (0})) separately to deduce that {05, 04} = {J3,04}.

e The remaining case is that ¢] is not equal to any of {d5,d5,d}.
We first set [x(d3) as 3 if 63 € A, and set lengths Ix(07) for d; €
A\ {7, 04} as 2. Finally, we increase Ix(6]) = Ix (1) to infinity. We
then observe

y (LHS of Equation [ cosh(3/2) e A
lX((;l/lr)n_)OO elx (67)/2 B 1 otherwise,
. h(3/2) d3=05€ A
. (RHS of Equation B o8 3=
lX(}gl/r)nﬁoo REATE = cosh 1 03 € A \ 5%
1 1 otherwise.
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Thus we conclude that 0%, d3 are both bounding punctures or § = 3.
Similar conclusion for &), d,4 follows from Equation Finally, we
increase [x(05) in Equation to deduce the conclusion.

In any case, we can relabel §;’s by one of the permutations in Equation [3.9
competing the proof. O

Using this result, we can construct a subset of 7(S) as follows. Let

{aid 0 ey B L (i i kyn) {eiti_y and {81,..., 6} be
curves on S such that:

o {«, Bi,7i, €} are essential or boundary curves,

o {a;} U{v}, {7i} U{ao} consist of distinct curves,

e i(ap,v0) =k and (o, d;), i(70,9;) < M, and

e (p,70,9;) do not satisfy the conclusion of Proposition That
is, either ag U 7y does not form a spine of an immersed generalized
shirt in S, or when they form such a spine of an immersed generlized
shirt S’ in S, we have {1, 1} # {T ' (o), T} ()} or there is no
labelling of the peripheral curves of the S’ satisfying the conditions
stated in Proposition [3.10

Since curves are compact, they are contained in a finite-type subsurface S}
of S bounded by some curves C;, ..., C;
Then

bX5m1, - oms) == f(Ximu,m2) — 9(Xims,ma) — f(Xsms,m6) — f(X5m7,m8),

for the choices of (11,...,7ns) specified as per Lemma define analytic
functions on 7(S;). We index them into a single function (h;) : 7(S1) — RY
for some N. Now the proof of Proposition [3.10| indicates that (h;) does
not vanish identically on 7°(S;). Using Lemma [B.1, we then construct a
countable family G = {G,} of submanifolds of 7(S1) such that (h;) # 0
outside U, G,. Then G,, := ngl(Fn) C T7(S) is nowhere dense in 7(S) and
their union G becomes a meagre set.

We now gather all E(a, 8) (page , F({oi},....{&}) (page , and
G({ei}, ..., {e},{6;}) that have been constructed so far, and denote their
union by V. This is the union of a countable collection of meagre subsets
of T(S), so V is meagre. Since T(S) is locally homeomorphic to a com-
plete metric space, we again invoke the Baire category theorem to deduce
that 7(S) \ V is dense in 7(S). Hence Theorem [3.1} Proposition and
Proposition [3.10 imply the following proposition.

Proposition 3.11. Suppose that X € T(S)\V and let {&1, &2}, {cu, Biy Vi, €i tien
be essential or boundary curves on S.

(1) If & # o, then Ix(&1) # Ix(&2)-

(2) Suppose that at X, {a, Bi, Vi, € Yicz satisfy the identities of Lemma

and each of {a;}icz U{v0}, {Vi}icz U{ao} contains no curves
with the same length. Then ag U~y forms the spine of a generalized

1-holed torus and {a_1,a1} = {T,Yiol(ao)}.

n*
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(3) In addition, let {01,...,04} be curves on S. Suppose that at X,
{cvi, Bi, vis € Yicz and {61, ..., 04} satisfy the identities of Lemmal3.5
and each of {c;}icz U {0}, {Viticz U{ao} contains no curves with
the same length.

Then agU~g forms a spine of an immersed subsurface v : S" — S,
where S’ is a generalized shirt. Moreover, {a_1,a1} = {Tyil(oz)}.
Further, we can label the peripheral curves of S" by {mi,...,n}
such that:
e §;, n; are both bounding (possibly distinct) punctures or §; = n;,
and
e g separates {m,n3} from {ma,ma} and 7o separates {ni,n2}
from {n3,na}.

Suppose now that S is a surface composed of at least two generalized
pairs of pants. If 11, 72 are disjoint curves on S and 7 is essential, then we
can perform the following procedure. We connect 71 and 7y with a simple
segment 7. Then 77, 12, and concatenation 7,797~ bound a pair of pants
P in S. Moreover, at least one of 11 or 7 is adjacent to yet another pair of
pants @, and P U@ becomes an immersed generalized shirt. Here one of 7y,
12 separates the shirt into P and (), and the other one becomes a boundary
curve of P U Q. When both 1,72 are boundary curves, we cal also find
an immersed generalized shirt whose boundary component contains 7y, 7s.
From this observation, we deduce the following lemma.

Lemma 3.12. Let S be a surface that is not a generalized pair of pants
or a one-holed/punctured torus, X € T(S)\V, and n1, n2 be essential or
boundary curves on X. Then the following are equivalent:
(1) m and n are disjoint;
(2) there ezists essential or boundary curves {«a, Bi, Vi, € }icz, on X and
curves {01, ...,04} such that:
o cach of {aitiez U {0}, {Vitiez U {an} contains no curves with
the same length;

o {m,m} = {0,601} or {m, 2}t = {01,02}; and
e the identities of Lemmal[3.9 are satisfied.

This lemma describes how to detect the disjointness of two given curves on
a surface by investigating the length identities of Lemma Note that in
the above lemma, the implication (1) = (2) does not require X to be outside
of V. Hence, from the above observation, we also have the following:

Lemma 3.13. Let S be a surface that is not a generalized pair of pants or

a one-holed/punctured torus, X € T(S5), and n1, n2 be essential or boundary

curves on X . Suppose that n1,m2 are disjoint. Then, there exists essential

or boundary curves {a, Bi, Vi, € Yicz on X and curves {01, ...,04} such that:

o cach of {ai}tiez U{0}, {Vi}icz U{aw} contains no curves with the
same length;

hd {”1’772} = {/70761} or {7717772} = {61762}; and
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e the identities of Lemma|3.9 are satisfied.

4. SURFACES WITH LOW COMPLEXITY

Before proving the main theorem in the general setting, we first deal with
surfaces of low complexity. The case of generalized pair of pants is dealt
with using the following lemma.

Lemma 4.1. Let X, X' be generalized pairs of pants with peripheral curves
{0i}i=12,3 and {0} }i=1.23, respectively.

(1) If Ix(6;) = lx/(0}) for each i, then X and X' are isometric.

(2) Suppose in addition that lx(01) # lx(d2), and let n (', resp.) be the
unique simple geodesic segment perpendicular to 01 and d2 (8] and &5,
resp.). Then there exist exactly two isometries ¢1, ¢2 : X — X' send-
ing each 6; to &, and n ton'. Here q§2_1 o ¢1 becomes an orientation-
reversing automorphism of X firing all boundaries setwise.

We now begin our discussion on one-holed /punctured tori and generalized
shirts.

Proposition 4.2. Theorem holds when S is a one-holed/punctured
torus.

Proof. Note that the assumption £(X) = L£(X') forces L(X’) to be sim-
ple since £(X) is assumed to be so. That is, every element of £(X') has
multiplicity one.

Let +' be an essential curve on X’. There exists another essential curve o/
on X' intersecting with 7" once. We then set essential curves {af, 5, 7%, €, }icz

on X’ as the curves involved in Lemma [3.3t
(1) af =T0(a'), 7 = T3, (7), and
(2) {T5 (0f_)} = {7, 87} and {T3' (]_1)} = {o, €}
Since {cf, B8],7.,€;} are essential, their lengths lie in £(X’). Note also that

2 (2

{}iez U {7} and {B}}icz U {a'} are collections of distinct curves. Their
lengths are distinct in £(X’).

From the equality £(X) = £(X’) between simple length spectra, we can
take essential or boundary curves {«, 5;,7i, € }iez on X such that

Ix(0w) = lx(ag), Ix(B) = Ix/(B7), Lx (i) = Ix(%), Ix(€) = Lx:(€})-
Note that {a;}icz U {1} and {vi}icz U {ap} are comprised of distinct
lengths. We then apply Proposition to deduce that i(ag,v9) = 1 and
{a_1,a1} = {T£ (a0)}. Thus, ag U o serves as a spine of X. Moreover,
Ix (o), Ix(70), Ix (T%l(ao)) determine a unique isometry class of X in the
following way. First, three consecutive ‘twists’ of g by 7o read the (un-
signed) twist parameter at 7y, or equivalently, the (unsigned) angle between
the geodesics ag and ~y. Using lx(ap), Ix (7o) and this angle, one can com-
pute the length of (geodesic representative of) agvyocry lfya 1 the boundary
curve of X. As a result, we obtain three boundary lengths of the pair of
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pants for X, and the twist for the gluing along 7. Since this information
agrees with that of X’, we conclude that X and X’ are isometric.

Let ¢ be the isometry from X to X’. Then f; Logo f1 becomes a (possibly
orientation-reversing) homeomorphism on S that sends [f2, X'] to [f1, X] by
pre-composition. [l

We now move on to the case of generalized shirts. Note that a general-
ized shirt might not necessarily be embedded into another surface but only
immersed. For instance, a generalized shirt is immersed in a closed surface
of genus 2 and cannot be embedded. As such, we need a variant in the
following format.

Proposition 4.3. Suppose that [f1,Y] € T(S)\V and [f2,Y] € T(S) have
the same simple length spectrum. Let ¢’ : X' — Y’ be an immersed subsur-
face of Y' where X' is a generalized shirt. Then there exists an immersed
subsurface v : X —'Y of Y such that X and X' are isometric. In particular,
Theorem holds when S is a generalized shirt.

Proof. Note that since each of the values in £(Y”) have multiplicity 1, so do
each of the values in £(X).

Let +' be an essential curve on X’. We take another essential curve o/ on
X’ such that i(a/,~") = 2 and i44(c’,7") = 0. Then o/ U’ serves as a spine
of X', bounded by peripheral curves {, ?:1 labelled as in Figure @ Let P’
(@', resp.) be the generalized pair of pants of X’ bounded by ¢, d5 and
(0%, 04 and ~/, resp.)

We then draw a simple geodesic segment k’,, on P’, perpendicular to
and . We given the orientation x’p, so that it is from 0] to 7'. We use the
inverse notation HIP_,l for the same segment with reversed orientation, and
same for other oriented segments. Similarly we draw a simple segment E/Q/
on @ from §% to 4/. Then there exists a unique segment & immersed along
v such that o’ equals the concatenation (/{/P_,l(Si/%/P/)f/(ﬁaléé/ﬁb/)f/_l.

We now set essential curves {o, 87,7/, €, }icz on X’ as the curves involved
in Lemma namely, We label the peripheral curves of X’ by {0}, ...,
83} in such a way that +' separates {d7,d5} from {d%,0,} and o separates
(67,84} from {5, ).

The corresponding essential or boundary curves {a, 8;, Vi, €iticz on Y
are taken by comparing the length spectra of Y and X’. In other words, we
require

Iy (i) = Ix:/(a}), by (Bi) = Ix:/(B), ly(vi) = Ix/ (1), by (&) = Lxe ().

Note that each of the collections {«;}icz U {70} and {7i}iez U {0} is com-
prised of distinct lengths. We also take §;’s appropriately: §; is taken to
be any puncture if the corresponding ¢/ is; otherwise ¢; is the essential or
boundary curve on Y having the same length with ;.

We then apply Propositionto deduce that i(co, v0) = 2, taig(0,70) =
Oand {a_1, 01} = {T%l(ao)}. Thus, cgU~p serves as a spine of a generalized
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shirt X, immersed in Y. Further, by the choice of §;, we may assume that
d; are indeed the peripheral curves of X, ag separates {d1, 03} from {d2, 04},
and 7o separates {01,092} from {d3,04}, as in X’ and in Figure @ We then
define generalized pairs of pants P, ) and segments xp, kg and { on X
analogously to X’.

From now on, we orient X, X’ such that ay (o}, resp.) becomes the
positive twist 77} (cv) (Tvl, (o), resp.). By Lemma there exist unique
orientation-preserving isometries ¢p : P — P’ and ¢¢ : Q — Q' sending rp
to kpr and K to Kgr. It remains to show that ¢p and ¢ agree on 1.

In short, the twist at v (7', resp.) is read off using I x («) and lX(T$1(a))
(Ix/(a') and Ix (Tj?l( "), resp) Indeed, the signed length of £ is deter-
mined by (ZX(Tvl(a)) x(Ty Y(a))) = (Ix(a1),lx(a_1)) and the boundary
lengths (Ix(01), ..., lX(54)) (See Proposition 3.3.11 and 3.3.12 of [Bus92] for
an explicit calculation.) Similarly, the signed length of &’ is determined by
lengths (Ix/ (), lx/(a/ 1), lx/(8)),...,1x/(dy)). Since the lengths involved
are identical, we conclude that the signed lengths of ¢ and &’ are also the
same, and hence ¢p and ¢ agree on . Thus X is isometric to X'. ([l

As in Proposition the twist 7x/(7') of X’ at 7' cannot be a multiple
of m. This is because the lengths of {77, (a) }i=—2,0,2 differ. If moreover, say,
97 and 05 have same lengths (e.g. they are punctures), then multiples of 7/2

are also forbidden for 7x/(7’). In any case, there exists only one isometry
between X and X'.

Proposition 4.4. Theorem holds when S is of type S1pp for p+b = 2.

Proof. We first take a curve v/ separating X’ into a one-holed torus and a
generalized pair of pants. Inside that one-holed torus, there exists a curve
8’ longer than +/. Indeed, we may pick any pair of once-intersecting curves
inside the given one-holed torus and twist one along the other sufficiently
many times. Now if we take a curve o on X’ such that i(&',¢/) = 0,
i(7,a) =2, and iqy (7', ') = 0, then o’ Uy’ becomes a spine of an immersed
subsurface 9{, : X, — X', where X, is a generalized shirt. Let us label the
boundaries of X{) by ¢, as in Lemma [3.5| so that §] = 65 = ¢’ are the same
when seen as curves in X’.

Let &) be the simple geodesic segment perpendicular to 4" and ¢, for
i =1,...,4, oriented toward «/. Further, let £ be the arc immersed along
~" such that

o = ( 1”1)51( 3“3) = ( 2”2)‘52( K1) éﬁl-
Finally, we set (] to be a shortest simple geodesic segment perpendicular to
6; and &; 5 for i = 1,2. See Figure

We now set curves {c, 3,7, € }iez on X’ as in Lemma The corre-
sponding essential or boundary curves {«;, 8;, Vi, € }icz on X are taken by
comparing the lengths, i.e., requiring

Ix (i) = Ix/(af), Ix(Bi) = Ix(Bi), Ix(vi) = Ix/ (1), Ix(€) = Ix:(€}).
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FIGURE 10. Curves on the surface S with p 4+ b = 2

Note that {a; }iczU{0} and {7; }iezU{ao} are comprised of distinct lengths.
We also take d; appropriately: d; is taken as any puncture if the correspond-
ing 9§/ is; otherwise ¢; is the essential or boundary curve on X having the
same length as ;. Here 0; = Jy since §] and 0} are both essential curves
and have the same length. From now on, we fix the orientation of X so that
ay =T (o) and similarly for X'.

We first cut X along §; to obtain an immersed subsurface 1y : Xg — X.
Proposition (3) tells us that Xy is a generalized shirt. Thus, we can also
define x;, &, ¢; on Xy analogously. Now, Proposition [4.3] gives an isometry
¢o : Xo — X|) sending each 0; to 52’-. In particular, ¢g becomes orientation-
preserving due to our choice of orientations. Moreover, k;, &;, (; are sent to
the corresponding «}, &/, ¢/ with orientations preserved.

We further take 1/, o’ on X’ such that i(¢’,n') = i(n/, /) = 1,4i(n',v") =0,
and i(o/,0") = 0, (¢, 0") = 2 and i414(0’,0") = 0. Then 6'Un’ (§'Uo’, resp.)
becomes a spine of an immersed subsurface ¢} : X| — X’ (¢ : X) — X',
resp.) where X (X/, resp.) is a one-holed torus (generalized shirt, resp.).
See Figure [T0}

Similarly, one can copy 7', ¢’ (and other necessary curves) to X using
the length spectra. Then X cut along v becomes an immersed subsurface
1+ X1 — X where X; is a one-holed torus, and X cut along o becomes
an immersed subsurface 1 : X9 — X where X5 is a generalized shirt, and
these are immersed along boundaries. Furthermore, Proposition gives
an isometry ¢1 : X; — X1, sending £ to k] and k2 to k}. Proposition
also gives an isometry ¢s : Xo — XJ, sending (1 to ¢} and (2 to ().

At this moment, ¢1 may or may not agree with ¢g on Xg N X1, depend-
ing on whether ¢, is orientation-preserving or not. Once ¢; is shown to
be orientation-preserving, the gluing of ¢y and ¢, becomes an isometry be-
tween X and X', completing the proof. Suppose to the contrary that ¢,
is orientation-reversing. For clearer explanation, we from now on flip the
orientation of X’ to make ¢, orientation-preserving, while we have that ¢
is orientation-reversing. We then show that the (unsigned) distance between
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¢1 and (s along 47 differs to the analogous one on X’. This will then contra-
dict the fact that ¢o is an isometry, which must preserve the unsigned twist
of X2 at 51.

R 4
e R
R 4
P ikl
R i
g R
lifts of (o 5 lifts of (3
lifts of Cé ................................... lifts of C{

FIGURE 11. Description on the hyperbolic plane

We parametrize §; by arc length A so that x1 is located on the right side of
01 while X increases, as in Figure On X, we denote the signed displace-
ment from k1 (K2, resp.) to (1 (Co, resp.) along &1 by dy (dg, resp.). Further,
we denote the signed displacement from k1 to ko along 61 by D. Here, the
signed displacement is taken inside the range [—Ix(01)/2,1x(01)/2]. Simi-
larly, we define the displacements d}, d;, and D’ for curves and segments on
X'

From the assumption, the twists at 7, 4/ are nonzero and opposite: this
forces dy = —dy # 0 and ds = —d}, # 0. Furthermore, d;, dy have opposite
signs since intersecting points of k1 and (; with §; do not separate the
intersection of k9 with 1 from the one of (5 with d; on ;. Finally, note that
a lift ¢; must cross the corresponding lift 4. This forces (1 to be sandwiched
between &1 and a geodesic from 0; ‘spiraling toward’ v (the black dashed
line in the right of Figure . If we denote the displacement between k1
and the spiraling geodesic by L, then we observe that 2L < [x(01)/2, as
depicted in Figure

Indeed, the distance between 77 and %; and the distance between 7 and
Ro in Figure are equal to lx(01)/2 and the distance between %1 and &g
is Ix(7)/2. We denote by G the bi-infinite geodesic orthogonal to &; and
sharing an endpoint with the dashed line in Figure Then the distance
between G and k1 gives an upper bound of L.

If G were bisecting d1, then the distance between K1 and K9 is same as the
distance between n and ko, which is also same as the distance between &
and 7. Based on this observation, we explain step by step using Figure
why 2L is smaller than the length of &y, from which 2L < Ix(8;)/2 follows.
Recall that we have fixed the lift 4 of v and the lift & of k1 (of the same
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g

FIiGURE 12. A hexagon bounded by o1, 7, k1 and other
geodesics.

length) perpendicular to 4. Draw a line A perpendicular to %1 that is not 5
(in Figure it is the geodesic line containing 51) Now, we will draw the
hexagon that is half of the left half of X} as follows.

For a moment, we consider the length of 61 as a variable: let t > 0. We
will vary the endpoint of 6; that is other than A N &, setting that 41 has
length ¢. Then, we decide 7 perpendicular to (51, a segment 59 perpendicular
to 77 with the same length as o1, and Ro perpendicular to both b9 and 7.
This can be done as follows: when the length of 6; is determined, the line N
(the geodesic line containing 77) is determined. Then we draw a simultaneous
perpendicular to N and 7, and reflect §; and #; with respect to it and get do
and Ko respectively. We get the desired hexagon, and as a direct consequence
of the construction, %1 and Ko have the same length, and 51 and 52 do so.

Now recall that L is the distance between the dashed line and %1, which
is fixed regardless of . When t increases, the distance between % and kKo
along 4 decreases. This implies that the length of v decreases and the length
of 01(= 2t) increases. Now, recall that G is the perpendicular to A witht the
endpoint same as the endpoint of the dashed line which is not shared with
7, as declared. When t = 2d(G, 1), we see that the hexagon is symmetric
with respect to G. Then, K1, K2 and 7 all have the same length, and the
hexagon has 120 degree symmetry. In particular, the length of § equals the
length of . At this point, still ¢ > 2L. Hence, at the situation ¢t < 2L, we
have that the length of § is smaller than the length of +, which contradicts
the assumption. Therefore, we must have 2L < [x(d1)/2.

Now we calculate the unsigned displacements between (; and (2 (¢] and
¢4, respectively). The former is |D + dy + da + nlx(61)| for some n € Z and
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the latter is |D + d} + d) + n'lx(61)| = |D — d1 — d2 + n'lx(61)| for some
n’ € Z. If some of them are equal, then either

2D = —(n + n’)lX((Sl) or 2(d1 + dz) = (n' — n)lX((Sl)

First, note that if 2|D| were either 0 or [x(d;), the two surfaces X and
X’ would be related to each other by combinations of orientation-reversing
map and Dehn twists along d;. Hence, we may assume that 2|D| is neither
0 nor Ix(d1). Recall that |D| <lx(61)/2. Then the former case is excluded
since 2|D| cannot be a multiple of Ix(d1). For the latter case, note first
that di, d2 are nonzero values having the same sign: their sum cannot
vanish. However, since |d1|, |d2| < Ix(d1)/4, 2(d1 + d2) cannot become other
multiples of Ix(d1). O

The proof equally applies to the case of genus 2 surface. In both cases,
only one isometry is allowed between X and X'.

Proposition 4.5. Suppose that [f1,Y] € T(S)\V and [f2,Y'] € T(S)
have the same simple length spectrum. Let ¢’ : X' — Y’ be an immersed
subsurface of Y’ where X' is a surface of type Sopp where p+b=5. Then
there exists an immersed subsurface v : X — Y of Y such that X and X'
are isometric. In particular, Theorem holds when S s of type Sopp for
p+b=>5.

Proof. Let us take curves 7, 75, o, ¢}, o5 on X' as in Figure and
label the peripheral curves as ¢;. Then we obtain two immersed subsurface
i+ X! — X' for i = 1,2, where X/ is the generalized shirt with spine o U~].
In addition, cutting X’ along of also gives another immersed subsurface
P X)— X

/ We also c/iraw simple geodesic segments k| ‘(resp. k%) perpendicular to
8% (resp. d)) and v} (resp. ~4), n' perpendicular to ] and ~%, and ¢
perpendicular to dj and ~;.

FIGURE 13. Configuration of curves on X' of type So,p,
p+b=>5.
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Now we take curves {7;,;} on Y by requiring ly(y;) = Ix/(v;) and
ly(a;) = lxs(a}). Then as in the previous proofs, using other auxiliary
curves, Proposition detects the intersection patterns of curves, which
means that:

e some curves of Y can be labelled as ¢; such that Ix(d;) = lx/(d}) for
each 7;
e fori=1,2, a;U~; serves as a spine of generalized shirt X; immersed
in X by ¢; : X; = Y;
e U~ also serves a spine of generalized shirt Xy immersed in X by
Yo : Xo = Y;
e 0 € {wj,i} separates {d;,,d;, } from {d;,,0;,, 8} if and only if o’ €
{af, i} separates {d; ,d;,} from {&; ,0; ,0; }.
Moreover, 1 and 19 induce an immersion ¢ : X — Y of a surface X of type
Sopp for p4+b =5, and we may assume that each J; is a peripheral curve
of X again from Proposition We then orient X, X’ by requiring that
T, (o1) and Ty (a))) have the same length. We also define segments k;, 1, ¢
on X, analogously to those on X’.

Now Proposition gives isometries ¢; : X; — X/ that send each bound-
ary to the corresponding boundary. This in particular implies that ¢; sends
ki to k) and n to n’ for i = 1,2; ¢ sends k1 to ] and ¢ to (.

Moreover, due to our choice of orientations, ¢; can be chosen as orientation-
preserving. If ¢ is also orientation-preserving, the proof is done by gluing
¢1 and ¢2. Suppose to the contrary that ¢o is orientation-reversing. Our
goal is to show that the (unsigned) distance between x; and ¢ differs to that
between ) and ¢’. This will then contradict the fact that ¢ is an isometry,
which must preserve the unsigned twist of v; at X.

We now parametrize v; by arc length A so that x; is located on the
left side of d; while A increases, as in Figure On X, we denote the
signed displacement from 7 to ¢ along v; by d. Further, we denote the
signed displacement from k1 to n along 1 by D. Similarly, we define the
displacements d’ and D’ for curves and segments on X'.

From the assumption, the twist at v9, 74 are nonzero and opposite: this
forces d = —d' # 0. We also observe that |d|, |d’| is bounded by half of
Ix(71) = lx/(71). This is because the geodesic perpendicular to v; and dy is
equidistant from 7 along ~;, and {, ¢’ cannot go across it. (See Figure
the black dashed lines are lifts of the geodesic perpendicular to v and dg.)

Now we calculate the unsigned displacements between x; and (, as well
as between ) and ¢’. The former is |D + d + nlx ()| for integers n and
the latter is |D + d' + nlx(y1)| = |D — d + nlx ()| for integers n. If some
of them are equal, then either

2D = nlx(v1) for some integer n  or 2d = nlx (1) for some integer n.

If 2|D| were 0 or Ix(71), the two surfaces X and X’ would be related to
each other. Hence, we may assume that 2|D| is neither 0 nor Ix(vy;). The
former case is excluded since |D| < Ix(v1)/2, and hence 2|D| cannot be a
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FIGURE 14. Description on the lifts of curves in Figure
Here the black dashed lines are lifts of the geodesic segment
perpendicular to v and Jy.

multiple of Ix(v1). For the latter case, 2d is neither 0 (since -2 has nonzero
twist) nor other multiples of Ix (1) (since |d| < Ix(y1)/2). This ends the
proof. (I

5. PROOF OF THE MAIN THEOREM

We are now ready to prove the main theorem, which we state here again.
Roughly, our idea in the proof is to reconstruct a hyperbolic structure from
a given length spectrum, with subsurfaces of low complexity as building
blocks. A similar idea also appeared in Grothendieck’s program [Gro97]
(see also [Luo09]).

Theorem 1.2 (Simple length spectra as moduli). Let S be a topological
orientable surface with compact boundaries and with non-abelian fundamen-
tal group and let T(S) be the Teichmiiller space of S. Then there ezists a
meagre subset V' of T(S) satisfying the following: if [f1,X] € T(S)\V and
[f2, X'] € T(S) have the same simple length spectra, then [f1, X] and [f2, X']
belong to the same orbit of Mod®(S).

Proof. Suppose that X € T(S)\V, X' € T(S) and L(X) = L(X'). We
fix a pants decomposition C and an exhaustion {S,} of S as described in
Proposition That is, S, forms an increasing sequence of finite-type
subsurfaces with S = U,,S,, and for each n € N, the boundary 0.5,, consists of
curves in C and Sy,41 is made by attaching a generalized pair of pants or one-
holed torus to S,, along only one curve. Furthermore, after modifying the
pants decomposition as in the proof of Proposition [£.4] one may assume the
following: if Cj € C bounds a one-holed torus that hosts another curve Cj €
C, then Ix/(Cy) > Ix(Cy). Since taking different pants decompositions does
not alter the simple length spectrum, we may assume so.
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We denote the subsurface of X’ corresponding to S, by X/,. To clarify,
X' is decomposed into generalized pair of pants P/, glued with each other
along boundaries, and X, = U" , P/ for each n.

We can first rule out the cases of generalized pair of pants and one-
holed /punctured torus since they were treated in the last section. Thus, we
may begin with X/, a subsurface made out of two generalized pairs of pants.
These cases were dealt with in Proposition and [4:4] so we can assume
the isometric embedding 2 of X} into X. From this isometric embedding,
we inductively extend along the exhaustion X, and eventually obtain the
desired isometry X’ — X. The fact that our base case X} consists of two
generalized pairs of pants play a role in this extension.

Now suppose that ¢, : X/ — X is an isometric embedding. Let us
denote the subsurface X, \ X, by P’. Then P’ is attached to a pair of
pants Q" C X/ along a curve ] constituting C’. Since X, contains at least
two pairs of pants, @’ is connected to yet another pair of pants R’ C X/
along a curve v, # ~; comprising C’. Let @), R be their respective images
on X.

Let us first assume that P’ is a generalized pair of pants. Since P’ is
the subsurface X} ; \ X, and the exhaustion {S,} is made by attaching
a generalized pair of pants or one-holed torus along only one boundary
component at each step, we have P’ N Q" = +|. By the same reason, we
also have @' N R’ = ~4, and hence P’,Q’, R’ are pairs of pants located
in that order in Figure We now define curves {a},~/,0;} on P, @,
R’ as in Figure and designate a;, v, §; on X by comparing lengths.
Then the proof of Proposition shows that a1 U~; becomes a spine of
an immersed generalized shirt in X, which is divided into ) and another
immersed generalized pair of pants P. Moreover, the proposition gives an
isometry ¢ : P'UQ'UR' — P UQ U R sending each of {¢/,~/, 0.} to corre-
sponding {a;,7;,9;}. In fact, more can be said from the proof of Proposition
Note that the restriction ¢, |gur : Q' UR' — QU R is also an isometry.
In particular, it sends each of o, 7/, ¢, on Q"UR’ to the corresponding curve
on QU R. The proof then guarantees that such an isometry can be extended
to the entire isometry ¢ : PPUQ'UR' — PUQU R. Thus, v, and ¢ can be
glued on Q' U R'.

Denoting by X, the image of X/ under 1), it remains to show that PNX,
is a single curve, say, the image or C), by 1,. We first claim that P and
X, have disjoint interiors. We observe that X,, cannot cover all of int(P);
otherwise, P’ has at least two boundary components and they are contained
in X/, which was forbidden. Hence, if X,, intersects int(P), then there exists
a boundary component n of X, that intersects int(P). Moreover, since P is
a generalized pair of pants, n cannot be contained in int(P). This implies
that there is a boundary curve, one of d1, 2, that n intersects. Without loss
of generality, we may assume that 7 intersects ;. Let 1’ be the boundary
curve of X, corresponding to 7. Since P’ is attached to X, only along the
curve 71, two curves 8] and 1’ are disjoint. Hence, we apply Lemma



40 HYUNGRYUL BAIK, INHYEOK CHOI, AND DONGRYUL M. KIM

to two X', 87, and 1’ and obtain auxiliary curves given by Lemma to
satisfy the length identity therein. Since £(X) = L(X’), we can also find
auxiliary curves in X for §; and 7 so that the same length identity holds.
Since X € T(S)\V, it follows from Lemma that ¢; and n are disjoint,
contradiction.

Furthermore, since P’ is attached to X, only along ~/, 6] and d} are not
boundary curves of X/ . Thus, d; and d2 are also different from the boundary
curves of X,,, and P is also attached to X,, only along . Thus, gluing 1,
and ¢ on Q' U R’ is sufficient to construct 1,11.

If P’ is a one-holed torus, we still have to investigate whether ¢ respects
the gluing at 07 = 05. This time, we observe that ¢|prg becomes an
isometry from P'UQ’, as an immersed generalized shirt, onto PUQ. Again,
the proof of Proposition asserts that ¢|pyg can be extended to the
isometry P'U(Q’, as a 2-holed /punctured torus this time, onto PUQ. Thus,
p+1 is well-defined also in this case.

Since {X]} is an exhaustion of X', we obtain an isometric embedding
1 : X' — X after this induction process. We now claim that v is surjective.
To show this, suppose not: 1(X”) is a subsurface of X. Since X is connected,
the only possibility is that X’ has a boundary curve C, while C' = ¢(C})
is an interior curve of X. In this case, C' has a minimally intersecting
curve 7: if it is non-separating, then there exists another curve n such that
i(C,n) = 1; otherwise, there exists another curve 7 such that i(C,n) = 2 and
ia1g(C,m) = 0. Since L(X') = L(X), there exists a curve 7 C X’ such that
Ix/(n) = lx(n). Since ¢ : X' — X is an isometric embedding and £(X) is
simple, it follows that 1(n") = n. As such, i(¢¥(n'),C) = i(n,C) > 0, which
contradicts the assumption that C' is a boundary curve of ¥ (X’). |

6. FURTHER QUESTIONS
We conclude this article by suggesting some further questions.

(1) It can be asked whether the meagre set V' we constructed is optimal.
Indeed, it is not known whether the isometry classes of all hyperbolic
surfaces are determined by their simple length spectra.

(2) For surfaces of finite type, our argument descends to the moduli
space. Indeed, we know that Mod™ (S, ) (the usual mapping class
group which consists of the isotopy classes of orientation-preserving
homeomorphisms) acts on 7T ,,; properly discontinuously, whose
quotient is the moduli space M(S). Thus, for example, we have
that V/Mod™ (S, ) is a meagre, i.e. countable union of submani-
folds of positive codimensions, and (unmarked) hyperbolic surfaces
outside it will be distinguished by their simple length spectra.

We hope that a similar argument can be made for surfaces of in-
finite type. For example, the mapping class group acts on the qua-
siconformal Teichmiiller space of some Riemann surfaces discretely
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and faithfully (See [FST04]). Similar discussion for Fenchel-Nielsen
Teichmiiller space is expected.

(3) While studying Question (1), Aougab et al. suggested in [ALLX23]
that finite covers of a closed topological surface might be probed via
simple lifts of closed curves. Our result produces at least one (actu-
ally abundant) hyperbolic structure whose simple length spectrum
is topologically rigid on a co-meagre subset of the Teichmiiller space.
This structure may help deal with this problem.

APPENDIX A. PANTS DECOMPOSITIONS OF SURFACES

We begin with a version of Richards’ classification of surfaces. Besides of
the genus g (which may be infinite), each surface S is associated with three
invariants:

e the space X of ends of int(.9),
e the space Y of non-planar ends, and
e the space Z of boundaries.

Here X is a compact, separable, totally disconnected space and Y, Z
are disjoint closed subsets of X, where Z consists of isolated points of X.
Then S is made from a sphere by removing X \ Z, then removing disjoint
open discs, each containing one element of Z and not containing any other
elements of X, and then attaching g handles that accumulate to points of
Y. (See Theorem 3 of [Ric63])

We first consider the case |X| < 3. This corresponds to finite-type sur-
faces Sy pp with p + b < 3, the Loch Ness monster with p +b < 2, 1-
punctured/bordered Jacob’s ladder or the tripod surface. All these surfaces
admit the pants decompositions desired in Proposition (See Figure )

From now on, we consider the case |X| > 4. Let ¥ be a sphere, K
be a Cantor set on X, let Y € X C K be closed sets of ¥, and let Z
be a subset of X \ Y consisting of isolated points. For convenience, let
To = {(k,i) : k € Z~p,1 < i < 2F}. Since K is a Cantor set, there exist
open discs {Uk,;}(k,i)ez, such that

® Uk, ..., Ugor are disjoint for each k,

[ Uk,i contains Uk+1,2i—1 U Uk+1,2i7 and
k
Since | X| > 4, there exists disjoint Uy, ;, for t = 1,...,4 such that X N
Uk,iy # 0 for each t and X C Uf}lekt,it. By relabelling, we may assume

that Us; intersects X for ¢ = 1,2,3,4. Now, we declare a subset Z of Zj as
follows:

{ (k,2j —1) € T and (k,2j) € T

(k25— 1) ¢ T and (k,2)) ¢ T
For convenience, we exclude (1,1) from Zy as well. ()

< Uk2j-1NX # 0 # Uraj N X,
And [Uk,Qj—l NX =0 or Uk2j N X = (7)}_
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FiGure 15. Pants decompositions of few-ended surfaces

We claim that 3\ ({8Uk’i : (ki) € I} UX) is composed of pairs of pants

and cylinders, where the cylinders are precisely of the form

Ui \ {p} : p € X is an isolated point in X,
ki \APY: g 5y = min {(1,5) € o : Up; N X = {p}}

(Here, we employ the lexicographic order on Zj.)
First observe that (1,2),(2,1),...,(2,4) € Zy, and that £\ (Uz1 U...U
U2,4) is decomposed into two pairs of pants thanks to the modification (k).

Now let z be a point on Uz 1\ ({GUM : (k1) € I}UX). Pick the maximal

(M, t) € 1y such that UM,t S z; then z € UM,t \ (UM+17215,1 U UM+1,2t).
Among the ancestors of Ujsy, pick the most ancient one Uj; such that
Uy,;NX = Uyy N X. Here, we know that [ > 2 because U;; contains
U2 N X, a nonempty subset of X disjoint from Uy N X C Uz N X. Let
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(1,7") be the other immediate child of the parent of (I, j), i.e.,

{(,9), (1,57} = {(,2[5/2] = 1), (1, 2[5/21) }-

Due to the minimality of (I, j), we know that U N X = (Uj_q /21 N X) \
(U; N X) is nonempty. Hence, both (I,7) and (I, j/) belong to Z.
We now have two cases:

(1) If U ;N X is a singleton {p}, then p is an isolated point of X. Since

Ui, ;N X = {p}, no two distinct descendants of Uy, ; can both intersect
X. Hence, Uy,; N ({@U,w- (ki) € T}U X) = Ui\ {p}-

(2) If U ; N X is not a singleton, then

(A1)

#{(m,u): 2" = 1) <u <27 U N X # 0} > 2

for some m > [. Indeed, if not, then U;; N X is an intersection of
nested sequence of connected compact sets, which is connected in
K, hence is a singleton.

Pick a minimal m. Here, recall that Uy N X = U;; N X. This
implies that

Uno N X =0 (¢ #tand2M (5 — 1) < u < 2ML).

In other words, among the descendants of U; ; at some level between
[ and M, only one can intersect X. Hence, m is greater than k.
Note that if U, ,, intersects X for some u, so does its parent. Also
note that at most 2 distinct indices can have the same parent. This
implies that #{(m,u) : 274 — 1) < u < 274, Uy N X # 0}
cannot be greater than 2 and is exactly 2. Let Uy, ., Uy, be the
ones intersecting X. By Display Um and U, must be
descendants of Ups,;. Moreover, due to the minimality of m, we have

(A2) #{(k,i): 2" —1) <i<2" U, nX#0}=1 (I<k<m).

We now observe the descendants of U; ; recorded by Z. Each open
set Uy, contained in Uj; is either disjoint from U, . and U, .,
is a parent of one of Uy, s or Uy, ,», or is a descendant of one of
Up,w and Uy, v (themselves included). Those of the first category
cannot intersect X, because U;; N X is partitioned into U, N X
and Up, ,» N X. Hence, they are not recorded by Z. Those of the
second category are not recorded by Z either, because of Display [A.2]
Hence, the descendants of U ; recorded by Z must be descendants
of Upy and Uy, . In other words, OUy ;’s for (k,i) € T either lie
outside U, ; or is contained in U, .+ and U, ,,». Hence, the connected

component of Uz 1\ ({GUM 2 (kyi) € Z}UX) containing z is precisely
U N (Umyu/ U Um7uu), a pair of pants.

In the above discussion, we note that each pair of pants have boundaries
coming from three indices in Z, where one is an ancestor (and is the direct
parent in Z) of the other two, with the exception of Uf, N Us; N Us,.
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Conversely, for each (k,i) € Z, OUy; either is the boundary of two pairs
of pants (when (k,7) has its decendants in Z), or is the boundary of a pair
of pants and a cylinder (when Uy ; is the largest open set intersecting X
precisely at p).

We now draw the seam. For each (k,i) € Z, pick two points py;, qr; on
OU},;. Now, on each pair of pants P bounded by Uy, ;, Uy i and Uy v, where
the latter two are descendants of the former one, we draw three disjoint
continuous paths in P connecting py; to pr i, qxi to g, and g 4 to
pr 7. On a cylinder containing a single point p € X and bounded by
OUy i, we draw two continuous paths, disjoint in the interior, that connect
pii and gi; to p. We declare the union of these paths to be a seam S.
Then a connected component of S is an embedded arc in ¥\ X, as it is an
embedded arc when restricted to each pair of pants and cylinder, and near
each boundaries U} ;’s for (k,i) € T.

Now, we remove the cylinders containing a point of Z. This way, we
can attach boundary components to ends in Z. Note that S restricted to
Y\ {cylinders} still serves as a seam.

When ¢ is nonzero and finite (which implies that Y = 0)), we cut ¥\ X
along OUj 2 and insert a surface 3,2 with genus g and with two boundaries.
We can also reconstruct the seam on Xy 9.

It remains to realize the non-planar ends Y when they exist. First, iso-
lated points in Y are associated with disjoint cylinders. We replace each
cylinder with half of (seamed) Jacob’s ladder, making sure that the existing
seam and the seam on the Jacob’s ladder are glued up well. Next, for each
(k,i) € T such that Uy, NY # (), we cut the surface along OUy; and insert a
surface 31 2 with genus 1 and with two boundaries. We can also reconstruct
the seam on the inserted surface. This way, each point in Y is approached
by genera while those outside Y is not.

See Figure [1] for the resulting pants decomposition.

APPENDIX B. ANALYTIC FUNCTIONS
In this section, we prove the following lemma.

Lemma B.1. Let f : U = R™ be an analytic function on a domain U C R™

that does not vanish identically. Then there exists a countable family of
submanifolds {S;}ien of U such that f # 0 outside U;S;.

Proof. Tt suffices to prove for m = 1. We define the sets
Cj={x€U:0,f(x) =0 for all index a with |a| < j}
for j > 0. We observe that Cy O C; D --- and N;C; = (. Indeed, the
existence of a point z € N;C; will imply f = 0 due to the analyticity of f.
We now define S; = C;_1 \ C;. It follows from the previous observation
that Uz‘eN S; = Cp, and f # 0 outside Cy. It remains to show that S; is
contained in a finite union of submanifolds. For each index o we define

Sa,j = {z : Oaf(x) = 0 but Oy f(xz) # 0}, where o) = a; + 0;;. Then
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the implicit function theorem tells us that S, ; is a submanifold. Since
Si C Uja|=i,1<j<nSa,j, the proof is done. O

AppPENDIX C. PROOF OF LEMMA 2. 13

This appendix stands for the proof of the following lemma. A convergence
of Fenchel-Nielsen coordinates as the moduli go to infinity was also dealt
with in [FBI5).

Lemma 2.13. Let a be a multicurve on S with i(a,Cy) = k.
(1) If k =0, then lx, (o) converges to a finite value as r — 0.
(2) If k > 0, then lim, o lx, (a)/Inr = —2k.

Proof. Here (' is adjacent to one or two pairs of pants. In each case, we
draw the simple geodesic segments perpendicular to the boundaries of pairs
of pants as described in Figure We also pick basepoints n N k3 = p,
nt N n? = p* in each case. The complement of these pants in S is denoted
by R.

S

K3

FIGURE 16. Pants containing C}

For the sake of simplicity, we explain for the case that C] is non-separating.
In order to define representations for X,., we first fix a unit vector V on H
based at some p € H. Also, let ¥ be a unit vector on X, based at p. Then
there exists representations I, : 71 (S, p) — PSL(2,R) corresponding to X,’s
such that @ is lifted to V.

We now investigate the monodromy of loops « in m1(S). Suppose first
that a and (' are disjoint. On each X, a is homotopic to a concatenation
of the following segments:

e geodesics on R (meeting R orthogonally),

e geodesics along R or

e geodesic Kg3.
The angles among such geodesics are kept perpendicular during the pinch-
ing. Moreover, the lengths of the first two types are unchanged during the
pinching. The length of k3 continuously grows and converges to a finite
value. Moreover, the length proportion of segments of k3 cut by p also
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varies continuously and converges to a finite value. Consequently, the image
Vior = ['(@)(V) of V by the monodromy along a varies continuously along
r, converging to a limit Vap as r — 0.

Let us now consider a segment 3 from p to Cy, where 3 is not transversing
C1 but only meets at one endpoint. Concatenating 8 with a segment along
7, from C to p, it follows that 5 is homotopic to a concatenation of a loop
a € m1(S) disjoint from C; and a segment along 7. This segment along 7 is
exactly half of entire 7. Then, we can characterize the lift C; of C; on H as
follows: the geodesic transport ‘70’”, of V,» by distance +ix, (n)/2 becomes
a normal vector to C7. Such lifts bound a convex region in H, which we
denote by K. As r — 0, those lifts converge to points in 0 H, namely, the
endpoints of the geodesic along ‘7@70 for various . Accordingly, K becomes
the full H.

We now discuss the asymptotic behavior (along the pinching process)
of a curve a with i(a,C1) = k > 0. On each X,, « is homotopic to a
concatenation of geodesics {3;}*_, along C; and {;}*_, orthogonal to Cj.
It follows that

©D Y0 Sl e) £ 301 (B + D b ()

We claim that lx, (3;) is of class O(r) during the pinching. This is because
Vi, Vi+1 never crosses 7’s. To see this, note that the geodesics orthogonally
departing from C] are parametrized by their departure point on C;. If we
slightly perturb 7, it will still return to C; but not orthogonally. Moreover,
the threshold of this perturbation is locally uniform along r. Thus, if ;
were 77 at a moment X,., then it would stay at n forever. Note also that
the shear among the lifts 7 of 1 each side of C is kept constant during the
pinching. As a result, if a lift & of « is sandwiched by two 7’s on each side
of Cy marking twist 7, then Iy, (;) is always dominated by 7I(Cy) = 7.
See Figure [17]

Meanwhile, lx, (v;) grows exponentially. To elaborate this, we first fix a
lift 4; of ; in K, which meets lifts C;, C] of C} at endpoints. As explained
before, C7 and C} converge to limits ¢, ¢ € OH, respectively. (Here ¢ # ¢
because ~; is nontrivial) Let 4; be the geodesic connecting ¢ and ¢/, and fix
an arbitrary point pr.y on 4;. Let pper, be the foot of perpendicular from
Pref to ¥i. Note that d(pperp, pref) — 0 as r — 0.

C; is adjacent to a sequence of lifts of 7. Among them we pick two
consecutive lifts 77, 77— inside K, sandwiching the ray 7;. (Recall that #;
will not cross 7, or 77— during pinching) 7, meets C; at one endpoint and
meets another lift C} 4 of O at another endpoint. Similarly, 7— meets Cy
and another lift C’L, of C7 at endpoints. Ol,+ and C’L, also converge to
points ¢4 and c_ on O H, respectively, as r — 0.

Let us work on the upper half plane model with ¢ = oo, ¢4 = 1 and
c— = 0. We fix points ay, by, d on the real line as in Figure and define
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b_ “—;rb— a_day a+;b+ by

Ficure 18. Pinching described on H

r1,+ and rg 1 as follows:

a4+ + bt
2

a+ + by

a+ — B

Tt =

) T?,:I: = ’d_

Note that a4, d remain bounded while |b4+| — 0o as r — 0. Thus, r; +/ro +
tends to 1 during the pinching.

We now consider three horocycles based at oo: L passing thourgh the
highest point of C;, and Ly passing though C; N 7+. We record their Eu-
clidean y-coordinates of L, Ly, and pperp by YL, YL, and yp,.,.,, respectively.
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Then we have

(C.2) lim 25 = Jim T0E =g
r—=0 yr, r—0 o+
and
min , _
(C.3) P ) d(pperp, C1) < In 2L
ypperp yppe7'p

from the geometry. o
Let w be the Euclidean width of C';. Then we finally relate the length r
of C7 with yr, as follows:

In <1/ dm):lnw—lnnglnT:ln (/ d8>
vL

§ln< - L 2/ dac):lnw—lnyL—l—ln - 5
mln(ijLany) C mln(yL+7 ny)

Here the Euclidean width w of C; is equal to

2 2 2 2
T r T r
2,4 1,+ 2, 1,
+

T2 + Tro,—

Recall that ry 4+ /ro + — 1 as r — 0. Moreover,

lim([(ro,+ —714) + (ro,- —ri-)] = lim(ay —a_) = 1.
r—0 r—0

Using this, we conclude that w — 2 and Inyz/Ilnr — —1 as r — 0. From
this conclusion and Equation we obtain that

lim d(pperp; Cl)

=1.
r—0 —Inr

The same logic applies to C’{, the other end. Thus we obtain

lim Ix, (vi) _9
r—0 —Inr

Similar discussion also holds for other v;’s. Since lx, (5;)’s are of class O(r),
we conclude that

2i(a, C1)

o
\
=)
3
5
1
S
\
]
3

=1
T—

—Inr —Inr

k
< lim sup bx, (@) < lim Z (ZXT(%) + lXT(Bi)) = 2i(a,Cy). O
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