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Abstract. In this article, we revisit classical length identities enjoyed
by simple closed curves on hyperbolic surfaces. We state and prove the
rigidity of such identities over Teichmüller spaces. Due to this rigidity,
certain collections of simple closed curves which minimally intersect are
characterized on generic hyperbolic surfaces by their lengths.

As an application, we construct a meagre set V in the Teichmüller
space of a topological orientable surface S, possibly of infinite type.
Then the isometry class of a (Nielsen-convex) hyperbolic structure on
S outside V is characterized by its unmarked simple length spectrum.
Namely, we show that the simple length spectra can be used as moduli
for generic hyperbolic surfaces. In the case of compact surfaces, an
analogous result using length spectra was obtained by Wolpert.

1. Introduction

Given a closed Riemannian manifold M , one can define the Laplace-
Beltrami operator ∆ acting on L2(M). The (eigenvalue) spectrum of M is
the collection of eigenvalues of ∆, counting multiplicities. A closely related
notion is the (unmarked) length spectrum (simple length spectrum, resp.)
of M , the collection of lengths of closed geodesics (simple closed geodesics,
resp.) in M counting multiplicities. A classical result of Huber ([Hub59],
[Hub61]) asserts that the spectrum determines the length spectrum in gen-
eral, and vice versa in the case of hyperbolic surfaces of constant curvature.

The 9g − 9 theorem implies that the marked length spectrum of a closed
orientable surface determines its isometry class. We note its generalization
to negatively curved surfaces in [Ota90] and [Cro90]. In this spirit, Gel’fand
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conjectured in [Gel63] that the length spectrum of a closed surface deter-
mines its isometry class. (See [Kac66] for an analogous question by Kac for
planar domains.) Since then, various attempts have been made to extract
the Riemannian structure of manifolds from their spectra.

In general, a closed surface of genus g is isospectral to at most finitely
many other surfaces. McKean provided the first upper bound on this number
as a function of g in [McK72]. See [Bus92] and [Par18] for further develop-
ment. Moreover, Müller also proved in [M9̈2] that a (possibly non-compact)
hyperbolic surface of finite area is isospectral to at most finitely many sur-
faces. Meanwhile, Vignéras constructed in [Vig78] the first examples of
isospectral, non-isometric closed surfaces. Sunada explained in [Sun85] a
general recipe for isospectral closed manifolds in general dimensions includ-
ing 2. These works answer Gelfand’s conjecture in the negative.

Meanwhile, the length spectrum indeed determines the isometry class of
some surfaces of low complexity. The case of one-holed torus with a fixed
boundary length was proved by Haas in [Haa85], and the restriction on the
boundary length was removed by Buser and Semmler in [BS88]. We note
that both of their approaches work when the length spectrum is replaced
with the simple length spectrum.

In contrast, it is not known whether the simple length spectrum de-
termines the isometry class of a general hyperbolic surface. In [Mau13],
Maungchang investigated examples of isospectral, non-isometric hyperbolic
surfaces constructed in [Sun85] and showed that their simple length spectra
differ. [ALLX23] observed the relationship between this question and char-
acterizing finite covers of surfaces via simple closed curves. See also [Mon17]
for a variation of this question involving the length-angle spectrum.

One can instead focus on the simple length spectra of generic hyperbolic
surfaces. In [MP08], McShane and Parlier asked whether there is a surface
for which all the multiplicities are 1. They showed that the set of marked
hyperbolic surfaces (of a given finite type) that does not have this property
is meagre, providing a strongly affirmative answer. They also related this set
to other questions on low-genus surfaces, including the Markoff conjecture.

The strategy of McShane and Parlier is to investigate the length equality
lX(α) = lX(β) for simple closed curves α, β over the Teichmüller space.
If two curves are same, then the equality clearly holds on the entire space;
otherwise, the equality holds only on a submanifold of the Teichmüller space.
We note that this strategy is not applicable for non-simple closed curves.
Indeed, there are arbitrary many distinct curves on a surface that have the
same length with respect to any hyperbolic structure [Ran80].

Motivated by McShane and Parlier, we consider other length identities
enjoyed by few-intersecting simple closed curves. As in McShane and Par-
lier’s work, we construct a meagre subset V of the Teichmüller space which
is a union of countably many analytic submanifolds; few-intersecting simple
closed curves and their topological configuration are characterized by their
lengths on any hyperbolic surface outside V . In other words, we prove the
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following proposition (which is an interpretation of Proposition 3.11 in plain
words). This argument does not rely on the finiteness of the surface type. In-
deed, it equally applies to Nielsen-convex hyperbolic structures on surfaces
of infinite type, which means that the hyperbolic structure admits a nice
pants decomposition (see Fact 2.5 for the precise definition). Teichmüller
space for such hyperbolic structures is defined in a similar way to the usual
Teichmüller spaces (Definition 2.6).

Proposition 1.1 (Interpretation of the main proposition). Let S be a topo-
logical orientable surface. Then there exists a meagre subset V ⊆ T (S) such
that for X ∈ T (S) \ V and a hyperbolic surface X ′ homeomorphic to either
one-holed torus or p-punctured b-holed sphere where p+ b = 4, the following
implication holds:

L(X ′) ⊆ L(X)⇒ ∃ isometric immersion
X ′ → X

Here, L stands for the simple length spectrum.

As an application of this result, we prove that the simple length spectra
of generic surfaces determine their isometry classes. An analogous result for
the length spectra was obtained by Wolpert in [Wol79]. Wolpert considered
a subvariety Vg of the Teichmüller space T g of genus g and proved the fol-
lowing: if [f1, X] ∈ T g \Vg and [f2, X

′] ∈ T g have the same length spectrum,
then [f1, X] and [f2, X

′] belong to the same orbit of the extended mapping
class group Mod±g .

We note that Wolpert’s argument requires length information of some
non-simple closed curves, which are not available from the simple length
spectrum. In addition, Wolpert’s argument heavily relies on Mumford’s
compactness theorem, which is hard to be generalized to infinite-type sur-
faces. Our main result replaces the length spectrum in Wolpert’s theorem
with the simple length spectrum, using techniques that apply to both finite-
type and infinite-type surfaces.

The following is the main theorem of this paper. By a meagre subset, we
mean a union of countably many analytic submanifolds of positive codimen-
sion.

Theorem 1.2 (Simple length spectra as moduli). Let S be a topological
orientable surface with compact boundaries and with non-abelian fundamen-
tal group and let T (S) be the Teichmüller space of S. Then there exists a
meagre subset V of T (S) satisfying the following: if [f1, X] ∈ T (S) \ V and
[f2, X

′] ∈ T (S) have the same simple length spectra, then [f1, X] and [f2, X
′]

belong to the same orbit of Mod±(S).

We emphasize again that in the above theorem S does not have to be of
finite type.
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Organization of the paper. In Section 2, we cover some background for
the paper. It especially includes Teichmüller spaces and pants decompo-
sitions of infinite-type surfaces, and the fractional Dehn twists. The rela-
tion between topological configurations of curves and identities among their
lengths is dealt with in Section 3. In Section 4, the main theorems for
surfaces of low complexity are proved. They serve as base cases for the in-
duction argument in the proof of the main theorem provided in Section 5.
Further questions are asked in Section 6. For some lemmas which seem to
be well-known to the experts while the authors could not find explicit ref-
erences, we provide their proofs in Appendix A, B, and C for the sake of
completeness.

Acknowledgments. We appreciate Changsub Kim, KyeongRo Kim, Bram
Petri, Philippe A. Tranchida, Scott Wolpert for helpful conversations. We
would like to thank the anonymous referee for valuable comments.

2. Backgrounds

2.1. Surfaces, curves and hyperbolic geometry. In this section, we in-
troduce basic notions. For details, we refer the readers to [FM12] and [ALP+11].

In this article, (topological) surfaces are second-countable, connected, ori-
ented 2-dimensional manifolds with compact boundaries. Those with finitely
generated fundamental groups are said to be of finite type; others are said
to be of infinite type. A finite-type surface is characterized by the genus,
the number of boundary components, and the number of ends. Topologi-
cally, a finite-type surface is homeomorphic to the connected sum of a sphere
and finitely many tori, with finitely many open discs and points removed.
We denote by Sg,p,b the genus g surface with p punctures and b bound-
aries. Throughout, we only consider surfaces which are not sphere, disc,
and punctured disc.

A homotopy on a surface is required to preserve each boundary component
of the surface setwise, but not necessarily pointwise. A loop on a surface is
a continuous map from S1 to the surface. A loop is said to be simple if it is
injective. A curve on a surface is a nontrivial free homotopy class of simple
loops. A curve bounding an annulus is said to be peripheral ; otherwise it is
said to be essential. Each peripheral curve either bounds a puncture or a
boundary component.

An arc on a surface is either an essential curve or the homotopy class of an
essential simple arc connecting ends or boundary components. A multicurve
(multi-arc, respectively) is a finite union of disjoint essential curves (arcs,
respectively). All curves, arcs, multicurves, and multi-arcs are unoriented
in this article, unless stated otherwise.

A (properly embedded) subsurface of a surface S is the image of a proper
embedding ψ of a surface S′ into S. The properness forbids an open end
of the subsurface from accumulating on the boundary of the ambient sur-
face. Abusing the notation, we sometimes refer to the image ψ(S′) in S
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as a subsurface. An immersed subsurface of a surface S is the image of a
proper immersion ψ of a surface S′ into S whose restriction on int(S′) is an
embedding. For example, a subsurface of type S1,0,2 can be viewed as an
immersed subsurface of type S0,0,4.

The following are terminologies for surfaces with small complexity. A
generalized pair of pants is a surface whose interior is homeomorphic to a
3-punctured sphere. These include S0,p,b with b+ p = 3. A generalized shirt
is a surface whose interior is homeomorphic to a 4-punctured sphere. These
include S0,p,b with b + p = 4. Note that some literature use Y -piece and
X-piece to denote the generalized pair of pants and the generalized shirt,
respectively.

Definition 2.1. A pants decomposition P of a surface S is a collection of
disjoint, distinct curves {Ci}i∈I satisfying the following:

(1) each component of S \
⋃
iCi is a generalized pair of pants without

boundary, and
(2) there exist disjoint tubular neighborhoods Ni of Ci in S.

Note that a pants decomposition of a surface should include all of its
boundary components. Condition (2) is to prevent the case when some
of the Ci’s accumulate to one of the Cj . Such a collection can be made
for instance when S is S2 minus a Cantor set. The following notion will
be useful when we discuss Fenchel-Nielsen coordinates in the later section:
recall that an arc on a surface is either an essential curve or the homotopy
class of an essential simple arc connecting ends or boundary components.

Definition 2.2. A seam for a pants decomposition P = {Ci}i∈I is a collec-
tion of mutually disjoint arcs {Aj}j∈J that satisfies the following:

(1) {Aj}j and {Ci}i are in a general position, i.e., (
⋃
iCi) ∩ (

⋃
j Aj) is

a discrete subset of S;
(2) On each generalized pair of pants of S \

⋃
iCi,

⋃
j Aj connects each

pair of ends and decomposes the pair of pants into two generalized
hexagons.

When a seam {Aj}j∈J is given for a pants decomposition P = {Ci}i∈I , we
call the pair ({Ci}i∈I , {Aj}j∈J) a seamed pants decomposition. By abuse of
notation, we also denote it by P.

Infinite-type surfaces are characterized by their genus, number of bound-
ary components and the nested space of ends [Ric63]. From this character-
ization, we obtain pants decompositions of surfaces that will be used in the
proof of Theorem 1.2. The construction is apparent in Figure 1; nonethe-
less, we include a proof in Appendix A for the sake of completeness. (See
also [HHMV19].)

Proposition 2.3. Let S be a topological surface. Then there exist a seamed
pants decomposition P = ({Ci}i∈I ,Aj∈J) and finite-type subsurfaces {Sn}
satisfying the following:
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(1) {Sn} is an exhaustion of S, i.e., Sn ⊆ Sn+1 for each n, S = ∪nSn
and each compact subset of S is contained in some Sn;

(2) each of Sn is bounded by some Ci’s and P restricts to Sn as a seamed
pants decomposition, and

(3) Sn+1 is made by attaching a generalized pair of pants or a one-holed
torus to Sn along only one curve.

Figure 1. Pants decomposition of a surface of infinite type.

Notation 2.4. From now on, S shall be reserved for a surface with the non-
abelian fundamental group, equipped with a seamed pants decomposition
P = ({Ci}i∈I , {Aj}j∈J) obtained from Proposition 2.3. Moreover, I0 ⊆ I
denotes the set of indices corresponding to the boundary components of S.

A hyperbolic surface is a 2-dimensional Riemannian manifold, possibly
with compact geodesic boundary, of constant curvature −1. Subsurfaces and
generalized subsurfaces of a hyperbolic surface are always assumed to have
geodesic boundary. A hyperbolic surface is convex if every arc is homotoped
to a geodesic arc, fixing endpoints. Convex hyperbolic surfaces are obtained
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as a quotient of a convex subset of H by free, properly discontinuous action
of a subgroup of Isom+(H). A convex hyperbolic surface is Nielsen-convex if
every point is contained in a (possibly non-simple) geodesic segment whose
endpoints lie on simple closed geodesics. Such hyperbolic structures are
suitable for our purpose due to the following fact.

Fact 2.5 (Theorem 4.5, [ALP+11]). Let X be a hyperbolic surface. Then
the following facts are equivalent:

(1) X is obtained by gluing some hyperbolic pairs of pants along their
boundary components.

(2) X is Nielsen-convex.
(3) Every topological pair of pants decomposition of S by a system of

curves {Ci}i is isotopic to a geometric pair of pants decomposition
(i.e. if γi is the simple closed geodesic on S that is freely homotopic
to Ci, then {γi}i defines a pair of pants decompositon).

Especially, a Nielsen-convex hyperbolic surface cannot contain a funnel or
a hyperbolic half-plane. Thus, all isolated ends are punctures, that means,
quotients of H by parabolic elements. Conversely, a finite-type hyperbolic
surface is Nielsen-convex if it does not contain funnels, or equivalently, if it
is has finite area. As a result, finite-type subsurfaces of a Nielsen-convex
hyperbolic surface are again Nielsen-convex.

Let X be a Nielsen-convex (hence convex) hyperbolic surface. A curve
C on X not bounding a puncture has a unique geodesic representative. We
denote its length by lX(C). By an abuse of notation, we sometimes refer
to the geodesic representative as C. Similarly, each arc A on X attains a
unique geodesic representative. If C is bounding a puncture, it does not have
a geodesic representative, and we conventionally set lX(C) by 0. Instead,
it is associated to a representative called horocycle, a simple loop around
a cusps with curvature 1. Then every geodesic arc A emanating from that
puncture intersects with the horocycle perpendicularly.

For a hyperbolic surface X, we denote by Sim the set of essential or
boundary curves and define its marked length spectrum Lm(X) ∈ RSim by
the function sending each essential or boundary curve C on X to its length
lX(C). The (unmarked) length spectrum L(X) is the unordered set of curve
lengths on X counting multiplicities. If we consider the quotient map ϕ :
RSim → RSim/Sym(Sim) by permutations Sym(Sim), then L(X) is the image
of Lm(X) under ϕ.

2.2. Teichmüller space and moduli space. Teichmüller space of S can
be defined in various ways. Those definitions are compatible if the base
surface is of finite type, but may differ if the base surface is of infinite
type. For details, see [FLP79], [IT92], [Hub06] or [ALP+11]. Our definition
follows:

Definition 2.6. The Teichmüller space T (S) of S is the set of equivalence
classes [h,X] of pairs (h,X), where X is a Nielsen-convex hyperbolic surface
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of topological type S and h : S → X is a homeomorphism. Here, two pairs
(h,X) and (h′, Y ) are considered equivalent if h′ ◦ h−1 is homotopic to an
isometry.

The (extended) mapping class group Mod±(S) of S is the set of equiva-
lence classes [ϕ] of self-homeomorphism ϕ on S, where ϕ and φ are considered
equivalent if φ ◦ ϕ−1 is isotopic to the identity.

The moduli space M(S) is the set of Nielsen-convex hyperbolic surfaces
of topological type S.

We note that Mod±(S) acts on T (S) by pre-composition, and the quotient
of T (S) by Mod±(S) is equal to M(S).

In contrast to the case of finite-type surfaces, there are several (differ-
ent) ways to give a topology on the Teichmüller space of infinite-type sur-
faces. Since our argument deals with finitely many curves at one time, our
argument works for any topology on the Teichmüller space satisfying the
following property. We will come up with a natural topology on T (S) that
satisfies the following property:

Property 2.7. For each finite-type subsurface S1 ⊆ S, the Teichmuüller
space T (S) of the ambient surface S is expressed as the product of the Te-
ichmüller space T (S1) of S1 and some other space. That means, there exists
a topological space T (S;S1) such that T (S) is homeomorphic to T (S1) ×
T (S;S1). We denote the projection to each factor by πS1 : T (S) → T (S1)
and πS;S1 : T (S)→ T (S;S1).

An example of such a topology on T (S) satisfying Property 2.7 can be
constructed by means of Fenchel-Nielsen coordinates. To elaborate, we first
define the length and twist parameters on T (S) from a given pants decom-
position on S.

Recall that S is equipped with a seamed pants decomposition P = ({Ci}, {Aj})
and let [h,X] ∈ T (S). The pants decomposition P induces a (topological)
seamed pants decomposition P ′ = ({C ′i := h(Ci)}, {A′j := h(Aj)}) on X.

Since X is Nielsen-convex, {C ′i} can be considered a geometric pants de-
composition. We call lX(C ′i) the i-th length parameter of [h,X].

We now construct twist parameters of [h,X]. Twist parameters are as-
signed to Ci’s which are not boundary components of S as there is nothing
to twist on the boundary of S. Suppose that Ci is not a boundary compo-
nent of S, hence C ′i is not a boundary component of X. We will consider
the signed length of a segment in C ′i where the the signed distance along C ′i
is defined using the orientation of the surface in a way that the (right) Dehn
twist corresponds to the positive direction (cf. Subsection 2.5).

We choose an arc A′j that intersects C ′i. Along the arc A′j , A
′
j passes

through pairs of pants which are components of X − ∪iC ′i. Fixing any
orientation on A′j , we enumerate the pairs of pants as · · · , P−1, P0, P1, · · ·
so that C ′i is the intersection of P−1 and P0. This enumeration is finite if
the arc A′j is compact and is infinite if A′j is contained in an end of X.
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For each Pt, A
′
j ∩ Pt connects two of the three boundary components of Pt.

Let Lt be the simple geodesic segment on Pt perpendicular to those two
boundary components. Then for each t, Lt−1 and Lt divide the intersection
Pt−1∩Pt into two (possibly degenerate) simple geodesic segments. We choose
one of them and denote it by Kt for each t so that A′j is homotopic to a

concatenation · · ·Lt−1KtLtKt+1Lt+1 · · · . Noting that C ′i = P−1 ∩ P0, we
define the i-th twist parameter τX(C ′i) of X as the signed length of K0 along
C ′i divided by lX(C ′i). There are a priori two choices of twist parameter at C ′i,
one defined with A′j and one defined with another arc A′j′ passing through

C ′i. Nonetheless, two values are always equal so no confusion occurs.
Using the Fenchel-Nielsen parameters, we can construct a bijection

FN : T (S) 3 [h,X] 7→
((

log lX(C ′i)
)
i∈I ,

(
lX(C ′i)τX(C ′i)

)
i∈I\I0

)
between T (S) and RI × RI\I0 . (Recall I, I0 from Notation 2.4.) We now
endow the space with the l∞-topology. We consider the following:

Definition 2.8. We define the Fenchel-Nielsen distance dFN between two
points [h,X], [h′, Y ] ∈ T (S) by

dFN ([h,X], [h′, Y ]) :=

sup
i∈I

{∣∣∣∣log
lX(h(Ci))

lY (h′(Ci))

∣∣∣∣ , ∣∣lX(h(Ci))τX(h(Ci))− lY (h′(Ci))τY (h′(Ci))
∣∣}

where we set τX(h(Ci)) = τY (h′(Ci)) = 0 for i ∈ I0.

Then the balls Br([h,X]) := {[h′, Y ] ∈ T (S) : dFN ([h,X], [h′, Y ]) < r}
generate the l∞-topology on T (S). If S is of infinite type, this space contains
uncountably many components, each comprised of elements dFN -bounded
to each other.

Remark 2.9. The Fenchel-Nielsen Teichmüller space was originally constructed
in [ALP+11], which uses different conventions. Precisely, the convention
in [ALP+11] picks a hyperbolic structure [h,X0] and considers the com-
ponent of T (S) containing [h,X0] as the Fenchel-Nielsen Teichmüller space
T (X0). To see how the choice of basepoint X0 affects the property of T (X0),
see [ALP+11].

When S is of finite type, T (S) is homeomorphic to a finite-dimensional
Euclidean space, and there are several equivalent definitions of T (S). For
instance, T (S) can be identified with the set of all discrete faithful represen-
tations π1(S)→ PSL(2,R), modulo conjugations by PSL(2,R), which send
elements represented by curves freely homotopic to punctures to parabolic
elements. Especially, the Fenchel-Nielsen parameters for different seamed
pants decompositions give rise to the same analytic structure on T (S). The
length of a curve on S then becomes an analytic function on T (S).

To see that the Fenchel-Nielsen topology satisfies Property 2.7, consider
a surface S made by gluing a finite-type surface S1 with another surface S2
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along curves {Ci}i∈I1 . Then pants decompositions {Ci}i∈I1∪I2 on S1 and
{Ci}i∈I1∪I3 on S2 give rise to a pants decomposition {Ci}i∈I on S, where
I = I1 ∪ I2 ∪ I3. We can further construct a seamed pants decomposition
P = ({Ci}i∈I , {Aj}j∈J) on S, which gives seamed pants decomposition Q
and R on S1 and S2, respectively, by restriction. Then the Fenchel-Nielsen
parametrization of T (S) is decomposed into that of T (S1), that of T (S2)
(omitting the length parameters for I1), and twist parameters for I1. By
setting T (S;S1) to be the parameter space consisting of Fenchel-Nielsen
parameters for S2 together with twist parameters for I1, T (S) is the product
space of T (S1) and T (S;S1) as desired.

2.3. Intersection number. Let us first assume that α, β are oriented mul-
ticurves on S. Let A, B be smooth representatives of α and β, respectively,
transverse to each other at a point p. Let Ap, Bp be the tangent vectors
along A and B at p, respectively. The index of (A,B) at p is defined as
+1 if the oriented basis (Ap, Bp) agree with the orientation of the surface,
and −1 otherwise. We further define the algebraic intersection number of
α and β by the sum of indices of (A,B) over all intersection points, and
denote it by ialg(α, β). The algebraic intersection number does not depend
on the choice of representatives A and B. It does, however, depend on the
orientations of α and β and is well-defined up to sign.

However, the total number of intersection points depends on the choice
of representatives. The minimum such number, counted with multiplicity,
is called the geometric intersection number and denoted by igeom(α, β) (or
i(α, β) for short). Note that geometric intersection number is also well-
defined for unoriented multicurves. Representatives A, B of α, β realizing
i(α, β) are said to be in minimal position. The following fact serves as a
practical criterion for representative curves in minimal position.

Fact 2.10. [FLP79, Proposition 3.10] Representatives A, B of two multic-
urves are in minimal position if and only if A and B do not form a bigon, a
contractible region of S \ (A ∪ B) bounded by one simple segment of A and
one simple segment of B.

We introduce an abuse of notation as follows: curves α and β may also
refer to representatives A and B of α and β, respectively, in minimal posi-
tion. Such representatives are chosen up to simultaneous ambient isotopy
as described follows:

Fact 2.11. [FM12, Lemma 2.9] Let S be a finite-type surface, γ1, γ2 be
distinct essential curves on S, and ci, c

′
i be representatives of γi. Then there

exists an isotopy of S that takes c′i to ci for both i simultaneously.

The intersection numbers with finitely many curves are sufficient to de-
termine a multicurve [FLP79, Section 4.3]. This fact is due to Dehn and
Thurston (see e.g., [LS04] for the context). We record one variant suited for
our purpose.
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Fact 2.12. cf. [FLP79, Théorème 4.8] Let {B1, . . . , Bm, C1, . . . , Cn} be a
pants decomposition of a finite-type surface, where Bi’s are boundary curves.
Then there exist curves {C ′1, . . . , C ′n, C ′′1 , . . . , C ′′n} on the surface satisfying
the following:

(1) i(Ci, C
′
j) = 0⇔ i 6= j ⇔ i(Ci, C

′′
j ) = 0 , and

(2) if D, D′ are distinct essential multicurves (i.e., not containing bound-
ary curves), then we have i(D,C) 6= i(D′, C) for at least one C ∈
{Ci, C ′i, C ′′i }.

Here C ′i and C ′′i are used to measure the ‘twist’ of multicurves along Ci’s.
See also Fact 2.17.

2.4. Pinching a curve. Let α be a curve on S. Since α is compact, it
is contained in a finite-type subsurface S1. For each [h,X] ∈ T (S). the
curve f(α) has its geodesic representative A on X realising the minimum
length. Abusing notation, we omit the marking and denote lX(A) by lX(α).
Then the function lX(α) is continuous on T (S) and descends to an analytic
function on T (S1).

We state a lemma regarding the pinching process, whose proof is deferred
to Appendix C. The pinching process is, roughly speaking, choosing a simple
closed curve and then making its length to converge to 0. For a detailed
discussion, see [Wol90].

Let {C1, C2, . . .} be a pants decomposition on S and X ∈ T (S). Pinching
the length of C1 means that we follow the path {Xr}r>0 ⊆ T (S) as r → 0
where

lXr(Ci) =

{
r i = 1

lX(Ci) i 6= 1
, τXr(Ci) = τX(Ci) for all i.

Lemma 2.13. Let α be a multicurve on S with i(α,C1) = k.

(1) If k = 0, then lXr(α) converges to a finite value as r → 0.
(2) If k > 0, then limr→0 lXr(α)/ ln r = −2k.

The proof of Lemma 2.13 will be given in Appendix C.

2.5. Fractional Dehn twists. Let α be a curve and β be a multicurve with
i(α, β) = k. We choose their representatives to be curves in minimal position
and denote these curves respectively by α and β by abusing notation. To

define the fractional Dehn twist T jα(β) for j ∈ Z, let us take an annular
neighborhood N of α in a way that

N = S1 × [−1, 1] = {(e2πis, t) : s ∈ [0, 1], t ∈ [−1, 1]}

where α is parametrized by [0, 1]→ N , s 7→ (e2πis, 0) and β∩N = {(e
2πni
k , t) :

t ∈ [−1, 1], n = 1, . . . , k}.
We now define a homeomorphism ϕ : N → N by

ϕ(z, t) =

{
(ze

2πit
k , t) , t ∈ [0, 1]

(z, t) , t ∈ [−1, 0].
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We then extend ϕ to Φ on the whole surface by setting Φ to be an identity
outside of N . Even though Φ may not be continuous on the surface, Φ(β)
is an unoriented multicurve on the surface. We define the fractional Dehn
twist

T jα(β) := Φ(β).

Here, T jα(β) is well-defined up to isotopy, thanks to Fact 2.11. Note that the
superscript notation is consistent with composition. Indeed, we observe that

T i+jα (β) = T iα(T jα(β)) for i, j ∈ Z. Also note that T kα(β) precisely defines a
right Dehn twist of β along α. We now record two facts on the intersection
number and fractional Dehn twists.

Remark 2.14. Fractional Dehn twists should be distinguished from the roots
of Dehn twists that Margalit and Schleimer introduced in [MS09]. The roots
of Dehn twists are mapping classes while fractional Dehn twists are a priori
not induced from a homeomorphism on the surface. As a result, the roots
of Dehn twists always send a single curve to another single curve while
fractional Dehn twists may send a single curve to multicurves.

Fact 2.15. [FM12, Proposition 3.4] Let α, β, γ be curves on a surface S
and i(α, β) = k ≥ 1. Then∣∣∣i(Tnkα (β), γ)− nki(α, γ)

∣∣∣ ≤ i(β, γ).

Lemma 2.16. i(T jα(β), α) = i(α, β) and i(T jα(β), β) = |j|i(α, β).

Proof. In this proof, we denote by N(γ) an annular neighborhood of a curve
γ.

We temporarily orient β and fix a representative C of T jα(β) as in Figure 2.
Here, segments of C parallel to β (called type B) are drawn on the left side
of β if j is positive, and on the right side otherwise.
C also has segments in N(α) \ β (called type A), which are classified

further into two subtypes: those that are contained in N(β) (called type
A1) and the others that are not contained in N(β) (called type A2). See
Figure 3. We observe in Figure 3 that

(1) each type B segment is disjoint from β;
(2) each type B segment either closes itself, or is sandwiched by a type

A1 segment and a type A2 segment;
(3) each type A1 segment is adjacent to a type B segment and β.

We claim that the curves in Figure 2 are indeed in minimal position. First,

any complementary region of T jα(β)∪α can be isotoped to a complementary
region of α ∪ β. Since α and β are assumed to be in minimal position, such

complementary regions are not bigons. Consequently, T jα(β) and α are also
in minimal position.

We now discuss the minimal position of T jα(β) and β. To this end, suppose

to the contrary that a segment τ of T jα(β) and a segment σ of β bound a
bigon. As observed above (1), each type B segment is disjoint from β, and
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α

β

T 2
α(β)

Figure 2. α, β and T 2
α(β). Here β is equipped with an

orientation in order to determine a representative of T 2
α(β)

in minimal position with α and β.

→Type A2

↓
Type B

← Type A1

β

(a) Configuration of type B segments

(b) Segment of α homotopic to τ relative to β. Note that gray regions are null-
homotopic.

Figure 3. Configurations of β and C

hence τ must contain at least one type A1 or type A2 segment. Moreover, it
follows from (2) and (3) above that τ falls into one of the following (Figure
3(B)):

• τ consists of only one type A2 segment a2;
• τ is a concatenation of type A1 segment a1, type B segment b1 and

type A2 segment a2; or
• τ is a concatenation of type A1 segment a1, type B segment b1 and

type A2 segment a2, type B segment b2 and type A1 segment a3.
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In any case, τ is homotopic (relative to β) to a segment of α \β. We deduce
that α and β bound a bigon, contradicting the minimal position assumption.

Thus, we conclude that T jα(β) and β are also in minimal position.
Given this conclusion, the intersection numbers follow immediately. �

We will make use of the following variant of Fact 2.12 later on to charac-
terize fractional Dehn twists.

Fact 2.17. Let S be a surface of finite type and {Cj , C ′j , C ′′j }nj=1 be the curves

on S mentioned in Fact 2.12. Fix k and suppose that D, D′ are essential
multicurves satisfying i(Cj , D) = i(Cj , D

′) for all j, i(C ′j , D) = i(C ′j , D
′) for

j 6= k, and i(C ′′j , D) = i(C ′′j , D
′) for j 6= k. Then D and D′ are related by a

fractional Dehn twist along Ck.

Sketch of proof. A step of the proof of [FLP79, Théorème 4.8] concerns
the construction of a model multicurve δ on S for each admissible value
{i(D,Cj), i(D,C ′j), i(D,C ′′j )}j . Here, the information {i(D,Cj)}j deter-
mines the relative isotopy class of this model multicurve δ restricted to
S \(∪jN(Cj)). Furthermore, for each j, the information (i(D,C ′j), i(D,C

′′
j ))

determines the relative isotopy class of δ restricted to N(Cj). Hence, under
the assumption of the statement, the proof of [FLP79, Théorème 4.8] yields
model multicurves δ and δ′, isotopic to D and D′ respectively, such that
δ|S\N(Ck) = δ′|S\N(Ck) up to isotopy relative to ∂N(Ck). Hence, δ and δ′ are
related by a fractional Dehn twist along Ck, and so are D and D′. �

3. Length identities

In this section, we show how length identities of curves keep track of their
topological configuration. This is a converse procedure of previously known
result, introduced in Subsection 3.1.

We begin by referring to a theorem of McShane and Parlier.

Theorem 3.1. [MP08, Theorem 1.1] For each pair of distinct essential or
boundary curves α, β on a surface S of finite type, there exists a connected
analytic submanifold E(α, β) of T (S) such that lX(α) 6= lX(β) for X ∈
T (S) \ E(α, β). Consequently, points in T (S) \

⋃
α 6=β E(α, β) have simple

simple length spectra (that is, simple length spectra such that multiplicity of
each length is 1).

This theorem asserts that essential or boundary curves on S are faith-
fully labelled by their lengths at almost every point of T (S), although not
everywhere. Note that this can be generalized to surfaces of infinite type as
follows. Let α, β be distinct curves on a surface S of infinite type. Since
curves are compact, they are contained in some finite-type subsurface S1 of
S bounded by some curves Ci1 , . . ., Cin . Then lX(α) − lX(β) becomes a
non-constant analytic function on T (S1). By Theorem 3.1, there exists a
submanifold E of T (S1) such that lX(α)− lX(β) does not vanish outside E.

Since E is nowhere dense, Ẽ := π−1
S1

(E) ⊆ T (S) is also nowhere dense.
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The key observation for Theorem 3.1 is that E(α, β) is the zero locus of
a non-constant analytic function lX(α)− lX(β) of X on T (S). The purpose
of this section is proving analogous results for other length identities.

3.1. From topological configurations to length identities. Here we
review classical length identities of curves on hyperbolic surfaces. For details,
see [McK72] or [Luo98]. Given curves η1, η2 on a surface S, we define the
following functions on T (S):

f(X; η1, η2) := 2 cosh
lX(η1)

2
cosh

lX(η2)

2
,

g(X; η1, η2) := cosh
lX(η1)

2
+ cosh

lX(η2)

2
.

Both f(X; η1, η2) and g(X; η1, η2) are functions on T (S) with infimum 2.
Moreover, if limr f(Xr; η1, η2) = 2 or limr g(Xr; η1, η2) = 2 for some path
{Xr} ⊆ T (S), then both lXr(η1), lXr(η2) converge to 0. We also note that
lX(η) becomes a constant function over T (S) if η is bounding a puncture.

Now let α, γ be two curves on S with i(α, γ) = 1. Then α ∪ γ becomes
a spine of a one-holed/punctured torus with boundary δ := αγα−1γ−1. See
Figure 4.

γ

α

δ = αγα−1γ−1
γ

α

Figure 4. One-holed torus with spine α ∪ γ

Fact 3.2. Let α and γ be as above. Then f(X;α, γ) = g(X;T 1
γ (α), T−1

γ (α))
identically holds on T (S).

We then set αi := T iγ(α) and γi := T iα(γ). Note that

i(γ, αi) = i(αi−1, αi) = 1 and i(α, γi) = i(γi−1, γi) = 1.

Moreover, one of {T±1
αi (αi−1)} is γ; we denote the other one by βi. Similarly,

one of {T±1
γi (γi−1)} is α and we denote the other one by εi. See Figure 5.

Lemma 3.3. For each i ∈ Z and any of (η1, η2, η3, η4) = (αi, γ0, αi−1, αi+1),
(αi−1, αi, γ0, βi), (γi, α0, γi−1, γi+1), (γi−1, γi, α0, εi), the identity

(3.1) f(X; η1, η2) = g(X; η3, η4)

holds on all of T (S).
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δγ = T−1
α1

(α)

α

α1

δ
γ

α

α1

β1 = T 1
α1

(α)

Figure 5. Fractional Dehn twists of α along α1. Note that
we sometimes have α = α0 and γ = γ0.

This time, we consider α, γ satisfying ialg(α, γ) = 0 and igeom(α, γ) = 2.
Then α ∪ γ becomes a spine of an immersed subsurface ψ : S′ → S where
S′ is a generalized shirt. This shirt is accompanied by peripheral curves
δ1, . . ., δ4. They are labelled in such a manner that γ separates {δ1, δ2}
from {δ3, δ4} and α separates {δ1, δ3} from {δ2, δ4}. Note that T±1

γ (α) then
separates {δ2, δ3} from {δ1, δ4}. See Figure 6.

α

γ

α

γ

δ1 δ2

δ3 δ4

T 1
γ (α)T−1

γ (α)

Figure 6. A shirt with spine α ∪ γ

Fact 3.4. Let α, γ, {δi} be as above. Then the identity

f(X;α, γ) = g(X;T 1
γ (α), T−1

γ (α)) + f(X; δ2, δ3) + f(X; δ1, δ4)

holds on all of T (S).

We now set αi := T iγ(α) and γi := T iα(γ). Then

ialg(γ, αi) = ialg(α, γi) = ialg(αi−1, αi) = ialg(γi−1, γi) = 0

and

igeom(γ, αi) = igeom(α, γi) = igeom(αi−1, αi) = igeom(γi−1, γi) = 2

hold. Consequently, one of {T±1
αi (αi−1)} ({T±1

γi (γi−1)}, resp.) is γ (α, resp.)
and the other one is denoted by βi (εi, resp.).
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Lemma 3.5. For each i ∈ Z and any of

(η1, . . . , η8) =



(α2i, γ0, α2i−1, α2i+1, δ2, δ3, δ1, δ4)
(α2i+1, γ0, α2i, α2i+2, δ1, δ3, δ2, δ4)
(γ2i, α0, γ2i−1, γ2i+1, δ2, δ3, δ1, δ4)
(γ2i+1, α0, γ2i, γ2i+2, δ1, δ2, δ3, δ4)

(αi−1, αi, γ0, βi, δ1, δ2, δ3, δ4)
(γi−1, γi, α0, εi, δ1, δ3, δ2, δ4)

,

the identity

(3.2) f(X; η1, η2) = g(X; η3, η4) + f(X; η5, η6) + f(X; η7, η8)

holds on all of T (S).

3.2. First length identity: one-holed/punctured torus. We now dis-
cuss the converse of Lemma 3.3. For the converse of Lemma 3.5, see Subsec-
tion 3.3. The following lemma partially relates the length identities to the
configuration of the curves involved. Recall that for X ∈ T (S) and curves
η1, η2 ⊂ S,

f(X; η1, η2) := 2 cosh
lX(η1)

2
cosh

lX(η2)

2
,

g(X; η1, η2) := cosh
lX(η1)

2
+ cosh

lX(η2)

2
.

Lemma 3.6. Let α−2, α−1, α, α1, α2, γ, β0, β1 be essential or boundary
curves on S, where α, α−1, α1 and γ are distinct. If the inequalities

f(X;α, γ) ≥ g(X;α−1, α1),(3.3a)

f(X;α−1, γ) ≥ g(X;α−2, α),(3.3b)

f(X;α1, γ) ≥ g(X;α, α2),(3.3c)

f(X;α, α1) ≥ g(X; γ, β1),(3.3d)

f(X;α−1, α) ≥ g(X; γ, β0)(3.3e)

are satisfied by all X ∈ T (S), then

i(α, γ) > 0 and {α1, α−1} = {T 1
γ (α), T−1

γ (α)}.

Proof. Suppose first that i(α, γ) = 0. We fix a pants decomposition contain-
ing α and γ, and pinch them simultaneously. Since α±1 are neither α nor γ,
their lengths tend to either infinity (if they intersect with α or γ) or a finite
value (if they do not intersect with α and γ). Thus, f(X;α, γ) tends to 2
while g(X;α−1, α1) converges to a term greater than 2. This contradicts
Inequality 3.3a, and we conclude i(α, γ) > 0. In particular, both α, γ are
essential.

Now we fix a pants decomposition containing α and pinch α. Then
f(X;α, γ) grows in the order of l(α)−i(α,γ), while g(X;α−1, α1) grows in

the order of l(α)−max(i(α,α−1),i(α,α1)). From this and Inequality 3.3a, we
deduce that i(α, γ) ≥ i(α, α±1).
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Meanwhile, f(X;α−1, α) grows in the order of l(α)−i(α,α−1) while g(X; γ, β0)

grows in the order of l(α)−max(i(α,γ),i(α,β0)). Then Inequality 3.3e implies
that i(α, α−1) ≥ i(α, γ). Similarly, investigating each side of Inequality 3.3d
yields that i(α, α1) ≥ i(α, γ). Thus, we obtain

(3.4) i(α, α±1) = i(α, γ).

Next, we fix a pants decomposition containing γ and pinch γ. We again
investigate Inequality 3.3a to deduce that i(γ, α) ≥ i(γ, α±1). The reverse
inequalities are now obtained from Inequality 3.3b and 3.3c and we conclude

(3.5) i(α, γ) = i(α±1, γ).

Finally, we consider an arbitrary interior curve η disjoint from γ, fix a
pants decomposition containing γ and η, and pinch η. While pinching,
cosh lX(γ)/2 remains bounded and the LHS of Inequality 3.3a grows in the

order of l(η)−i(α,η), while the RHS grows in the order of l(η)−max(i(α−1,η),i(α1,η)).
Hence, from Inequality 3.3a we obtain i(α, η) ≥ i(α±1, η). A similar argu-
ment using 3.3b and 3.3c leads to the reverse inequality and we deduce

(3.6) i(α, η) = i(α±1, η).

Combined with Equations 3.5 and 3.6, Fact 2.17 implies that α, α−1,
α1 differ only by a fractional Dehn twists along γ. Now consider a finite-
type subsurface S′ ⊂ S containing α, α1, α−1, and γ. Since we have seen
that γ is essential, we may also assume that γ is essential in S′. Let
{B1, . . . , Bm, C1, . . . , Cn} be a pants decomposition of S′ where Bj ’s are
boundary curves and C1 = γ. We set the curves {C ′1, . . . , C ′n, C ′′1 , . . . , C ′′n}
on S′ given by Fact 2.12. In particular, C ′j and C ′′j are disjoint from C1 = γ

for all j 6= 1. Hence, by Equation 3.6, we have that i(α,Cj) = i(α±1, Cj),
i(α,C ′j) = i(α±1, C

′
j), and i(α,C ′′j ) = i(α±1, C

′′
j ) for all j 6= 1. In addi-

tion, by Equation 3.5 and C1 = γ, we also have i(α,C1) = i(α±1, C1).
Therefore, it follows from Fact 2.17 that α and α±1 are related by a frac-
tional Dehn twist along C1 = γ. Then Lemma 2.16 reads Equation 3.4 as
{α1, α−1} = {T 1

γ (α), T−1
γ (α)}. (Here we used the condition that α−1 and α1

are distinct) �

As one can observe, not all points in the entire Teichmüller space are
involved in the proof. Hence, one can modify the statement so that the
inequalities are checked along paths in the Teichmüller space along which
certain curves are pinched.

Before stating the next lemma, we first introduce some notation. Let α, γ
be two curves on S with k = i(α, γ) > 1. Then α is cut by γ into k segments
{a1, . . . , ak} and γ is cut by α into k segments {c1, . . . , ck}. Each segment
ai then splits γ into two segments, giving a (bi)partition of {c1, . . . , ck} into
two disjoint collection. The segment with fewer cj ’s is denoted by γ(ai) and
its number of cj ’s is denoted by Nγ(ai). If two numbers are equal, then take
either of the two segments. See Figure 7.
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The annular neighborhood of γ is separated by γ into two sides, which we
label by left and right. Then {a1, . . . , ak} is partitioned into three collections,
A1, A2 and A3. A1 (A2, resp.) consists of those segments departing from
and arriving at γ on the left side (right side, resp.). A3 consists of those
segments connecting two sides of γ.

γ
A1 A2

(a) Two groups of seg-
ments of α \ γ.

b1

Nγ(b1)

a1

a2

Nγ(a1)

Nγ(a2)

γ

(b) Segments in A1 and A2. Boundaries are γ. Here
Nγ(a1) = 3, Nγ(a2) = 1 and Nγ(b1) = 5.

Figure 7. Grouping segments

Recall that the index of (α, γ) at an intersection point p is +1 if the
oriented basis made by the tangent vectors along α and γ at p agrees with the
orientation of the surface S, and −1 otherwise. Recall also that a fractional
Dehn twist of a curve along another curve is a priori a multicurve, not
necessarily a curve.

Lemma 3.7. Let α, γ be curves on S with k = i(α, γ) > 1. If T iα(γ) and
T iγ(α) are single curves for every i = 0, 1, . . . , k − 1, then

(1) A3 = ∅ and k is even,
(2) the indices of (α, γ) keeps alternating between +1 and −1 along each

of α and γ, and
(3) Nγ(ai) is odd for each segment ai ∈ A1 ∪A2.

If k > 2 moreover, then

(4) Nγ(ai) 6= Nγ(ai′) for all ai ∈ A1 and ai′ ∈ A2.

Proof. We first suppose that there exists a segment of α \ γ joining the two
sides of γ. Then some fractional Dehn twist T iγ will tie this segment up
into a closed curve, and the other segments of α \ γ will combine to form at
least one more curve. This contradicts the assumption that αi = T iγ(α) is a
single curve. Thus, A3 = ∅ and α \ γ is partitioned into A1 and A2. Since
|A1| = |A2|, their sum k is even. This proves (1).

Now pick an arbitrary component ai of α \ γ. Since ai departs from and
arrives at γ on the same side, the indices of (α, γ) at the two endpoints of
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ai are different. This implies that the indices alternate along α. Similarly,
the indices alternate along γ, proving (2).

Now fix an ai with endpoints p and q, separating γ into two segments Γ1

and Γ2. Without loss of generality, assume that the index of (α, γ) is 1 at
p and −1 at q. Since the indices of (α, γ) alternate along γ, the number of
cj ’s along Γ1 is odd. Similarly, the number of cj ’s along Γ2 is odd, so their
minimum Nγ(ai) is also odd. Now (3) follows.

Now suppose further that i(α, γ) > 2. If Nγ(ai) = Nγ(ai′) for some

ai ∈ A1 and ai′ ∈ A2, then some twist T jγ will tie them into a single curve,
while other segments will combine to form at least one more curve. This
again contradicts the assumption, so it cannot happen. It completes the
proof of (4). �

Proposition 3.8. Let {αi, βi, γi, εi}i∈Z be essential or boundary curves on
S, where each of the collections {αi}i∈Z ∪ {γ0} and {γi}i∈Z ∪ {α0} consists
of distinct curves.

Suppose that for each of

(η1, . . . , η4) =


(αi, γ0, αi−1, αi+1)
(αi−1, αi, γ0, βi)

(γi, α0, γi−1, γi+1)
(γi−1, γi, α0, εi)

 ,

Equation 3.1:

f(X; η1, η2) = g(X; η3, η4)

where

f(X; η1, η2) := 2 cosh
lX(η1)

2
cosh

lX(η2)

2
,

g(X; η1, η2) := cosh
lX(η1)

2
+ cosh

lX(η2)

2
,

holds for every X ∈ T (S). Then

i(αi, γ0) = 1 and {α1, α−1} = {T 1
γ0(α0), T−1

γ0 (α0)}.

Proof. For convenience, we will denote α0 by α and γ0 by γ. Since f and
g are symmetric with respect to the curves involved, the assumption still
holds after relabelling αi as α−i and βi as β−i+1. We will perform such a
relabelling in the case α1 is equal to T−1

γ (α). Similarly, we relabel γi into

γ−i and εi into ε−i+1 in case γ1 is equal to T−1
α (γ).

Step 1. Proving that αi = T iγ(α) and γi = T iα(γ) for i ≥ −1.

Using Lemma 3.6 we deduce that i(α, γ) > 0 and {α1, α−1} = {T 1
γ (α), T−1

γ (α)}.
However, α1 is not equal to T−1

γ (α) due to the relabelling procedure. Thus

we obtain that αi = T iγ(α) for i = −1, 0, 1.

We further assume αi = T iγ(α) for i = −1, 0, . . . , n as the induction hy-
pothesis. Applying Lemma 3.6 to curves (αn−2, . . . , αn+2, γ, βn, βn+1), we
deduce that αi+1 = T 1

γ (αi) = T i+1
γ (α). Thus, by mathematical induction,
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we conclude that αi = T iγ(α) for i ≥ −1. Exactly the same argument shows

that γi = T iα(γ) for i ≥ −1.
Step 2. Proving that i(α, γ) = 1.
Let k := i(α, γ), and assume that k > 2. Since we have proven αi = T iγ(α)

for each i > −1, these are all single curves, not multicurves composed of
several disjoint curves. Similarly, T iα(γ) = γi are all single curves. Then by
Lemma 3.7, k is even (hence k/2 is an integer) and the segments of α \ γ
are partitioned into A1 = {a1, . . . , ak/2} and A2 = {b1, . . . , bk/2}. Moreover,
N1 := {Nγ(ai) : ai ∈ A1} and N2 := {Nγ(bi) : bi ∈ A2} become disjoint sets
of odd integers.

Without loss of generality, assume minN1 > minN2 andNγ(aj) = minN1.
We pick bl such that Nγ(bl) = max{n ∈ N2 : n < minN1}. Note that
1 ≤ Nγ(bl) ≤ Nγ(aj)− 2.

Some fractional Dehn twist T iγ ties aj with bl in a manner that γ(aj),

γ(bl) overlap each other. In other words, aj is adjacent to bl in αi = T iγ(α).
bl is then adjacent to yet another segment aj′ in αi. We now define a curve
σ by concatenating aj , aj′ and bl twice, together with two segments c1, c2

along γ as in Figure 8.

γ

αi

aj

aj′

σ

B

A

F

E

F

E

D

C

B

A

A′

c1 c2

bl

Figure 8. Configurations of αi and σ. Here αi and γ are
presented in minimal position. Note that σ and αi are inter-
secting at 6 points.

The number of segments of γ \ αi present in Figure 8 is at most

Nγ(aj)+max{Nγ(aj′), k−Nγ(aj′)}−Nγ(bl) ≤ Nγ(aj)+(k−Nγ(aj))−1 < k.

Thus, c1 and c2 do not overlap and σ is indeed a simple curve. We also note
that c1 contains at least

Nγ(aj)−Nγ(bl) ≥ 2
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segments of γ \ α, and so does c2. We now claim the following lemma.

Lemma 3.9. Let σ be the concatenation of aj , aj′ , bl and parts of γ as
described in Step 2 of the proof of Proposition 3.8. Then i(σ, γ) = 4 and
i(σ, T±1

γ (αi)) ≤ i(σ, αi) + 2.

We presently postpone the proof of this lemma and first finish the proof of
the theorem. Consider a pants decomposition on S containing σ and pinch σ.
Then f(αi, γ) grows in the order of l(σ)−i(αi,σ)−4, while g(T 1

γ (αi), T
−1
γ (αi))

grows in the order of l(σ)−i(αi,σ)−2 at most. This contradiction rules out the
case that i(α, γ) > 2.

In conclusion, α and γ satisfy either

(1) i(α, γ) = 1 or
(2) i(α, γ) = 2.

Let us assume the case (2). Note that Lemma 3.7 asserts ialg(α, γ) = 0.
Thus, f(X;α, γ) = g(X;T 1

γ (α), T−1
γ (α)) + f(X; δ2, δ3) + f(X; δ1, δ4) holds

on all of T (S), where δi are curves as in Fact 3.4. Recall that we also have
an identity f(X;α, γ) = g(X;T 1

γ (α), T−1
γ (α)). However, their difference

2 cosh
lX(δ2)

2
cosh

lX(δ3)

2
+ 2 cosh

lX(δ1)

2
cosh

lX(δ4)

2

never vanishes. This contradiction excludes the case (2), and we conclude
i(α, γ) = 1. �

Proof of Lemma 3.9. We claim that σ and γ in Figure 8 are in minimal
position. Using the bigon criterion, it suffices to show that there is no
embedded disc bounded by a component segment of σ \ γ and a component
segment of γ \ σ. Note that σ \ γ consists of 4 segments: one parallel to aj ,
one parallel to a′j , one parallel to bl and one parallel to the concatenation of

c1, bl and c2. Here, recall that aj , a
′
j and bl are components of αi \ γ. Since

αi and γ are drawn in minimal position, none of aj , a
′
j and bl can bound

a disc together with γ. Now consider the segment of σ that is parallel to
c1, bl and c2. This segment is adjacent to two complementary regions of
S \(σ∪γ). One region is a quadrangle composed of two arcs from γ and two
arcs from σ, which does not count as a bigon. Another region is homotopic
to a complementary region made by bl and γ. Again, since αi and γ is in
a minimal position, this region also cannot be a bigon. This concludes the
minimal position of σ and γ in Figure 8, and i(σ, γ) = 4.

We next claim that σ and αi are also in minimal position.Note that σ \αi
consists of two components that are near bl and other components that are
parallel to c1 or c2. In Figure 8, σ \ αi consists of:

• the long component L1 passing through region A’s, B’s and A′, con-
taining subsegments parallel to aj , bl and a′j , respectively;
• the short component L2 passing through region F ’s, containing a

subsegment parallel to bl;
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• components parallel to c1 or c2 (such as the one passing through
region D).

Suppose first that a component of σ \αi parallel to c2 forms a bigon with
αi. (In Figure 8, consider the region containing part D.) Then such a bigon
is homotopic to another bigon formed by αi and c2. This contradicts the
fact that αi and γ are in minimal position. Hence, such a bigon does not
exist. Similarly, no component of σ \αi parallel to c1 can form a bigon with
αi.

Now we are left with complementary regions of σ ∪ αi that are close to
bl. These are:

• the region containing letter A (and A′);
• the region containing letter B;
• the region containing letter E, and
• the region containing letter F .

Suppose first that the region containing letter A (and A′) is a bigon. This
means that L1 is homotopic (relative to the endpoints) to a component of
αi \ σ, which we denote by L. Via homotopy, we can bring L very close to
L1, from the side opposite to aj , bl and a′j . At this moment, the segment of

L parallel to aj is an element of A1, whole value of Nγ is Nγ(aj)− 2. This
contradicts the minimality of Nγ(aj) among N1.

Now suppose that the region containing letter B is a bigon. Then by
pushing the middle of L1 toward aj ∪ bl ∪ a′j via homotopy, we obtain two
bigons containing letter B. Each of these bigons consist of one segment of
αi \ σ and a horizontal segment that can be homotoped to γ. Hence, we
obtain a bigon bordered by αi and γ, contradicting their minimal position.

The region containing letter E is treated in a similar way. If it were a
bigon, then we can push the middle of L2 toward bl via homotopy. We then
obtain two bigons containing letter E, each homotopic to a complementary
region of αi ∪ γ, which is absurd.

Finally, if the region containing letter F were a bigon, then bl would be
homotopic to another segment bl′ satisfying Nγ(bl′) = Nγ(bl) + 2. This
contradicts the maximality of bl.

As a result of the discussion so far, the curves in Figure 8 are pairwise
in minimal position. Together with the representative of T 1

γ (αi) drawn in
Figure 9, we can then deduce that

i(γ, σ) = 4 and i(T±1
γ (αi), σ) ≤ i(αi, σ) + 2.

�

Using this result, we can construct a subset of T (S) as follows. Let

{αi}k+1
i=−k−1, {βi}k+1

i=−k, {γi}
k+1
i=−k−1 and {εi}k+1

i=−k be essential or boundary
curves on S, where {αi} ∪ {γ0} and {γi} ∪ {α0} consist of distinct curves
and k = i(α0, γ0) 6= 1. Since curves are compact, they are contained in a
finite-type subsurface S1 of S bounded by some curves Ci1 , . . ., Cin .
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γ

T 1
γ (αi)

aj

aj′

σ
bl

Figure 9. Configurations of T 1
γ (αi) and σ. Two curves are

intersecting at 8 points.

If we declare the function

h(X; η1, . . . , η4) := f(X; η1, η2)− g(X; η3, η4)

for each (η1, . . . , η4) among

{(αi, γ0, αi−1, αi+1)}ki=−k, {(αi, αi−1, γ0, βi)}ki=−k+1,

{(γi, α0, γi−1, γi+1)}ki=−k, {(γi, γi−1, α0, ηi)}i=−k+1,
k

then it becomes an analytic function on T (S1). We index them into a single
function (hi) : T (S1) → R8k+2. Now the proof of Proposition 3.8 indicates
that (hi) does not vanish identically on T (S1). Using Lemma B.1, we then
construct a countable family F = {Fn} of submanifolds of T (S1) such that

(hi) does not vanish outside ∪nFn. Then F̃n := π−1
S1

(Fn) ⊆ T (S) is nowhere

dense in T (S) and their union F̃ = ∪nF̃n becomes a meagre set.

3.3. Second length identity: generalized shirt. We now prove the fol-
lowing converse of Lemma 3.5.

Proposition 3.10. Let {αi, βi, γi, εi}i∈Z be essential or boundary curves on
S, where each of the collections {αi}i∈Z ∪ {γ0} and {γi}i∈Z ∪ {α0} consists
of distinct curves. Further, let {δ1, . . . , δ4} be curves on S.

As in Lemma 3.5, suppose that Equation 3.2:

f(X; η1, η2) = g(X; η3, η4) + f(X; η5, η6) + f(X; η7, η8)
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holds for all X ∈ T (S) and with each choice of

(η1, . . . , η8) =



(α2i, γ0, α2i−1, α2i+1, δ2, δ3, δ1, δ4)
(α2i+1, γ0, α2i, α2i+2, δ1, δ3, δ2, δ4)
(γ2i, α0, γ2i−1, γ2i+1, δ2, δ3, δ1, δ4)
(γ2i+1, α0, γ2i, γ2i+2, δ1, δ2, δ3, δ4)

(αi−1, αi, γ0, βi, δ1, δ2, δ3, δ4)
(γi−1, γi, α0, εi, δ1, δ3, δ2, δ4)

Then α0 ∪ γ0 forms a spine of an immersed subsurface ψ : S′ → S, where
S′ is a generalized shirt. Moreover, {α−1, α1} = {T−1

γ (α0), T 1
γ (α0)}.

Further, we can label the peripheral curves of S′ by {ε1, . . . , ε4} such that:

• δi, εi are both bounding (possibly distinct) punctures or δi = εi, and
• α0 separates {ε1, ε3} from {ε2, ε4} and γ0 separates {ε1, ε2} from
{ε3, ε4}.

Proof. As in the proof of Proposition 3.8, we will denote α0 by α and γ0 by
γ. Moreover, we may assume that α1 6= T−1

γ (α) and γ1 6= T−1
α (γ).

We note that Lemma 3.6 equally applies, since f(X; η, η′) ≥ 0 for any
curves η and η′. As in the proof of Proposition 3.8, we thus obtain k :=
i(α, γ) > 0 and αi = T iγ(α), γi = T iα(γ) for i ≥ −1.

We now prove that δ1 and γ are disjoint. From the assumption, we have

f(X;αi, γ) = g(X;αi−1, αi+1) + f(X; δ1, δ4) + f(X; δ2, δ3)

for even i. Here note that the geometric intersection number i(αi, γ) between
αi and γ is equal to k since αi = T iγ(α) for i ≥ −1. Now, if γ intersects δ1,
then

i(αnk, δ1) = i(Tnkγ (α), δ1) ≥ nk i(γ, δ1)− i(α, δ1) ≥ nk − i(α, δ1)

by Fact 2.15. Thus, if we take i = nk to be an even integer larger than
i(α, δ1) + k + 1 and pinch αi, then f(X;αi, γ) grows in the order of l(αi)

−k

while f(X; δ1, δ4) grows in the order at least of l(αi)
−(k+1), a contradiction.

Thus i(γ, δ1) = 0 and similarly i(α, δ1) = 0. Other δi’s can be dealt with
similarly, so we find that δi’s and α ∪ γ are disjoint.

Now, if k = i(α, γ) > 2, then we construct σ as in the step 2 of the proof
of Proposition 3.8. Since σ ⊆ N(α) ∪ N(γ) is disjoint from all δj ’s, we see
that f(X; δj , δj′) remains bounded while pinching σ. Accordingly, the same
contradiction follows from Lemma 3.9 by comparing each side of

f(X;αi, γ) = g(X;αi−1, αi+1) + f(X; δj , δj′) + f(X; δj′′ , δj′′′).

while pinching σ.
We are thus led to the same dichotomy as in the proof of Lemma 3.9:

(1) i(α, γ) = 1 or
(2) i(α, γ) = 2 and ialg(α, γ) = 0.

As noted before, we cannot simultaneously have f(X;α, γ) = g(X;α−1, α1)
and f(X;α, γ) = g(X;α−1, α1) + f(X; δ2, δ3) + f(X; δ1, δ4) on all of T (S).
The latter is already assumed true, while i(α, γ) = 1 forces the former. This
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contradiction rules out the case i(α, γ) = 1 and consequently, α∪ γ must be
a spine of an immersed subsurface of S′ that is a generalized shirt.

Let {δ′j} be the boundaries/punctures of S′ labelled as in Figure 6. At this
moment, Fact 3.4 and the assumption gives the following set of identities on
all of T (S);

(3.7)
f(X; δ′2, δ

′
3) + f(X; δ′1, δ

′
4) = f(X;α, γ)− g(X;α−1, α1)

= f(X; δ2, δ3) + f(X; δ1, δ4),

(3.8)
f(X; δ′1, δ

′
3) + f(X; δ′2, δ

′
4) = f(X;α1, γ)− g(X;α, α2)

= f(X; δ1, δ3) + f(X; δ2, δ4).

Let Λ (Γ, resp.) be the set of δ′j ’s (δj ’s, resp.) that are not punctures. Note

that the LHS (RHS, resp.) of Equation 3.7 can attain the value 4 at one
and all X ∈ T (S) if and only if all of δ′j (δi, resp.) are punctures. This

settles the case when S = S′ is a 4-punctured sphere, and we now assume
Λ,Γ 6= ∅.

Since S′ is an immersed subsurface, Λ consists of disjoint curves. Thus we
can fix a pants decomposition including Λ and pinch simultaneously. The
LHS of Equation 3.7 converges to 4 so the RHS should also do so. This is
possible only when all of the lX(δi) terms on the RHS tends to 0 during the
pinching, so ∅ 6= Γ ⊆ Λ.

We now pick some δi in Γ. Since Γ ⊆ Λ, δi = δ′j for some j. By applying

one of the following permutations on the indices of δi, δ
′
j

(3.9)
(1, 2, 3, 4) 7→ (1, 2, 3, 4), (1, 2, 3, 4) 7→ (2, 1, 4, 3),

(1, 2, 3, 4) 7→ (3, 4, 1, 2), (1, 2, 3, 4) 7→ (4, 3, 2, 1),

under which Equation 3.7 and 3.8 remain unchanged, we may assume that
δ1 = δ′1 ∈ Γ.

We now show δi = δ′i (up to the permutations above) for all i. We first
increase lX(δ′1) = lX(δ1) to infinity, whilst fixing the lengths of δ′j ∈ Λ \ {δ1}
as t.

• If δ′1 = δ′3, then δ′2, δ′4 are distinct from δ′1. In this case, the LHS of

Equation 3.8 grows in the order of elX(δ′1). This implies that at least
one of δ3 = δ1 = δ′1 or δ2 = δ4 = δ1 = δ′1 holds. However, the latter
case is excluded by comparing f(X; δ′2, δ

′
4) and f(X; δ1, δ3). Thus,

we conclude δ′1 = δ′3 = δ1 = δ3 and f(X; δ′1, δ
′
3) = f(X; δ1, δ3).

At this moment, if δ′2 and δ′4 are punctures, then we have

{δ′1 = δ′3 = δ1 = δ3} ⊆ Γ ⊆ Λ = {δ′1 = δ′3 = δ1 = δ3},

which is the desired equality. Next, if δ′2 is an essential curve, then
we increase lX(δ′2) to infinity whilst fixing lengths of δ′j ∈ Λ\{δ′2} as
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t. Note that

lim
lX(δ′2)→∞

(LHS of Equation 3.8)

elX(δ′2)/2
=

 +∞ δ′2 = δ′4
cosh(t/2) {δ′2, δ′4} ⊆ Λ, δ′2 6= δ′4

1 {δ′2, δ′4} = {δ′2,puncture},

lim
lX(δ′2)→∞

(RHS of Equation 3.8)

elX(δ′2)/2
=


+∞ δ2 = δ4 = δ′2

cosh(t/2) δ′2 ∈ {δ2, δ4} ⊆ Λ, δ2 6= δ4

1 {δ2, δ4} = {δ′2,puncture}
0 δ′2 /∈ {δ2, δ4}.

Since the two growth rates should match, the case δ′2 /∈ {δ2, δ4} is
impossible and δ′2 belongs to {δ2, δ4}. Similarly, by using Equation
3.7, we deduce that δ′4 ∈ {δ2, δ4} whenever δ′4 is an essential curve. In
conclusion we have {δ2, δ4} = {δ′2, δ′4}, and we have (δ′1, δ

′
2, δ
′
3, δ
′
4) =

(δ1, δ2, δ3, δ4) up to the permutation (1, 2, 3, 4) 7→ (3, 4, 1, 2) in Equa-
tion 3.9.
• The case δ′1 = δ′4 can be dealt with in the same way, by switching the

role of Equation 3.7 and 3.8. For example, now the LHS of Equation
3.7 grows in the order of elX(δ′1), which forces δ1 = δ4 = δ′1 or δ2 =
δ3 = δ1 = δ′1, the latter being excluded by comparing f(X; δ′2, δ

′
3)

and f(X; δ1, δ4).
• If δ′1 = δ′2, then δ′3, δ′4 are distinct from δ′1. In this case, the LHS

of Equation 3.7 and 3.8 grow in the order of elX(δ′1)/2. Accordingly,
both δ3, δ4 are not δ′1. If moreover δ2 is not δ′1, then

lim
lX(δ′1)→∞

(RHS of Equation 3.8)

elX(δ′1)/2
=

{
1 δ3 /∈ Γ

cosh(t/2) δ3 ∈ Γ \ {δ1}

according to whether δ3 is a curve or not. However, note

lim
lX(δ′1)→∞

(LHS of Equation 3.8)

elX(δ′1)/2
=

 2 δ′3, δ
′
4, /∈ Λ

2 cosh(t/2) δ′3, δ
′
4 ∈ Λ \ {δ′1}

1 + cosh(t/2) otherwise,

which gives a contradiction. Thus δ2 = δ′1. Now we increase lX(δ′3)
and lX(δ′4) separately to deduce that {δ′3, δ′4} = {δ3, δ4}.
• The remaining case is that δ′1 is not equal to any of {δ′2, δ′3, δ′4}.

We first set lX(δ′3) as 3 if δ′3 ∈ Λ, and set lengths lX(δ′j) for δ′j ∈
Λ \ {δ′1, δ′3} as 2. Finally, we increase lX(δ′1) = lX(δ1) to infinity. We
then observe

lim
lX(δ′1)→∞

(LHS of Equation 3.8)

elX(δ′1)/2
=

{
cosh(3/2) δ′3 ∈ Λ

1 otherwise,

lim
lX(δ′1)→∞

(RHS of Equation 3.8)

elX(δ′1)/2
=

 cosh(3/2) δ3 = δ′3 ∈ Λ
cosh 1 δ3 ∈ Λ \ δ′3

1 otherwise.
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Thus we conclude that δ′3, δ3 are both bounding punctures or δ′3 = δ3.
Similar conclusion for δ′4, δ4 follows from Equation 3.7. Finally, we
increase lX(δ′2) in Equation 3.8 to deduce the conclusion.

In any case, we can relabel δi’s by one of the permutations in Equation 3.9,
competing the proof. �

Using this result, we can construct a subset of T (S) as follows. Let

{αi}M+k+2
i=−(M+k+2), {βi}

k
i=−k, {γi}

M+k+2
i=−(M+k+2), {εi}

k
i=−k and {δ1, . . . , δ4} be

curves on S such that:

• {αi, βi, γi, εi} are essential or boundary curves,
• {αi} ∪ {γ0}, {γi} ∪ {α0} consist of distinct curves,
• i(α0, γ0) = k and i(α0, δi), i(γ0, δi) ≤M , and
• (α0, γ0, δi) do not satisfy the conclusion of Proposition 3.10. That

is, either α0 ∪ γ0 does not form a spine of an immersed generalized
shirt in S, or when they form such a spine of an immersed generlized
shirt S′ in S, we have {α−1, α1} 6= {T−1

γ (α0), T 1
γ (α0)} or there is no

labelling of the peripheral curves of the S′ satisfying the conditions
stated in Proposition 3.10.

Since curves are compact, they are contained in a finite-type subsurface S1

of S bounded by some curves Ci1 , . . ., Cin .
Then

h(X; η1, . . . , η8) := f(X; η1, η2)− g(X; η3, η4)− f(X; η5, η6)− f(X; η7, η8),

for the choices of (η1, . . . , η8) specified as per Lemma 3.5, define analytic
functions on T (S1). We index them into a single function (hi) : T (S1)→ RN
for some N . Now the proof of Proposition 3.10 indicates that (hi) does
not vanish identically on T (S1). Using Lemma B.1, we then construct a
countable family G = {Gn} of submanifolds of T (S1) such that (hi) 6= 0

outside ∪nGn. Then G̃n := π−1
S1

(Fn) ⊆ T (S) is nowhere dense in T (S) and

their union G̃ becomes a meagre set.
We now gather all Ẽ(α, β) (page 14), F̃ ({αi}, . . . , {εi}) (page 24), and

G̃({αi}, . . . , {εi}, {δi}) that have been constructed so far, and denote their
union by V . This is the union of a countable collection of meagre subsets
of T (S), so V is meagre. Since T (S) is locally homeomorphic to a com-
plete metric space, we again invoke the Baire category theorem to deduce
that T (S) \ V is dense in T (S). Hence Theorem 3.1, Proposition 3.8 and
Proposition 3.10 imply the following proposition.

Proposition 3.11. Suppose that X ∈ T (S)\V and let {ξ1, ξ2}, {αi, βi, γi, εi}i∈Z
be essential or boundary curves on S.

(1) If ξ1 6= ξ2, then lX(ξ1) 6= lX(ξ2).
(2) Suppose that at X, {αi, βi, γi, εi}i∈Z satisfy the identities of Lemma

3.3 and each of {αi}i∈Z ∪ {γ0}, {γi}i∈Z ∪ {α0} contains no curves
with the same length. Then α0 ∪ γ0 forms the spine of a generalized
1-holed torus and {α−1, α1} = {T±1

γ0 (α0)}.
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(3) In addition, let {δ1, . . . , δ4} be curves on S. Suppose that at X,
{αi, βi, γi, εi}i∈Z and {δ1, . . . , δ4} satisfy the identities of Lemma 3.5
and each of {αi}i∈Z ∪ {γ0}, {γi}i∈Z ∪ {α0} contains no curves with
the same length.

Then α0∪γ0 forms a spine of an immersed subsurface ψ : S′ → S,
where S′ is a generalized shirt. Moreover, {α−1, α1} = {T±1

γ (α)}.
Further, we can label the peripheral curves of S′ by {η1, . . . , η4}

such that:
• δi, ηi are both bounding (possibly distinct) punctures or δi = ηi,

and
• α0 separates {η1, η3} from {η2, η4} and γ0 separates {η1, η2}

from {η3, η4}.
Suppose now that S is a surface composed of at least two generalized

pairs of pants. If η1, η2 are disjoint curves on S and η1 is essential, then we
can perform the following procedure. We connect η1 and η2 with a simple
segment τ . Then η1, η2, and concatenation η1τη2τ

−1 bound a pair of pants
P in S. Moreover, at least one of η1 or η2 is adjacent to yet another pair of
pants Q, and P ∪Q becomes an immersed generalized shirt. Here one of η1,
η2 separates the shirt into P and Q, and the other one becomes a boundary
curve of P ∪ Q. When both η1, η2 are boundary curves, we cal also find
an immersed generalized shirt whose boundary component contains η1, η2.
From this observation, we deduce the following lemma.

Lemma 3.12. Let S be a surface that is not a generalized pair of pants
or a one-holed/punctured torus, X ∈ T (S) \ V , and η1, η2 be essential or
boundary curves on X. Then the following are equivalent:

(1) η1 and η2 are disjoint;
(2) there exists essential or boundary curves {αi, βi, γi, εi}i∈Z on X and

curves {δ1, . . . , δ4} such that:
• each of {αi}i∈Z ∪ {γ0}, {γi}i∈Z ∪ {α0} contains no curves with

the same length;
• {η1, η2} = {γ0, δ1} or {η1, η2} = {δ1, δ2}; and
• the identities of Lemma 3.5 are satisfied.

This lemma describes how to detect the disjointness of two given curves on
a surface by investigating the length identities of Lemma 3.5. Note that in
the above lemma, the implication (1)⇒ (2) does not require X to be outside
of V . Hence, from the above observation, we also have the following:

Lemma 3.13. Let S be a surface that is not a generalized pair of pants or
a one-holed/punctured torus, X ∈ T (S), and η1, η2 be essential or boundary
curves on X. Suppose that η1, η2 are disjoint. Then, there exists essential
or boundary curves {αi, βi, γi, εi}i∈Z on X and curves {δ1, . . . , δ4} such that:

• each of {αi}i∈Z ∪ {γ0}, {γi}i∈Z ∪ {α0} contains no curves with the
same length;
• {η1, η2} = {γ0, δ1} or {η1, η2} = {δ1, δ2}; and
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• the identities of Lemma 3.5 are satisfied.

4. Surfaces with low complexity

Before proving the main theorem in the general setting, we first deal with
surfaces of low complexity. The case of generalized pair of pants is dealt
with using the following lemma.

Lemma 4.1. Let X, X ′ be generalized pairs of pants with peripheral curves
{δi}i=1,2,3 and {δ′i}i=1.2,3, respectively.

(1) If lX(δi) = lX′(δ
′
i) for each i, then X and X ′ are isometric.

(2) Suppose in addition that lX(δ1) 6= lX(δ2), and let η (η′, resp.) be the
unique simple geodesic segment perpendicular to δ1 and δ2 (δ′1 and δ′2,
resp.). Then there exist exactly two isometries φ1, φ2 : X → X ′ send-
ing each δi to δ′i and η to η′. Here φ−1

2 ◦ φ1 becomes an orientation-
reversing automorphism of X fixing all boundaries setwise.

We now begin our discussion on one-holed/punctured tori and generalized
shirts.

Proposition 4.2. Theorem 1.2 holds when S is a one-holed/punctured
torus.

Proof. Note that the assumption L(X) = L(X ′) forces L(X ′) to be sim-
ple since L(X) is assumed to be so. That is, every element of L(X ′) has
multiplicity one.

Let γ′ be an essential curve on X ′. There exists another essential curve α′

onX ′ intersecting with γ′ once. We then set essential curves {α′i, β′i, γ′i, ε′i}i∈Z
on X ′ as the curves involved in Lemma 3.3:

(1) α′i = T iγ′(α
′), γ′i = T iα′(γ

′), and

(2) {T±1
α′i

(α′i−1)} = {γ′, β′i} and {T±1
γ′i

(γ′i−1)} = {α′, ε′i}.
Since {α′i, β′i, γ′i, ε′i} are essential, their lengths lie in L(X ′). Note also that
{α′i}i∈Z ∪ {γ′} and {β′i}i∈Z ∪ {α′} are collections of distinct curves. Their
lengths are distinct in L(X ′).

From the equality L(X) = L(X ′) between simple length spectra, we can
take essential or boundary curves {αi, βi, γi, εi}i∈Z on X such that

lX(αi) = lX′(α
′
i), lX(βi) = lX′(β

′
i), lX(γi) = lX′(γ

′
i), lX(εi) = lX′(ε

′
i).

Note that {αi}i∈Z ∪ {γ0} and {γi}i∈Z ∪ {α0} are comprised of distinct
lengths. We then apply Proposition 3.11 to deduce that i(α0, γ0) = 1 and
{α−1, α1} = {T±1

γ0 (α0)}. Thus, α0 ∪ γ0 serves as a spine of X. Moreover,

lX(α0), lX(γ0), lX(T±1
γ0 (α0)) determine a unique isometry class of X in the

following way. First, three consecutive ‘twists’ of α0 by γ0 read the (un-
signed) twist parameter at γ0, or equivalently, the (unsigned) angle between
the geodesics α0 and γ0. Using lX(α0), lX(γ0) and this angle, one can com-
pute the length of (geodesic representative of) α0γ0α

−1
0 γ−1

0 , the boundary
curve of X. As a result, we obtain three boundary lengths of the pair of
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pants for X, and the twist for the gluing along γ0. Since this information
agrees with that of X ′, we conclude that X and X ′ are isometric.

Let φ be the isometry from X to X ′. Then f−1
2 ◦φ◦f1 becomes a (possibly

orientation-reversing) homeomorphism on S that sends [f2, X
′] to [f1, X] by

pre-composition. �

We now move on to the case of generalized shirts. Note that a general-
ized shirt might not necessarily be embedded into another surface but only
immersed. For instance, a generalized shirt is immersed in a closed surface
of genus 2 and cannot be embedded. As such, we need a variant in the
following format.

Proposition 4.3. Suppose that [f1, Y ] ∈ T (S)\V and [f2, Y
′] ∈ T (S) have

the same simple length spectrum. Let ψ′ : X ′ → Y ′ be an immersed subsur-
face of Y ′ where X ′ is a generalized shirt. Then there exists an immersed
subsurface ψ : X → Y of Y such that X and X ′ are isometric. In particular,
Theorem 1.2 holds when S is a generalized shirt.

Proof. Note that since each of the values in L(Y ′) have multiplicity 1, so do
each of the values in L(X ′).

Let γ′ be an essential curve on X ′. We take another essential curve α′ on
X ′ such that i(α′, γ′) = 2 and ialg(α

′, γ′) = 0. Then α′ ∪ γ′ serves as a spine
of X ′, bounded by peripheral curves {δ′i}4i=1 labelled as in Figure 6. Let P ′

(Q′, resp.) be the generalized pair of pants of X ′ bounded by δ′1, δ′2 and γ′

(δ′3, δ′4 and γ′, resp.)
We then draw a simple geodesic segment κ′P ′ on P ′, perpendicular to δ′1

and γ′. We given the orientation κ′P ′ so that it is from δ′1 to γ′. We use the

inverse notation κ′−1
P ′ for the same segment with reversed orientation, and

same for other oriented segments. Similarly we draw a simple segment κ′Q′
on Q′ from δ′3 to γ′. Then there exists a unique segment ξ′ immersed along

γ′ such that α′ equals the concatenation (κ′−1
P ′ δ

′
1κ
′
P ′)ξ

′(κ′−1
Q′ δ

′
3κ
′
Q′)ξ

′−1.

We now set essential curves {α′i, β′i, γ′i, ε′i}i∈Z on X ′ as the curves involved
in Lemma 3.5: namely, We label the peripheral curves of X ′ by {δ′1, . . .,
δ′4} in such a way that γ′ separates {δ′1, δ′2} from {δ′3, δ′4} and α′ separates
{δ′1, δ′3} from {δ′2, δ′4}.

The corresponding essential or boundary curves {αi, βi, γi, εi}i∈Z on Y
are taken by comparing the length spectra of Y and X ′. In other words, we
require

lY (αi) = lX′(α
′
i), lY (βi) = lX′(β

′
i), lY (γi) = lX′(γ

′
i), lY (εi) = lX′(ε

′
i).

Note that each of the collections {αi}i∈Z ∪ {γ0} and {γi}i∈Z ∪ {α0} is com-
prised of distinct lengths. We also take δi’s appropriately: δi is taken to
be any puncture if the corresponding δ′i is; otherwise δi is the essential or
boundary curve on Y having the same length with δ′i.

We then apply Proposition 3.11 to deduce that i(α0, γ0) = 2, ialg(α0, γ0) =
0 and {α−1, α1} = {T±1

γ0 (α0)}. Thus, α0∪γ0 serves as a spine of a generalized
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shirt X, immersed in Y . Further, by the choice of δi, we may assume that
δi are indeed the peripheral curves of X, α0 separates {δ1, δ3} from {δ2, δ4},
and γ0 separates {δ1, δ2} from {δ3, δ4}, as in X ′ and in Figure 6. We then
define generalized pairs of pants P , Q and segments κP , κQ and ξ on X
analogously to X ′.

From now on, we orient X, X ′ such that α1 (α′1, resp.) becomes the
positive twist T 1

γ (α) (T 1
γ′(α

′), resp.). By Lemma 4.1, there exist unique

orientation-preserving isometries φP : P → P ′ and φQ : Q→ Q′ sending κP
to κP ′ and κQ to κQ′ . It remains to show that φP and φQ agree on γ.

In short, the twist at γ (γ′, resp.) is read off using lX(α) and lX(T±1
γ (α))

(lX′(α
′) and lX′(T

±1
γ′ (α′)), resp.). Indeed, the signed length of ξ is deter-

mined by (lX(T 1
γ (α)), lX(T−1

γ (α))) = (lX(α1), lX(α−1)) and the boundary
lengths (lX(δ1), . . . , lX(δ4)). (See Proposition 3.3.11 and 3.3.12 of [Bus92] for
an explicit calculation.) Similarly, the signed length of ξ′ is determined by
lengths (lX′(α

′
1), lX′(α

′
−1), lX′(δ

′
1), . . . , lX′(δ

′
4)). Since the lengths involved

are identical, we conclude that the signed lengths of ξ and ξ′ are also the
same, and hence φP and φQ agree on γ. Thus X is isometric to X ′. �

As in Proposition 4.2, the twist τX′(γ
′) of X ′ at γ′ cannot be a multiple

of π. This is because the lengths of {T iγ′(α′)}i=−2,0,2 differ. If moreover, say,

δ′1 and δ′2 have same lengths (e.g. they are punctures), then multiples of π/2
are also forbidden for τX′(γ

′). In any case, there exists only one isometry
between X and X ′.

Proposition 4.4. Theorem 1.2 holds when S is of type S1,p,b for p+ b = 2.

Proof. We first take a curve γ′ separating X ′ into a one-holed torus and a
generalized pair of pants. Inside that one-holed torus, there exists a curve
δ′ longer than γ′. Indeed, we may pick any pair of once-intersecting curves
inside the given one-holed torus and twist one along the other sufficiently
many times. Now if we take a curve α′ on X ′ such that i(δ′, α′) = 0,
i(γ′, α′) = 2, and ialg(γ

′, α′) = 0, then α′∪γ′ becomes a spine of an immersed
subsurface ψ′0 : X ′0 → X ′, where X ′0 is a generalized shirt. Let us label the
boundaries of X ′0 by δ′i as in Lemma 3.5 so that δ′1 = δ′2 = δ′ are the same
when seen as curves in X ′.

Let κ′i be the simple geodesic segment perpendicular to γ′ and δ′i for
i = 1, . . . , 4, oriented toward γ′. Further, let ξ′i be the arc immersed along
γ′ such that

α′ = (κ′−1
1 δ′1κ

′
1)ξ′1(κ′−1

3 δ′3κ
′
3)ξ′−1

1 = (κ′−1
2 δ′2κ

′
2)ξ′2(κ′−1

4 δ′4κ
′
4)ξ′−1

2 .

Finally, we set ζ ′i to be a shortest simple geodesic segment perpendicular to
δ′i and δ′i+2 for i = 1, 2. See Figure 10.

We now set curves {α′i, β′i, γ′i, ε′i}i∈Z on X ′ as in Lemma 3.5. The corre-
sponding essential or boundary curves {αi, βi, γi, εi}i∈Z on X are taken by
comparing the lengths, i.e., requiring

lX(αi) = lX′(α
′
i), lX(βi) = lX′(β

′
i), lX(γi) = lX′(γ

′
i), lX(εi) = lX′(ε

′
i).
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δ′1 = δ′2

γ′
δ′3

δ′4

η′

σ′

α′

X ′1

κ′3

κ′4

κ′1

κ′2

δ′1

δ′2

δ′3

δ′4

ζ ′1

ζ ′2

Figure 10. Curves on the surface S1,p,b with p+ b = 2

Note that {αi}i∈Z∪{γ0} and {γi}i∈Z∪{α0} are comprised of distinct lengths.
We also take δi appropriately: δi is taken as any puncture if the correspond-
ing δ′i is; otherwise δi is the essential or boundary curve on X having the
same length as δ′i. Here δ1 = δ2 since δ′1 and δ′2 are both essential curves
and have the same length. From now on, we fix the orientation of X so that
α1 = T 1

γ0(α0) and similarly for X ′.
We first cut X along δ1 to obtain an immersed subsurface ψ0 : X0 → X.

Proposition 3.11(3) tells us that X0 is a generalized shirt. Thus, we can also
define κi, ξi, ζi on X0 analogously. Now, Proposition 4.3 gives an isometry
φ0 : X0 → X ′0 sending each δi to δ′i. In particular, φ0 becomes orientation-
preserving due to our choice of orientations. Moreover, κi, ξi, ζi are sent to
the corresponding κ′i, ξ

′
i, ζ
′
i with orientations preserved.

We further take η′, σ′ on X ′ such that i(δ′, η′) = i(η′, α′) = 1, i(η′, γ′) = 0,
and i(α′, σ′) = 0, i(δ′, σ′) = 2 and ialg(δ

′, σ′) = 0. Then δ′∪η′ (δ′∪σ′, resp.)
becomes a spine of an immersed subsurface ψ′1 : X ′1 → X ′ (ψ′2 : X ′2 → X ′,
resp.) where X ′1 (X ′2, resp.) is a one-holed torus (generalized shirt, resp.).
See Figure 10.

Similarly, one can copy η′, σ′ (and other necessary curves) to X using
the length spectra. Then X cut along γ becomes an immersed subsurface
ψ1 : X1 → X where X1 is a one-holed torus, and X cut along α becomes
an immersed subsurface ψ2 : X2 → X where X2 is a generalized shirt, and
these are immersed along boundaries. Furthermore, Proposition 4.2 gives
an isometry φ1 : X1 → X ′1, sending κ1 to κ′1 and κ2 to κ′2. Proposition 4.3
also gives an isometry φ2 : X2 → X ′2, sending ζ1 to ζ ′1 and ζ2 to ζ ′2.

At this moment, φ1 may or may not agree with φ0 on X0 ∩X1, depend-
ing on whether φ1 is orientation-preserving or not. Once φ1 is shown to
be orientation-preserving, the gluing of φ0 and φ1 becomes an isometry be-
tween X and X ′, completing the proof. Suppose to the contrary that φ1

is orientation-reversing. For clearer explanation, we from now on flip the
orientation of X ′ to make φ1 orientation-preserving, while we have that φ0

is orientation-reversing. We then show that the (unsigned) distance between
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ζ1 and ζ2 along δ1 differs to the analogous one on X ′. This will then contra-
dict the fact that φ2 is an isometry, which must preserve the unsigned twist
of X2 at δ1.

κ̃2

κ̃1

κ̃2

κ̃1

κ̃2

κ̃1

δ̃1lifts of ζ2
lifts of ζ ′2

lifts of ζ1
lifts of ζ ′1

Figure 11. Description on the hyperbolic plane

We parametrize δ1 by arc length λ so that κ1 is located on the right side of
δ1 while λ increases, as in Figure 11. On X, we denote the signed displace-
ment from κ1 (κ2, resp.) to ζ1 (ζ2, resp.) along δ1 by d1 (d2, resp.). Further,
we denote the signed displacement from κ1 to κ2 along δ1 by D. Here, the
signed displacement is taken inside the range [−lX(δ1)/2, lX(δ1)/2]. Simi-
larly, we define the displacements d′1, d′2 and D′ for curves and segments on
X ′.

From the assumption, the twists at γ, γ′ are nonzero and opposite: this
forces d1 = −d′1 6= 0 and d2 = −d′2 6= 0. Furthermore, d1, d2 have opposite
signs since intersecting points of κ1 and ζ1 with δ1 do not separate the
intersection of κ2 with δ1 from the one of ζ2 with δ1 on δ1. Finally, note that
a lift ζ̃1 must cross the corresponding lift γ̃. This forces ζ̃1 to be sandwiched
between κ̃1 and a geodesic from δ̃1 ‘spiraling toward’ γ (the black dashed
line in the right of Figure 11). If we denote the displacement between κ̃1

and the spiraling geodesic by L, then we observe that 2L < lX(δ1)/2, as
depicted in Figure 12.

Indeed, the distance between η̃ and κ̃1 and the distance between η̃ and
κ̃2 in Figure 12 are equal to lX(δ1)/2 and the distance between κ̃1 and κ̃2

is lX(γ)/2. We denote by G the bi-infinite geodesic orthogonal to δ̃1 and
sharing an endpoint with the dashed line in Figure 12. Then the distance
between G and κ̃1 gives an upper bound of L.

If G were bisecting δ̃1, then the distance between κ̃1 and κ̃2 is same as the
distance between η̃ and κ̃2, which is also same as the distance between κ̃1

and η̃. Based on this observation, we explain step by step using Figure 12
why 2L is smaller than the length of δ̃1, from which 2L < lX(δ1)/2 follows.
Recall that we have fixed the lift γ̃ of γ and the lift κ̃1 of κ1 (of the same
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δ̃1

κ̃1

η̃

κ̃2

γ̃

G

Figure 12. A hexagon bounded by δ̃1, γ̃, κ̃1 and other
geodesics.

length) perpendicular to γ̃. Draw a line ∆ perpendicular to κ̃1 that is not γ̃

(in Figure 12, it is the geodesic line containing δ̃1). Now, we will draw the
hexagon that is half of the left half of X ′2 as follows.

For a moment, we consider the length of δ̃1 as a variable: let t > 0. We
will vary the endpoint of δ̃1 that is other than ∆ ∩ κ̃1, setting that δ̃1 has
length t. Then, we decide η̃ perpendicular to δ̃1, a segment δ̃2 perpendicular
to η̃ with the same length as δ̃1, and κ̃2 perpendicular to both δ̃2 and γ̃.
This can be done as follows: when the length of δ̃1 is determined, the line N
(the geodesic line containing η̃) is determined. Then we draw a simultaneous

perpendicular to N and γ̃, and reflect δ̃1 and κ̃1 with respect to it and get δ̃2

and κ̃2 respectively. We get the desired hexagon, and as a direct consequence
of the construction, κ̃1 and κ̃2 have the same length, and δ̃1 and δ̃2 do so.

Now recall that L is the distance between the dashed line and κ̃1, which
is fixed regardless of t. When t increases, the distance between κ̃1 and κ̃2

along γ̃ decreases. This implies that the length of γ decreases and the length
of δ1(= 2t) increases. Now, recall that G is the perpendicular to ∆ witht the
endpoint same as the endpoint of the dashed line which is not shared with
γ̃, as declared. When t = 2d(G, κ̃1), we see that the hexagon is symmetric
with respect to G. Then, κ̃1, κ̃2 and η̃ all have the same length, and the
hexagon has 120 degree symmetry. In particular, the length of δ equals the
length of γ. At this point, still t > 2L. Hence, at the situation t ≤ 2L, we
have that the length of δ is smaller than the length of γ, which contradicts
the assumption. Therefore, we must have 2L < lX(δ1)/2.

Now we calculate the unsigned displacements between ζ1 and ζ2 (ζ ′1 and
ζ ′2, respectively). The former is |D+ d1 + d2 + nlX(δ1)| for some n ∈ Z and
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the latter is |D + d′1 + d′2 + n′lX(δ1)| = |D − d1 − d2 + n′lX(δ1)| for some
n′ ∈ Z. If some of them are equal, then either

2D = −(n+ n′)lX(δ1) or 2(d1 + d2) = (n′ − n)lX(δ1).

First, note that if 2|D| were either 0 or lX(δ1), the two surfaces X and
X ′ would be related to each other by combinations of orientation-reversing
map and Dehn twists along δ1. Hence, we may assume that 2|D| is neither
0 nor lX(δ1). Recall that |D| ≤ lX(δ1)/2. Then the former case is excluded
since 2|D| cannot be a multiple of lX(δ1). For the latter case, note first
that d1, d2 are nonzero values having the same sign: their sum cannot
vanish. However, since |d1|, |d2| < lX(δ1)/4, 2(d1 +d2) cannot become other
multiples of lX(δ1). �

The proof equally applies to the case of genus 2 surface. In both cases,
only one isometry is allowed between X and X ′.

Proposition 4.5. Suppose that [f1, Y ] ∈ T (S) \ V and [f2, Y
′] ∈ T (S)

have the same simple length spectrum. Let ψ′ : X ′ → Y ′ be an immersed
subsurface of Y ′ where X ′ is a surface of type S0,p,b where p+ b = 5. Then
there exists an immersed subsurface ψ : X → Y of Y such that X and X ′

are isometric. In particular, Theorem 1.2 holds when S is of type S0,p,b for
p+ b = 5.

Proof. Let us take curves γ′1, γ′2, α′0, α′1, α′2 on X ′ as in Figure 13, and
label the peripheral curves as δ′i. Then we obtain two immersed subsurface
ψ′i : X ′i → X ′ for i = 1, 2, where X ′i is the generalized shirt with spine α′i∪γ′i.
In addition, cutting X ′ along α′2 also gives another immersed subsurface
ψ′0 : X ′0 → X ′.

We also draw simple geodesic segments κ′1 (resp. κ′2) perpendicular to
δ′2 (resp. δ′4) and γ′1 (resp. γ′2), η′ perpendicular to γ′1 and γ′2, and ζ ′

perpendicular to δ′4 and γ′1.

γ′1 γ′2

α′1 α′2

κ′1 κ′2

η′

ζ ′

α′0

δ′0

δ′1

δ′2 δ′4

δ′3

Figure 13. Configuration of curves on X ′ of type S0,p,b,
p+ b = 5.
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Now we take curves {γi, αi} on Y by requiring lY (γi) = lX′(γ
′
i) and

lY (αi) = lX′(α
′
i). Then as in the previous proofs, using other auxiliary

curves, Proposition 3.11 detects the intersection patterns of curves, which
means that:

• some curves of Y can be labelled as δi such that lX(δi) = lX′(δ
′
i) for

each i;
• for i = 1, 2, αi∪γi serves as a spine of generalized shirt Xi immersed

in X by ψi : Xi → Y ;
• α0 ∪ γ1 also serves a spine of generalized shirt X0 immersed in X by
ψ0 : X0 → Y ;
• σ ∈ {αi, γi} separates {δi1 , δi2} from {δi3 , δi4 , δi5} if and only if σ′ ∈
{α′i, γ′i} separates {δ′i1 , δ

′
i2
} from {δ′i3 , δ

′
i4
, δ′i5}.

Moreover, ψ1 and ψ2 induce an immersion ψ : X → Y of a surface X of type
S0,p,b for p + b = 5, and we may assume that each δi is a peripheral curve
of X again from Proposition 3.11. We then orient X, X ′ by requiring that
Tγ1(α1) and Tγ′1(α′1) have the same length. We also define segments κi, η, ζ

on X, analogously to those on X ′.
Now Proposition 4.3 gives isometries φi : Xi → X ′i that send each bound-

ary to the corresponding boundary. This in particular implies that φi sends
κi to κ′i and η to η′ for i = 1, 2; φ0 sends κ1 to κ′1 and ζ to ζ ′.

Moreover, due to our choice of orientations, φ1 can be chosen as orientation-
preserving. If φ2 is also orientation-preserving, the proof is done by gluing
φ1 and φ2. Suppose to the contrary that φ2 is orientation-reversing. Our
goal is to show that the (unsigned) distance between κ1 and ζ differs to that
between κ′1 and ζ ′. This will then contradict the fact that φ0 is an isometry,
which must preserve the unsigned twist of γ1 at X.

We now parametrize γ1 by arc length λ so that κ1 is located on the
left side of δ1 while λ increases, as in Figure 14. On X, we denote the
signed displacement from η to ζ along γ1 by d. Further, we denote the
signed displacement from κ1 to η along γ1 by D. Similarly, we define the
displacements d′ and D′ for curves and segments on X ′.

From the assumption, the twist at γ2, γ′2 are nonzero and opposite: this
forces d = −d′ 6= 0. We also observe that |d|, |d′| is bounded by half of
lX(γ1) = lX′(γ

′
1). This is because the geodesic perpendicular to γ1 and δ0 is

equidistant from η along γ1, and ζ, ζ ′ cannot go across it. (See Figure 14:
the black dashed lines are lifts of the geodesic perpendicular to γ1 and δ0.)

Now we calculate the unsigned displacements between κ1 and ζ, as well
as between κ′1 and ζ ′. The former is |D + d + nlX(γ1)| for integers n and
the latter is |D + d′ + nlX(γ1)| = |D − d+ nlX(γ1)| for integers n. If some
of them are equal, then either

2D = nlX(γ1) for some integer n or 2d = nlX(γ1) for some integer n.

If 2|D| were 0 or lX(γ1), the two surfaces X and X ′ would be related to
each other. Hence, we may assume that 2|D| is neither 0 nor lX(γ1). The
former case is excluded since |D| ≤ lX(γ1)/2, and hence 2|D| cannot be a
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κ̃1

η̃

κ̃1

η̃

κ̃1

η̃

γ̃1 lifts of ζ
lifts of ζ ′

Figure 14. Description on the lifts of curves in Figure 13.
Here the black dashed lines are lifts of the geodesic segment
perpendicular to γ1 and δ0.

multiple of lX(γ1). For the latter case, 2d is neither 0 (since γ2 has nonzero
twist) nor other multiples of lX(γ1) (since |d| < lX(γ1)/2). This ends the
proof. �

5. Proof of the main theorem

We are now ready to prove the main theorem, which we state here again.
Roughly, our idea in the proof is to reconstruct a hyperbolic structure from
a given length spectrum, with subsurfaces of low complexity as building
blocks. A similar idea also appeared in Grothendieck’s program [Gro97]
(see also [Luo09]).

Theorem 1.2 (Simple length spectra as moduli). Let S be a topological
orientable surface with compact boundaries and with non-abelian fundamen-
tal group and let T (S) be the Teichmüller space of S. Then there exists a
meagre subset V of T (S) satisfying the following: if [f1, X] ∈ T (S) \ V and
[f2, X

′] ∈ T (S) have the same simple length spectra, then [f1, X] and [f2, X
′]

belong to the same orbit of Mod±(S).

Proof. Suppose that X ∈ T (S) \ V , X ′ ∈ T (S) and L(X) = L(X ′). We
fix a pants decomposition C and an exhaustion {Sn} of S as described in
Proposition 2.3. That is, Sn forms an increasing sequence of finite-type
subsurfaces with S = ∪nSn and for each n ∈ N, the boundary ∂Sn consists of
curves in C and Sn+1 is made by attaching a generalized pair of pants or one-
holed torus to Sn along only one curve. Furthermore, after modifying the
pants decomposition as in the proof of Proposition 4.4, one may assume the
following: if Ck ∈ C bounds a one-holed torus that hosts another curve Ck′ ∈
C, then lX′(Ck′) > lX(Ck). Since taking different pants decompositions does
not alter the simple length spectrum, we may assume so.



SIMPLE LENGTH SPECTRA AS MODULI 39

We denote the subsurface of X ′ corresponding to Sn by X ′n. To clarify,
X ′ is decomposed into generalized pair of pants P ′i , glued with each other
along boundaries, and X ′n = ∪ni=1P

′
i for each n.

We can first rule out the cases of generalized pair of pants and one-
holed/punctured torus since they were treated in the last section. Thus, we
may begin with X ′2, a subsurface made out of two generalized pairs of pants.
These cases were dealt with in Proposition 4.3 and 4.4, so we can assume
the isometric embedding ψ2 of X ′2 into X. From this isometric embedding,
we inductively extend along the exhaustion X ′n and eventually obtain the
desired isometry X ′ → X. The fact that our base case X ′2 consists of two
generalized pairs of pants play a role in this extension.

Now suppose that ψn : X ′n → X is an isometric embedding. Let us
denote the subsurface X ′n+1 \ X ′n by P ′. Then P ′ is attached to a pair of
pants Q′ ⊆ X ′n along a curve γ′1 constituting C′. Since X ′n contains at least
two pairs of pants, Q′ is connected to yet another pair of pants R′ ⊆ X ′n
along a curve γ′2 6= γ′1 comprising C′. Let Q, R be their respective images
on X.

Let us first assume that P ′ is a generalized pair of pants. Since P ′ is
the subsurface X ′n+1 \ X ′n and the exhaustion {Sn} is made by attaching
a generalized pair of pants or one-holed torus along only one boundary
component at each step, we have P ′ ∩ Q′ = γ′1. By the same reason, we
also have Q′ ∩ R′ = γ′2, and hence P ′, Q′, R′ are pairs of pants located
in that order in Figure 13. We now define curves {α′i, γ′i, δ′i} on P ′, Q′,
R′ as in Figure 13, and designate αi, γi, δi on X by comparing lengths.
Then the proof of Proposition 4.5 shows that α1 ∪ γ1 becomes a spine of
an immersed generalized shirt in X, which is divided into Q and another
immersed generalized pair of pants P . Moreover, the proposition gives an
isometry φ : P ′ ∪Q′ ∪R′ → P ∪Q ∪R sending each of {α′i, γ′i, δ′i} to corre-
sponding {αi, γi, δi}. In fact, more can be said from the proof of Proposition
4.5. Note that the restriction ψn|Q′∪R′ : Q′∪R′ → Q∪R is also an isometry.
In particular, it sends each of α′i, γ

′
i, δ
′
i on Q′∪R′ to the corresponding curve

on Q∪R. The proof then guarantees that such an isometry can be extended
to the entire isometry φ : P ′ ∪Q′ ∪R′ → P ∪Q∪R. Thus, ψn and φ can be
glued on Q′ ∪R′.

Denoting by Xn the image of X ′n under ψn, it remains to show that P∩Xn

is a single curve, say, the image or C ′n by ψn. We first claim that P and
Xn have disjoint interiors. We observe that Xn cannot cover all of int(P );
otherwise, P ′ has at least two boundary components and they are contained
in X ′n, which was forbidden. Hence, if Xn intersects int(P ), then there exists
a boundary component η of Xn that intersects int(P ). Moreover, since P is
a generalized pair of pants, η cannot be contained in int(P ). This implies
that there is a boundary curve, one of δ1, δ2, that η intersects. Without loss
of generality, we may assume that η intersects δ1. Let η′ be the boundary
curve of X ′n corresponding to η. Since P ′ is attached to X ′n only along the
curve γ′1, two curves δ′1 and η′ are disjoint. Hence, we apply Lemma 3.13
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to two X ′, δ′1, and η′ and obtain auxiliary curves given by Lemma 3.13 to
satisfy the length identity therein. Since L(X) = L(X ′), we can also find
auxiliary curves in X for δ1 and η so that the same length identity holds.
Since X ∈ T (S) \ V , it follows from Lemma 3.12 that δ1 and η are disjoint,
contradiction.

Furthermore, since P ′ is attached to X ′n only along γ′, δ′1 and δ′2 are not
boundary curves of X ′n. Thus, δ1 and δ2 are also different from the boundary
curves of Xn, and P is also attached to Xn only along γ. Thus, gluing ψn
and φ on Q′ ∪R′ is sufficient to construct ψn+1.

If P ′ is a one-holed torus, we still have to investigate whether φ respects
the gluing at δ′1 = δ′2. This time, we observe that φ|P ′∪Q′ becomes an
isometry from P ′∪Q′, as an immersed generalized shirt, onto P ∪Q. Again,
the proof of Proposition 4.4 asserts that φ|P ′∪Q′ can be extended to the
isometry P ′∪Q′, as a 2-holed/punctured torus this time, onto P ∪Q. Thus,
ψn+1 is well-defined also in this case.

Since {X ′n} is an exhaustion of X ′, we obtain an isometric embedding
ψ : X ′ → X after this induction process. We now claim that ψ is surjective.
To show this, suppose not: ψ(X ′) is a subsurface of X. Since X is connected,
the only possibility is that X ′ has a boundary curve C ′n while C = ψ(C ′n)
is an interior curve of X. In this case, C has a minimally intersecting
curve η: if it is non-separating, then there exists another curve η such that
i(C, η) = 1; otherwise, there exists another curve η such that i(C, η) = 2 and
ialg(C, η) = 0. Since L(X ′) = L(X), there exists a curve η′ ⊆ X ′ such that
lX′(η

′) = lX(η). Since ψ : X ′ → X is an isometric embedding and L(X) is
simple, it follows that ψ(η′) = η. As such, i(ψ(η′), C) = i(η, C) > 0, which
contradicts the assumption that C is a boundary curve of ψ(X ′). �

6. Further questions

We conclude this article by suggesting some further questions.

(1) It can be asked whether the meagre set V we constructed is optimal.
Indeed, it is not known whether the isometry classes of all hyperbolic
surfaces are determined by their simple length spectra.

(2) For surfaces of finite type, our argument descends to the moduli
space. Indeed, we know that Mod+(Sg,p,b) (the usual mapping class
group which consists of the isotopy classes of orientation-preserving
homeomorphisms) acts on T g,p,b properly discontinuously, whose
quotient is the moduli space M(S). Thus, for example, we have
that V/Mod+(Sg,p,b) is a meagre, i.e. countable union of submani-
folds of positive codimensions, and (unmarked) hyperbolic surfaces
outside it will be distinguished by their simple length spectra.

We hope that a similar argument can be made for surfaces of in-
finite type. For example, the mapping class group acts on the qua-
siconformal Teichmüller space of some Riemann surfaces discretely
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and faithfully (See [FST04]). Similar discussion for Fenchel-Nielsen
Teichmüller space is expected.

(3) While studying Question (1), Aougab et al. suggested in [ALLX23]
that finite covers of a closed topological surface might be probed via
simple lifts of closed curves. Our result produces at least one (actu-
ally abundant) hyperbolic structure whose simple length spectrum
is topologically rigid on a co-meagre subset of the Teichmüller space.
This structure may help deal with this problem.

Appendix A. Pants decompositions of surfaces

We begin with a version of Richards’ classification of surfaces. Besides of
the genus g (which may be infinite), each surface S is associated with three
invariants:

• the space X of ends of int(S),
• the space Y of non-planar ends, and
• the space Z of boundaries.

Here X is a compact, separable, totally disconnected space and Y , Z
are disjoint closed subsets of X, where Z consists of isolated points of X.
Then S is made from a sphere by removing X \ Z, then removing disjoint
open discs, each containing one element of Z and not containing any other
elements of X, and then attaching g handles that accumulate to points of
Y . (See Theorem 3 of [Ric63])

We first consider the case |X| ≤ 3. This corresponds to finite-type sur-
faces Sg,p,b with p + b ≤ 3, the Loch Ness monster with p + b ≤ 2, 1-
punctured/bordered Jacob’s ladder or the tripod surface. All these surfaces
admit the pants decompositions desired in Proposition 2.3. (See Figure 15.)

From now on, we consider the case |X| ≥ 4. Let Σ be a sphere, K
be a Cantor set on Σ, let Y ⊆ X ⊆ K be closed sets of Σ, and let Z
be a subset of X \ Y consisting of isolated points. For convenience, let
I0 := {(k, i) : k ∈ Z>0, 1 ≤ i ≤ 2k}. Since K is a Cantor set, there exist
open discs {Uk,i}(k,i)∈I0 such that

• Uk,1, . . ., Uk,2k are disjoint for each k,

• Uk,i contains Uk+1,2i−1 ∪ Uk+1,2i, and

•
⋂
k

(
∪2k
i=1Uk,i

)
= K.

Since |X| ≥ 4, there exists disjoint Ukt,it for t = 1, . . . , 4 such that X ∩
Ukt,it 6= ∅ for each t and X ⊆ ∪4

t=1Ukt,it . By relabelling, we may assume
that U2,i intersects X for i = 1, 2, 3, 4. Now, we declare a subset I of I0 as
follows:{ [

(k, 2j − 1) ∈ I and (k, 2j) ∈ I
]
⇔ Uk,2j−1 ∩X 6= ∅ 6= Uk,2j ∩X,[

(k, 2j − 1) /∈ I and (k, 2j) /∈ I
]
⇔

[
Uk,2j−1 ∩X = ∅ or Uk,2j ∩X = ∅

]
.

For convenience, we exclude (1, 1) from I0 as well. (∗)
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Figure 15. Pants decompositions of few-ended surfaces

We claim that Σ\
(
{∂Uk,i : (k, i) ∈ I}∪X

)
is composed of pairs of pants

and cylinders, where the cylinders are precisely of the form{
Uk,i \ {p} :

p ∈ X is an isolated point in X,
(k, i) = min

{
(l, j) ∈ I0 : Ul,j ∩X = {p}

}}
(Here, we employ the lexicographic order on I0.)

First observe that (1, 2), (2, 1), . . . , (2, 4) ∈ I0, and that Σ \
(
U2,1 ∪ . . . ∪

U2,4

)
is decomposed into two pairs of pants thanks to the modification (∗).

Now let z be a point on U2,1\
(
{∂Uk,i : (k, i) ∈ I}∪X

)
. Pick the maximal

(M, t) ∈ I0 such that UM,t 3 z; then z ∈ UM,t \
(
UM+1,2t−1 ∪ UM+1,2t

)
.

Among the ancestors of UM,t, pick the most ancient one Ul,j such that
Ul,j ∩ X = UM,t ∩ X. Here, we know that l ≥ 2 because U1,1 contains
U2,2 ∩X, a nonempty subset of X disjoint from UM,t ∩X ⊆ U2,1 ∩X. Let
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(l, j′) be the other immediate child of the parent of (l, j), i.e.,

{(l, j), (l, j′)} =
{

(l, 2dj/2e − 1), (l, 2dj/2e)
}
.

Due to the minimality of (l, j), we know that Ul,j′ ∩X = (Ul−1,dj/2e ∩X) \
(Ul,j ∩X) is nonempty. Hence, both (l, j) and (l′, j′) belong to I.

We now have two cases:

(1) If Ul,j ∩X is a singleton {p}, then p is an isolated point of X. Since
Ul,j∩X = {p}, no two distinct descendants of Uk,i can both intersect

X. Hence, Uk,i ∩
(
{∂Uk,i : (k, i) ∈ I} ∪X

)
= Uk,i \ {p}.

(2) If Ul,j ∩X is not a singleton, then

#{(m,u) : 2m−l(j − 1) < u ≤ 2m−lj, Um,u ∩X 6= ∅} ≥ 2

for some m > l. Indeed, if not, then Ul,j ∩ X is an intersection of
nested sequence of connected compact sets, which is connected in
K, hence is a singleton.

Pick a minimal m. Here, recall that UM,t ∩ X = Ul,j ∩ X. This
implies that

(A.1) UM,t′ ∩X = ∅ (t′ 6= t and 2M−l(j − 1) < u ≤ 2M−lj).

In other words, among the descendants of Ul,j at some level between
l and M , only one can intersect X. Hence, m is greater than k.

Note that if Um,u intersects X for some u, so does its parent. Also
note that at most 2 distinct indices can have the same parent. This
implies that #{(m,u) : 2m−l(j − 1) < u ≤ 2m−lj, Um,u ∩ X 6= ∅}
cannot be greater than 2 and is exactly 2. Let Um,u′ , Um,u′′ be the
ones intersecting X. By Display A.1, Um,u′ and Um,u′′ must be
descendants of UM,t. Moreover, due to the minimality of m, we have

(A.2) #{(k, i) : 2k−l(j − 1) < i ≤ 2k−lj, Uk,i ∩X 6= ∅} = 1 (l ≤ k < m).

We now observe the descendants of Ul,j recorded by I. Each open
set Uk,i contained in Ul,j is either disjoint from Um,u′ and Um,u′′ ,
is a parent of one of Um,u′ or Um,u′′ , or is a descendant of one of
Um,u′ and Um,u′′ (themselves included). Those of the first category
cannot intersect X, because Ul,j ∩ X is partitioned into Um,u′ ∩ X
and Um,u′ ∩ X. Hence, they are not recorded by I. Those of the
second category are not recorded by I either, because of Display A.2.
Hence, the descendants of Ul,j recorded by I must be descendants
of Um,u′ and Um,u′′ . In other words, ∂Uk,i’s for (k, i) ∈ I either lie
outside Ul,j or is contained in Um,u′ and Um,u′′ . Hence, the connected

component of U2,1\
(
{∂Uk,i : (k, i) ∈ I}∪X

)
containing z is precisely

Ul,j ∩
(
Um,u′ ∪ Um,u′′

)
, a pair of pants.

In the above discussion, we note that each pair of pants have boundaries
coming from three indices in I, where one is an ancestor (and is the direct
parent in I) of the other two, with the exception of U c1,2 ∩ U c2,1 ∩ U c2,2.
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Conversely, for each (k, i) ∈ I, ∂Uk,i either is the boundary of two pairs
of pants (when (k, i) has its decendants in I), or is the boundary of a pair
of pants and a cylinder (when Uk,i is the largest open set intersecting X
precisely at p).

We now draw the seam. For each (k, i) ∈ I, pick two points pk,i, qk,i on
∂Uk,i. Now, on each pair of pants P bounded by Uk,i, Uk′,i′ and Uk′′,i′′ , where
the latter two are descendants of the former one, we draw three disjoint
continuous paths in P connecting pk,i to pk′,i′ , qk,i to qk′′,i′′ , and qk′,i′ to
pk′′,i′′ . On a cylinder containing a single point p ∈ X and bounded by
∂Uk,i, we draw two continuous paths, disjoint in the interior, that connect
pk,i and qk,i to p. We declare the union of these paths to be a seam S.
Then a connected component of S is an embedded arc in Σ \X, as it is an
embedded arc when restricted to each pair of pants and cylinder, and near
each boundaries ∂Uk,i’s for (k, i) ∈ I.

Now, we remove the cylinders containing a point of Z. This way, we
can attach boundary components to ends in Z. Note that S restricted to
Σ \ {cylinders} still serves as a seam.

When g is nonzero and finite (which implies that Y = ∅), we cut Σ \X
along ∂U1,2 and insert a surface Σg,2 with genus g and with two boundaries.
We can also reconstruct the seam on Σg,2.

It remains to realize the non-planar ends Y when they exist. First, iso-
lated points in Y are associated with disjoint cylinders. We replace each
cylinder with half of (seamed) Jacob’s ladder, making sure that the existing
seam and the seam on the Jacob’s ladder are glued up well. Next, for each
(k, i) ∈ I such that Uk,i∩Y 6= ∅, we cut the surface along ∂Uk,i and insert a
surface Σ1,2 with genus 1 and with two boundaries. We can also reconstruct
the seam on the inserted surface. This way, each point in Y is approached
by genera while those outside Y is not.

See Figure 1 for the resulting pants decomposition.

Appendix B. Analytic functions

In this section, we prove the following lemma.

Lemma B.1. Let f : U → Rm be an analytic function on a domain U ⊆ Rn
that does not vanish identically. Then there exists a countable family of
submanifolds {Si}i∈N of U such that f 6= 0 outside ∪iSi.

Proof. It suffices to prove for m = 1. We define the sets

Cj = {x ∈ U : ∂αf(x) = 0 for all index α with |α| ≤ j}
for j ≥ 0. We observe that C0 ⊇ C1 ⊇ · · · and ∩iCi = ∅. Indeed, the
existence of a point x ∈ ∩iCi will imply f ≡ 0 due to the analyticity of f .

We now define Si = Ci−1 \ Ci. It follows from the previous observation
that

⋃
i∈N Si = C0, and f 6= 0 outside C0. It remains to show that Si is

contained in a finite union of submanifolds. For each index α we define
Sα,j = {x : ∂αf(x) = 0 but ∂α′f(x) 6= 0}, where α′i = αi + δij . Then
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the implicit function theorem tells us that Sα,j is a submanifold. Since
Si ⊆ ∪|α|=i,1≤j≤nSα,j , the proof is done. �

Appendix C. Proof of Lemma 2.13

This appendix stands for the proof of the following lemma. A convergence
of Fenchel-Nielsen coordinates as the moduli go to infinity was also dealt
with in [FB15].

Lemma 2.13. Let α be a multicurve on S with i(α,C1) = k.

(1) If k = 0, then lXr(α) converges to a finite value as r → 0.
(2) If k > 0, then limr→0 lXr(α)/ ln r = −2k.

Proof. Here C1 is adjacent to one or two pairs of pants. In each case, we
draw the simple geodesic segments perpendicular to the boundaries of pairs
of pants as described in Figure 16. We also pick basepoints η ∩ κ3 = p,
η± ∩ κ±3 = p± in each case. The complement of these pants in S is denoted
by R.

C1

η

κ1 κ2

κ3

C1
κ−1

κ−2

κ−3η−

κ+
1

κ+
2

κ+
3

η+

Figure 16. Pants containing C1

For the sake of simplicity, we explain for the case that C1 is non-separating.

In order to define representations for Xr, we first fix a unit vector ~V on H
based at some p̃ ∈ H. Also, let ~v be a unit vector on Xr based at p. Then
there exists representations Γr : π1(S, p)→ PSL(2,R) corresponding to Xr’s

such that ~v is lifted to ~V .
We now investigate the monodromy of loops α in π1(S). Suppose first

that α and C1 are disjoint. On each Xr, α is homotopic to a concatenation
of the following segments:

• geodesics on R (meeting ∂R orthogonally),
• geodesics along ∂R or
• geodesic κ3.

The angles among such geodesics are kept perpendicular during the pinch-
ing. Moreover, the lengths of the first two types are unchanged during the
pinching. The length of κ3 continuously grows and converges to a finite
value. Moreover, the length proportion of segments of κ3 cut by p also
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varies continuously and converges to a finite value. Consequently, the image
~Vα,r = Γr(α)(~V ) of ~V by the monodromy along α varies continuously along

r, converging to a limit ~Vα,0 as r → 0.
Let us now consider a segment β from p to C1, where β is not transversing

C1 but only meets at one endpoint. Concatenating β with a segment along
η, from C1 to p, it follows that β is homotopic to a concatenation of a loop
α ∈ π1(S) disjoint from C1 and a segment along η. This segment along η is
exactly half of entire η. Then, we can characterize the lift C̄1 of C1 on H as

follows: the geodesic transport ~V ′α,r of Vα,r by distance ±lXr(η)/2 becomes

a normal vector to C̄1. Such lifts bound a convex region in H, which we
denote by K. As r → 0, those lifts converge to points in ∂H, namely, the

endpoints of the geodesic along ~Vα,0 for various α. Accordingly, K becomes
the full H.

We now discuss the asymptotic behavior (along the pinching process)
of a curve α with i(α,C1) = k > 0. On each Xr, α is homotopic to a
concatenation of geodesics {βi}ki=1 along C1 and {γi}ki=1 orthogonal to C1.
It follows that

(C.1)
∑
i

lXr(γi) ≤ lXr(α) ≤
∑
i

lXr(βi) +
∑
i

lXr(γi).

We claim that lXr(βi) is of class O(r) during the pinching. This is because
γi, γi+1 never crosses η’s. To see this, note that the geodesics orthogonally
departing from C1 are parametrized by their departure point on C1. If we
slightly perturb η, it will still return to C1 but not orthogonally. Moreover,
the threshold of this perturbation is locally uniform along r. Thus, if γi
were η at a moment Xr, then it would stay at η forever. Note also that
the shear among the lifts η̄ of η each side of C̄1 is kept constant during the
pinching. As a result, if a lift ᾱ of α is sandwiched by two η’s on each side
of C̄1 marking twist τ , then lXr(βi) is always dominated by τ l(C̄1) = τr.
See Figure 17.

Meanwhile, lXr(γi) grows exponentially. To elaborate this, we first fix a
lift γ̄i of γi in K, which meets lifts C̄1, C̄ ′1 of C1 at endpoints. As explained
before, C̄1 and C̄ ′1 converge to limits c, c′ ∈ ∂H, respectively. (Here c 6= c′

because γi is nontrivial) Let γ̂i be the geodesic connecting c and c′, and fix
an arbitrary point pref on γ̂i. Let pperp be the foot of perpendicular from
pref to γ̄i. Note that d(pperp, pref )→ 0 as r → 0.
C̄1 is adjacent to a sequence of lifts of η. Among them we pick two

consecutive lifts η̄+, η̄− inside K, sandwiching the ray γ̄i. (Recall that γ̄i
will not cross η̄+ or η̄− during pinching) η̄+ meets C̄1 at one endpoint and
meets another lift C̄1,+ of C1 at another endpoint. Similarly, η̄− meets C̄1

and another lift C̄1,− of C1 at endpoints. C̄1,+ and C̄1,− also converge to
points c+ and c− on ∂H, respectively, as r → 0.

Let us work on the upper half plane model with c = ∞, c+ = 1 and
c− = 0. We fix points a±, b±, d on the real line as in Figure 18, and define
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C̄1

K K ′

Figure 17. Twist at C1

pref pperp

c− c+

c
↑

γ̂i

η̄−
η̄+

K

L
L−

b− a−+b−
2

a− d b+a++b+
2

a+

Figure 18. Pinching described on H

r1,± and r2,± as follows:

r1,± :=

∣∣∣∣a± − a± + b±
2

∣∣∣∣ , r2,± :=

∣∣∣∣d− a± + b±
2

∣∣∣∣ .
Note that a±, d remain bounded while |b±| → ∞ as r → 0. Thus, r1,±/r2,±
tends to 1 during the pinching.

We now consider three horocycles based at ∞: L passing thourgh the
highest point of C̄1, and L± passing though C̄1 ∩ η̄±. We record their Eu-
clidean y-coordinates of L, L±, and pperp by yL, yL± , and ypperp , respectively.
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Then we have

(C.2) lim
r→0

yL±
yL

= lim
r→0

r1,±
r2,±

= 1

and

(C.3) ln
min(yL+ , yL−)

ypperp
≤ d(pperp, C̄1) ≤ ln

yL
ypperp

.

from the geometry.
Let w be the Euclidean width of C1. Then we finally relate the length r

of C1 with yL as follows:

ln

(
1

yL

∫
C̄1

dx

)
= lnw − ln yL ≤ ln r = ln

(∫
C̄1

ds

y

)
≤ ln

(
yL

min(yL+ , yL−)2

∫
C̄1

dx

)
= lnw − ln yL + ln

y2
L

min(yL+ , yL−)2
.

Here the Euclidean width w of C̄1 is equal to

r2
2,+ − r2

1,+

r2,+
+
r2

2,− − r2
1,−

r2,−
.

Recall that r1,±/r2,± → 1 as r → 0. Moreover,

lim
r→0

[(r2,+ − r1,+) + (r2,− − r1,−)] = lim
r→0

(a+ − a−) = 1.

Using this, we conclude that w → 2 and ln yL/ ln r → −1 as r → 0. From
this conclusion and Equation C.2, C.3, we obtain that

lim
r→0

d(pperp, C̄1)

− ln r
= 1.

The same logic applies to C̄ ′1, the other end. Thus we obtain

lim
r→0

lXr(γi)

− ln r
= 2.

Similar discussion also holds for other γi’s. Since lXr(βi)’s are of class O(r),
we conclude that

2i(α,C1) = lim
r→0

k∑
i=1

lXr(γi)

− ln r
≤ lim inf

r→0

lXr(α)

− ln r

≤ lim sup
r→0

lXr(α)

− ln r
≤ lim

r→0

k∑
i=1

(
lXr(γi)

− ln r
+
lXr(βi)

− ln r

)
= 2i(α,C1). �
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of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1992.

[Cro90] Christopher B. Croke. Rigidity for surfaces of nonpositive curvature. Com-
ment. Math. Helv., 65(1):150–169, 1990.

[FB15] Maxime Fortier Bourque. Conformal grafting and convergence of Fenchel-
Nielsen twist coordinates. Conform. Geom. Dyn., 19:1–18, 2015.

[FLP79] Travaux de Thurston sur les surfaces, volume 66-67 of Astérisque. Société
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