
Michigan Math. J. 75 (2025), 927–942
https://doi.org/10.1307/mmj/20226319

Minimal Asymptotic Translation Lengths on Curve
Complexes and Homology of Mapping Tori

Hyungryul Baik, Dongryul M. Kim, & Chenxi Wu

Abstract. Let Sg be a closed orientable surface of genus g > 1.
Consider the minimal asymptotic translation length LT (k, g) on the
Teichmüller space of Sg , among pseudo-Anosov mapping classes

of Sg acting trivially on k-dimensional subspaces of H1(Sg), 0 ≤
k ≤ 2g. The asymptote of LT (k, g) for extreme cases k = 0,2g have
been shown by several authors. Jordan Ellenberg asked whether there
is a lower bound for LT (k, g) interpolating the known results on
LT (0, g) and LT (2g,g), which was affirmatively answered by Agol,
Leininger, and Margalit.

In this paper, we study an analogue of Ellenberg’s question, replac-
ing Teichmüller spaces with curve complexes. We provide lower and
upper bound on the minimal asymptotic translation length LC(k, g) on
the curve complex, whose lower bound interpolates the known results
on LC(0, g) and LC(2g,g).

Finally, for each g, we construct a non-Torelli pseudo-Anosov
fg ∈ Mod(Sg) which does not normally generate Mod(Sg), so that

the asymptotic translation length of fg on the curve complex decays

faster than a constant multiple of 1/g as g → ∞. From this, we pro-
vide a restriction on how small the asymptotic translation lengths on
curve complexes should be if the similar phenomenon as in the work
of Lanier and Margalit on Teichmüller spaces holds for curve com-
plexes.

1. Introduction

Let Sg be a closed connected orientable surface of genus g > 1, Mod(Sg) be
its mapping class group, and C(Sg) be its curve complex. Then Mod(Sg) iso-
metrically acts on C(Sg), hence the asymptotic translation length �C(f ) of f ∈
Mod(Sg) on C(Sg) is defined as follows:

�C(f ) := lim inf
n→∞

dC(x, f n(x))

n

for any x ∈ C(Sg) where dC is the standard metric on C(Sg). The asymptotic
translation length is also called stable translation length.

Received December 5, 2022. Revision received October 23, 2023.
The first author was partially supported by the National Research Foundation of Korea (NRF) grant

funded by the Korea government (MSIT) (No. 2020R1C1C1A01006912).

927

https://www.lsa.umich.edu/math/outreach/michiganmathematicaljournal
https://doi.org/10.1307/mmj/20226319


928 H. Baik, D. M. Kim, & C. Wu

Note that Mod(Sg) also acts on H1(Sg), the first homology group of Sg with
real coefficients. For f ∈ Mod(Sg), we denote the dimension of a maximal sub-
space of H1(Sg) on which f is trivial by m(f ). In particular, m(f ) = 2g if and
only if f is in the Torelli group Ig < Mod(Sg), the subgroup consisting of ele-
ments that act trivially on H1(Sg). As an application of Mayer–Vietoris sequence,
one can observe that m(f )+1 is the same as the first Betti number of the mapping
torus of f , which is hyperbolic if and only if f is pseudo-Anosov by Thurston
[Thu98].

In this paper, we mainly study the minimal asymptotic translation lengths
among pseudo-Anosov mapping classes acting trivially on some subspaces of ho-
mology groups. Namely, for 0 ≤ k ≤ 2g, we define

LC(k, g) := inf{�C(f ) : f ∈ Mod(Sg), f is pseudo-Anosov,m(f ) ≥ k}.
Then we investigate asymptotes of LC(k, g) with varying k and g.

By replacing the curve complex C(Sg) with Teichmüller space T (Sg), one
can also define �T (·) and LT (k, g) analogously. Note that �T (f ) for a pseudo-
Anosov element f is the same as the logarithm of the stretch factor [L+78], hence
coincides with the topological entropy of f [FLP12, Exposé Ten].

In each setting, there are two extreme cases: the first extreme is the case k = 0
that the minimal asymptotic translation length is considered in the entire mapping
class group Mod(Sg). The other extreme is k = 2g, which means that the minimal
asymptotic translation length is considered in the Torelli subgroup Ig < Mod(Sg).
These four cases have been resolved by various authors as in Table 1.

Ellenberg [Ell10] asked if LT (k, g) interpolates LT (0, g) and LT (2g,g) in
the sense that there exists C > 0 such that

LT (k, g) ≥ C(k + 1)/g (1.1)

for all g > 1 and 0 ≤ k ≤ 2g. This was answered affirmatively by Agol, Leininger,
and Margalit in [ALM16]. Indeed, they actually showed LT (k, g) � (k + 1)/g.

We ask an analogous question whether LC(k, g) interpolates LC(0, g) and
LC(2g,g) in a similar sense as Ellenberg’s question (1.1). We show that this is
indeed the case, and more concretely we obtain the following.

Table 1 Four extreme cases of LT (k, g) and LC(k, g).1

Teichmüller spaces Curve complexes

Mod(Sg) (Penner [Pen91])
LT (0, g) � 1/g

(Gadre–Tsai [GT11])
LC(0, g) � 1/g2

Ig (Farb–Leininger–Margalit
[FLM08]) LT (2g,g) � 1

(Baik–Shin [BS20])
LC(2g,g) � 1/g

1Throughout the paper, we write A(x) � B(x) if there exists a uniform constant C > 0 such
that A(x) ≤ CB(x) for all x in the domain. We also write A(x) � B(x) if A(x) � B(x)

and B(x) � A(x).
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Theorem 1.1. There exist C,C′ > 0 such that

C

g(2g − k + 1)
≤ LC(k, g) ≤ C′ k + 1

g logg

for all g > 1 and 0 ≤ k ≤ 2g.

From the statement, if k grows at least 2g − C′ for some constant C′ > 0, then
LC(k, g) � 1/g while LC(0, g) � 1/g2. Observing this, we ask about minimal k

with LC(k, g) � 1/g. For this discussion, see Section 4.
Although the lower bound in Theorem 1.1 interpolates LC(0, g) � 1/g2 and

LC(2g,g) � 1/g, the upper bound in Theorem 1.1 does not interpolate these two
values well. Indeed, we construct some values of k and g showing that k+1

g logg
is

larger than the actual asymptote. We also show that k/g2 works as an upper bound
for some choices of (k, g), which interpolates LC(0, g) � 1/g2 and LC(2g,g) �
1/g.

Theorem 1.2. There is a uniform constant C > 0 satisfying the following: for any
integers g, k ≥ 0, there exists a pseudo-Anosov f : Sg′ → Sg′ such that g′ > g,
m(f ) = k′ > k, and

�C(f ) ≤ C
k′

g′2
.

Applying Theorem 1.2 inductively, it follows that there is a diverging sequence
(kj , gj ) → ∞ so that LC(kj , gj ) � kj /g

2
j . See Corollary 3.1. Based on Table 1,

we conjecture that the upper bound in Theorem 1.2 is actually the asymptote for
LC(k, g).

Conjecture 1.3. We have

LC(k, g) � k

g2

for g > 1 and 0 ≤ k ≤ 2g.

We focus on specific dimensions of maximal invariant subspaces. In [BS20],
Torelli pseudo-Anosovs are constructed in a concrete way based on Penner’s or
Thurston’s construction. In a similar line of thought, we utilize finite cyclic cov-
ers of S2 so that we get pseudo-Anosovs f ∈ Mod(Sg) with m(f ) = 2g − 1 and
satisfying the upper bound in Theorem 1.2. As a consequence, this yields the
asymptote of LC(2g − 1, g); only two extreme cases Mod(Sg) and Ig were pre-
viously known. It is also interesting to figure out the asymptote LC(k, g) for other
values (k, g):

Question 1.4. Can we give a sequence (kj , gj ), other than (0, g) and (2g,g),
with explicit asymptote for LC(kj , gj ) as j → ∞?

We give one such example in the following.
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Theorem 1.5. There exist a uniform constant C > 0 and pseudo-Anosovs fg ∈
Mod(Sg) such that

m(fg) = 2g − 1 and �C(fg) ≤ C

g

for all g > 1. Moreover, the following asymptote holds:

LC(2g − 1, g) � 1

g
.

The construction involved in Theorem 1.5 can be modified to deal with the Torelli
case. Such a modification gives an asymptote for LC(2g,g), which was already
shown by [BS20] in a different way. See Remark 4.1. Further, only the last asser-
tion can also be deduced from Theorem 1.1 and [BS20]. See Section 4 for details.

In [LM22], Lanier and Margalit showed that a pseudo-Anosov with small as-
ymptotic translation length on the Teichmüller space has the entire mapping class
group as its normal closure. The first and the third authors, Kin, and Shin, made
an analogous question for asymptotic translation lengths on curve complexes in
[B+23] (see [B+23, Question 1.2]). We later show that pseudo-Anosovs fg con-
structed in Theorem 1.5 never normally generate the mapping class groups. Since
�C(fg) is concretely estimated in Section 4, it provides how small the asymptotic
translation length should be to observe the similar phenomenon as in [LM22]. In
other words, we prove the following.

Theorem 1.6. Suppose that there exists a universal constant C so that if a non-
Torelli pseudo-Anosov f ∈ Mod(Sg) has �C(f ) < C/g, then f normally gener-
ates Mod(Sg) for large g. Then

C ≤ 1,152.

Organization

In Section 2, we prove Theorem 1.1. Theorem 1.2 is proved in Section 3. In
Section 4, explicit construction of pseudo-Anosovs realizing the asymptote of
LC(2g − 1, g) is provided, implying Theorem 1.5. The discussion on small as-
ymptotic translation lengths on curve complexes and normal generation of map-
ping class groups is provided in Section 5.

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1.

Lower Bound

The main idea of showing the lower bound is similar to the one used in the proof
in [BS20] of LC(2g,g) ≥ C/g for some constant C > 0 and for all g > 1. First
note that for any homeomorphism f : Sg → Sg , the Lefschetz number L(f ) is
2 − Tr(f∗), where Tr(f∗) is the trace of the induced map f∗ : H1(Sg) → H1(Sg).
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Let us fix a pseudo-Anosov f : Sg → Sg whose restriction onto a k-
dimensional subspace of H1(Sg) is the identity.

Fixing a suitable basis for H1(Sg), the matrix for f∗ can be written as(
Ik ∗
0 M

)
.

Suppose first that k > 0. When k is odd, let m = 2g − k, and when k is even, let
m = 2g − (k − 1). By taking the upper left block to be Ik−1 in case k is even,
one may assume M is an m × m square matrix with determinant 1 and m is odd
(determinant 1 comes from the fact that f∗ is actually a symplectic matrix).

Recall that there is a relation between trace and determinant as follows.

Lemma 2.1 ([KK92, Appendix B]). For any m × m matrix A,

(−1)m detA =
∑

c1,...,cm≥0,
c1+2c2+···+mcm=m

m∏
i=1

1

ci !
(

−Tr(Ai)

i

)ci

.

Observe that at least one of the matrices M,M2, . . . ,Mm must have positive trace.
Otherwise the right-hand side of the equality in Lemma 2.1 is always nonnegative
when we plug in M in the place of A in the lemma. On the other hand, since
det(M) = 1 and m is always odd by our choice, the left-hand side is −1, a con-
tradiction.

This implies that for some j satisfying 1 ≤ j ≤ m ≤ 2g − k + 1, Tr(Mj ) is
positive, that is, at least 1 since it is an integral matrix. Tr(f j∗ ) is the sum of
Tr(Mj ) and the trace of the upper left block, which is 2g − m ≥ 1. Therefore,
Tr(f j∗ ) is at least 2 in general. But in fact 2g − m ≥ 3 as long as k ≥ 3.

Assume k ≥ 3. Now we have that L(f j ) = 2 − Tr(f j∗ ) < 0, and we can ap-
ply a result of Tsai [Tsa09]. Then �C(f j ) ≥ C/g for some constant C > 0 and
consequently,

�C(f ) ≥ C

gj
≥ C

g(2g − k + 1)
.

Recall that LC(0, g) � 1/g2. Hence for each k ≥ 0, there exists Ck such that
LC(k, g) ≥ Ck

g(2g−k+1)
for all g > 1. Since the above argument works for any k ≥

3, replacing C by min{C,C0,C1,C2}, we obtain the lower bound in Theorem 1.1.

Upper Bound

We now prove the upper bound provided in Theorem 1.1.
Recall that the Teichmüller space T (Sg) is the space of marked hyperbolic

structures on Sg , and vertices of the curve complex C(Sg) are isotopy classes of
essential simple closed curves on Sg . Hence, we can associate each point x ∈
T (Sg) with systoles on Sg , the shortest simple closed geodesics, in the hyperbolic
structure x. Because systoles are within a uniformly bounded distance in the curve
complex, it gives a coarsely well-defined map πg : T (Sg) → C(Sg).
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Masur and Misnky studied πg : T (Sg) → C(Sg) in [MM99] and showed that
πg is coarsely Lipschitz.

Proposition 2.2 ((Kg,Dg)-coarsely Lipschitz, [MM99]). There exist constants
Kg,Dg > 0 such that for any x, y ∈ T (Sg) we have

dC(πg(x),πg(y)) ≤ KgdT (x, y) + Dg,

where dT is the Teichmüller metric.

Furthermore, πg is coarsely Mod(Sg)-equivariant in the sense that there exists a
constant Ag such that dC((πg ◦ f )(x), (f ◦ πg)(x)) ≤ Ag for any x ∈ T (Sg) and
f ∈ Mod(Sg). Then, for f ∈ Mod(Sg), n > 0, and x ∈ T (Sg), we have

dC(πg(x), f n(πg(x))) ≤ dC(πg(x),πg(f
n(x))) + Ag

≤ KgdT (x, f n(x)) + Dg + Ag.

Hence, we now have the comparison between asymptotic translation lengths of
f ∈ Mod(Sg) measured on C(Sg) and T (Sg):

�C(f ) ≤ Kg�T (f ).

In particular, we have
LC(k, g) ≤ KgLT (k, g). (2.1)

Due to the work [ALM16] of Agol, Leininger, and Margalit, we already know
the asymptote of LT (k, g). Hence, it remains to figure out the asymptote of Kg .

In [G+13], Gadre, Hironaka, Kent, and Leininger considered the minimal pos-
sible Lipschitz constant Kg , which is defined as

κg := inf{Kg ≥ 0 : πg is (Kg,Dg)-coarsely Lipschitz for some Dg > 0}.
Then they showed that

κg � 1

logg
.

Combining this with [ALM16] and inequality (2.1), we deduce the upper bound
in Theorem 1.1.

3. Upper Bound Interpolates LC(0, g) and LC(2g,g)

The upper bound provided in Theorem 1.1 does not interpolate LC(0, g) and
LC(2g,g), and it is not sharp enough as one can see in Section 4. As stated in
Theorem 1.2, the upper bound conjectured in Conjecture 1.3 can be observed
along a certain sequence (kj , gj ) → ∞. This section is devoted to proving Theo-
rem 1.2.

Proof of Theorem 1.2. Let f0 be a pseudo-Anosov map in the Torelli group of
genus g0 > 1. Let M be its mapping torus, α ∈ H 1(M) be the first cohomology
class of M corresponding to f0, β be an element in H 1(M), which is restricted
to a cohomology class dual to a simple closed curve γ on Sg0 . For large enough
n > g + k, let fn be the pseudo-Anosov monodromy corresponding to 2nα + β .
Then fn has the fiber of genus O(2n), and �C(fn) is O(2−2n) (cf. [BSW21]).
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A way to construct the surface Sn and map fn corresponding to 2nα + β is
as follows: let Ŝ be the Z-fold cover corresponding to β restricted to Sg0 , f̂ be a
lift of f0, and h be the deck transformation; then, with a suitable choice of f̂ , we
have Sn = Ŝ/(h2n

f̂ ) and fn is lifted to h. Now consider a simple closed curve on
a fundamental domain of Ŝ that is not homologous to the boundary, such that the
homology class c represented by this curve γ is preserved by f̂ . The existence of
such a homology class is due to the construction in Baik and Shin [BS20]. Then∑2n−1

i=0 f i
nc is invariant under fn, and for k < n, let ck = ∑2n−k−1

i=0 f i2k

n c. Now

Span{ck, fnck, . . . f
2k−1
n ck} is a 2k dimensional invariant subspace of f 2k

n . This
proves Theorem 1.2. �

Since the constant C in Theorem 1.2 does not depend on the choice of given g

and k, we can apply the theorem inductively: at each j th step with gj and kj ,
Theorem 1.2 applied to gj and kj gives g′ > gj , k′ > kj , and a pseudo-Anosov
fj+1 : Sg′

j
→ Sg′

j
with �C(fj+1) ≤ Ck′

j /g
′2
j . Then we set gj+1 := g′

j and kj+1 :=
k′
j . As a consequence, we obtain the following corollary that interpolates LC(0, g)

[GT11] and LC(2g,g) [BS20] in a partial way.

Corollary 3.1. There are a constant C and a diverging sequence (kj , gj ) → ∞
as j → ∞ such that

LC(kj , gj ) ≤ C
kj

g2
j

.

Corollary 3.1 can be regarded as an evidence for Conjecture 1.3 because it has
a similar form to the desired asymptote. On the other hand, due to the inexplicit
choice made in the proof of Theorem 1.2, it is hard to explicitly understand from
which diverging sequence (kj , gj ) we can deduce the desired asymptote. Hence
it may require different approaches to make a concrete progress towards Conjec-
ture 1.3.

However, pseudo-Anosov mapping classes we construct in the later section
(Section 4) satisfy the asymptotes in Theorem 1.2 and Corollary 3.1.

4. Pseudo-Anosovs with Specified Invariant Homology Dimension

To the best of the authors’ knowledge, asymptotes of LC(k, g) are known only
when k = 0 (whole mapping class groups) and k = 2g (Torelli groups). In this
section, we construct pseudo-Anosovs fg ∈ Mod(Sg) with m(fg) = 2g − 1 and
realizing the asymptote of LC(2g − 1, g).

From the definition of LC(k, g), LC(k, g) ≤ LC(k′, g) if k ≤ k′. Since
LC(2g,g) � 1/g from [BS20], the lower bound in Theorem 1.1 implies that
LC(k, g) � 1/g if k behaves like 2g; for instance, k ≥ 2g − C for some constant
C > 0. However, LC(0, g) � 1/g2 by [GT11]. In this regard, we ask whether
there is a sort of threshold for k that LC(k, g) becomes strictly smaller than 1/g,
such as 1/g2.
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Figure 1 g-fold finite cyclic covering.

As a potential approach for this question, we think of constructing pseudo-
Anosovs of specified maximal invariant homology dimensions on surfaces of
large genera with small asymptotic translation lengths. In order to get pseudo-
Anosov maps on surfaces of large genera, some previous results ([ALM16;
BSW21; B+23]) employ a fixed hyperbolic mapping torus and consider its mon-
odromy obtained from a fibered cone. Since the first Betti number of a mapping
torus of f is the same as m(f )+ 1, such monodromies in a fibered cone share the
same m-value.

In contrast, we come up with finite cyclic covers of a genus 2 surface to get
the desired pseudo-Anosov maps on large genera surfaces as lifts of a fixed map.
From the concrete estimation on how covering maps distort the distances on curve
complexes [APT22], asymptotic translation length of the lift via degree g covering
would be at least 1/g, up to a constant multiple. We believe that constructing such
lifts with specified maximal invariant homology dimensions would help to figure
out the minimal k = k(g) with LC(k, g) � 1/g.

We start with a nonseparating simple closed curve α on the genus 2 surface S2,
and take g copies of S2 \ α for g > 1. Gluing two different copies of S2 \ α along
one boundary component in a cyclic way, we obtain the finite cyclic cover pg+1

of degree g as in Figure 1. Let us denote the resulting cover by Sg+1 since it is of
genus g + 1.

This cover pg+1 corresponds to the kernel of the composed map

π1(S2)
î(·,α)−−−→ Z

mod g−−−−−→ Z/gZ,

where î(·, ·) stands for the algebraic intersection number. To see this, one can
observe that an element of π1(S2) can be lifted to π1(Sg+1) via pg+1 if and only
if its lift departs one copy of S2 \ α and then returns to the same copy. If the
lift departs and returns through the same boundary component of S2 \ α, then
the element of π1(S2) has the algebraic intersection number 0 with α. Otherwise,
if the lift departs and returns through different boundary components, then the
algebraic intersection number is an integer multiple of g.

In [BS20], the first author and Shin directly constructed pseudo-Anosovs on Sg

that are Torelli and of small asymptotic translation lengths on curve complexes.
In the following, we construct pseudo-Anosovs with specific maximal invariant
homology dimensions and satisfying the upper bound provided in Theorem 1.2
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Figure 2 A nonseparating curve α and a separating curve β on S2
with α ∩ β = ∅.

and Corollary 3.1. As a result, we obtain Theorem 1.5. Our strategy is to fix a
suitable pseudo-Anosov on S2 and then to lift it via pg+1. Due to the symmetry
of the covering, we can find a number of invariant homology classes proportional
to the degree of the cover.

Proof of Theorem 1.5. The last assertion is a direct consequence of the first as-
sertion and Theorem 1.1. By Theorem 1.1, there exists C′ > 0 so that LC(2g − 1,

g) ≥ C′
g

for all g > 1. Hence, it remains to show the existence of the desired
pseudo-Anosovs.

Fix g > 1, and in the rest of the proof, we simply denote p := pg+1. Let α be a
nonseparating curve on S2, and let β be a separating curve on S2 disjoint from α.
Then each lift of β through p is also separating. For instance, see Figure 2.

Now let φ be a Torelli pseudo-Anosov mapping class in Mod(S2) such
that dC(β,φβ) ≥ 3. Note that this means that β and φβ are separating sim-
ple closed curves on S2 that fill the surface. Such a φ may be obtained as fol-
lows: let ψ ∈ Mod(S2) be a pseudo-Anosov mapping class. Since a pseudo-
Anosov mapping class acts on C(S2) as a loxodromic isometry by [MM99],
limn→∞ dC(β,ψnβ)/n = �C(ψ) > 0. Hence replacing ψ with ψn for some large
n if necessary, we may assume that dC(β,ψβ) ≥ 3. We then consider a map-
ping class TβT −1

ψβ that is pseudo-Anosov by Thurston [Thu88] or Penner [Pen88].

Again, since TβT −1
ψβ acts on C(S2) as a loxodromic isometry, we can set φ to

be some power of TβT −1
ψβ so that φ is a pseudo-Anosov mapping class with the

property that dC(β,φβ) ≥ 3.
Now let f = TβT −1

φβ T −1
φα . Since β , φβ , and φα fill the surface and φβ ∩ φα =

∅, f is pseudo-Anosov again by Thurston [Thu88] and Penner [Pen88]. Since
β and φβ are separating, Tβ and T −1

φβ are Torelli, in particular, they preserve
the homology class [α] of α. Furthermore, since φ is Torelli, [φα] = [α], which
implies that T −1

φα also preserves [α]. Hence, f preserves [α], and thus î(f (·), α) =
î(·, α). In particular, f preserves the kernel of π1(S2)

î(·,α)−−−→ Z
mod g−−−−→ Z/gZ.

Consequently, f can be lifted through p.
Let f̃ = Tp−1(β)T

−1
p−1(φβ)

T −1
p−1(φα)

be a lift of f via p. We now estimate �C(f̃ ).

Our strategy to obtain the desired upper bound for �C(f̃ ) is to find a simple closed
curve α̃ such that α̃ and its image under a sufficiently high power of f̃ do not fill
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Figure 3 A curve intersecting a lift of the new curve (nonindexed
one) in some Xj spreads into Xj−1 ∪ Xj+1 by twisting along the lift.
It describes how the image of α̃ under multitwists is trapped in the
certain number of lifts of a subsurface, as in (4.1).

the surface, which means that they are within distance 2 in the curve complex.
We do this by counting the number of intersections of images of α̃ and lifts of
subsurfaces.

Recall the construction of p: take g copies X1, . . . ,Xg of S2 \ α and glue Xi

and Xi+1 along one of their boundary components. Throughout, we write each
index i modulo g. Let α̃ = ∂X0 ∩ ∂X1. That is, let α̃ be a boundary component of
X0 and X1 where they are glued. Due to the construction, α̃ is a lift of α.

Noting that î(φα,α) = 0 since φ is Torelli, we get

T −1
p−1(φα)

α̃ ⊆
i(φα,α)/2⋃

j=−i(φα,α)/2

Xj , (4.1)

where i(·, ·) is the geometric intersection number (cf. Figure 3). Similarly,
î(φβ,α) = 0 and

T −1
p−1(φβ)

T −1
p−1(φα)

α̃ ⊆
i(φβ,α)+i(φα,α)

2⋃
j=− i(φβ,α)+i(φα,α)

2

Xj .

Since Tp−1(β) fixes each Xj , we have

f̃ α̃ ⊆
i(φβ,α)+i(φα,α)

2⋃
j=− i(φβ,α)+i(φα,α)

2

Xj .

Conducting this procedure inductively, we finally get

f̃ nα̃ ⊆
n· i(φβ,α)+i(φα,α)

2⋃
j=−n· i(φβ,α)+i(φα,α)

2

Xj .

Hence, for large enough g, there exists j̃ such that f̃
� g−2

i(φβ,α)+i(φα,α)
�
α̃ ∩ X

j̃
= ∅.

Since there exists an essential simple closed curve in X
j̃
, which is a 2-holed torus,

we have dC(α̃, f̃
� g−2

i(φβ,α)+i(φα,α)
�
α̃) ≤ 2 so �C(f̃

� g−2
i(φβ,α)+i(φα,α)

�
) ≤ 2. This implies the
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Figure 4 Basis for H1(Sg+1).

following estimate. Note that φ, i(φβ,α), and i(φα,α) are universal quantities
independent on p and g.

�C(f̃ ) ≤ 2

� g−2
i(φβ,α)+i(φα,α)

� (4.2)

We now show that m(f̃ ) = 2g + 1. Recall that β ⊆ S2 is a separating curve
and α ⊆ S2 is a nonseparating curve disjoint from β . Temporarily, let us denote
by Y the component of S2 \β that does not contain α. Let γ and δ be nonseparat-
ing simple closed curves whose homology classes form a basis for H1(Y ) ∼= R

2.
Let us also denote η to be a nonseparating curve on S2 \ β with i(η,α) = 1.
Then p−1(γ ), p−1(δ), p−1(η), and one component of p−1(α) form a basis for
H1(Sg+1) ∼= R

2g+2. See Figure 4 for instance.
Let γ̃j = p−1(γ ) ∩ Xj , δ̃j = p−1(δ) ∩ Xj , and η̃ = p−1(η). Further, let α̃ =

∂X0 ∩ ∂X1, which is a component of p−1(α). Since φ is Torelli, it has a lift φ̃

through p. Hence, homology classes {[φ̃γ̃j ], [φ̃δ̃j ], [φ̃η̃], [φ̃α̃]} also form a basis
for H1(Sg+1).

Recall that f̃ = Tp−1(β)T
−1
p−1(φβ)

T −1
p−1(φα)

. Since γ ∩ (α ∪ β) = ∅, we have

φ̃γ̃j ∩ (p−1(φα) ∩ p−1(φβ)) = ∅. Here, note that φ̃γ̃j is a lift of φγ which is
a component of p−1(φγ ). Hence it follows that [f̃ φ̃γ̃j ] = [Tp−1(β)φ̃γ̃j ]. Since
each component of p−1(β), which is a lift of β , is separating, Tp−1(β) is Torelli.

As a result, [f̃ φ̃γ̃j ] = [φ̃γ̃j ]. Similarly, we have [f̃ φ̃δ̃j ] = [φ̃δ̃j ].
Now we consider [f̃ φ̃α̃]. Since φ̃α̃ is a lift of φα, T −1

p−1(φα)
φ̃α̃ = φ̃α̃. Fur-

thermore, since α ∩ β = ∅, φ̃α̃, a lift of φα, does not intersect p−1(φβ). It im-
plies that T −1

p−1(φβ)
φ̃α̃ = φ̃α̃. Finally, since Tp−1(β) is Torelli again, we conclude

[f̃ φ̃α̃] = [φ̃α̃].
So far, we have proved m(f̃ ) ≥ 2g + 1. Suppose to the contrary that m(f̃ ) =

2g + 2, which means that f̃ is Torelli. Then f̃ φ̃η̃ should be homologous to φ̃η̃.
It implies [T −1

p−1(φβ)
T −1

p−1(φα)
φ̃η̃] = [φ̃η̃] since Tp−1(β) is Torelli. Because any two
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components of p−1(φα) bound a subsurface, they are homologous. In particu-
lar, since φ̃α̃ is a component of p−1(φα), each of its components is homologous
to φ̃α̃. Hence, [T −1

p−1(φβ)
T −1

p−1(φα)
φ̃η̃] = [T −1

p−1(φβ)
T

−g

φ̃α̃
φ̃η̃]. Noting that T

−g

α̃
η̃ can

be isotoped into arbitrary neighborhood of α̃∪ η̃, T −g

φ̃α̃
φ̃η̃ can also be isotoped into

arbitrary neighborhood of φ̃α̃∪ φ̃η̃. Since φ̃α̃∪ φ̃η̃ and p−1(φβ) are disjoint com-
pact sets, we have T −1

p−1(φβ)
T

−g

φ̃α̃
φ̃η̃ = T

−g

φ̃α̃
φ̃η̃. Summing up the above argument,

we obtain

[φ̃η̃] = [f̃ φ̃η̃] = [T −1
p−1(φβ)

T −1
p−1(φα)

φ̃η̃] = [T −1
p−1(φβ)

T
−g

φ̃α̃
φ̃η̃] = [T −g

φ̃α̃
φ̃η̃],

where the first equality is the assumption. However,

[T −g

φ̃α̃
φ̃η̃] = [φ̃η̃] − g · î(φ̃η̃, φ̃α̃)[φ̃α̃],

which implies that î(φ̃η̃, φ̃α̃) = 0. It contradicts our choice of η that i(η̃, α̃) = 1.
Therefore, m(f̃ ) = 2g+1. Setting fg+1 = f̃ completes the proof of Theorem 1.5.

�

The lower bound on �C(fg) for fg constructed in the proof can also be calculated
in a concrete way by Aougab, Patel, and Taylor [APT22] as follows:

�C(f )

(g − 1) · 80 · 213e54π
≤ �C(fg).

Remark 4.1. In the proof, all figures describe one specific example. Any choice
of α, β , γ , δ, and η works if it satisfies the condition we provide. That is,

• α and β are nonseparating and separating curves on S2, respectively, and are
disjoint;

• γ and δ are nonseparating simple closed curves that form a basis for the first
homology group of the component of S2 \ β disjoint from α;

• η is a nonseparating curve on S2 \ β with i(η,α) = 1.

Furthermore, if we modify the map on S2 to be f = TβT −1
φβ , then its lift via

pg+1 is Torelli, which gives another proof of LC(2g,g) � 1
g

.

5. Small Translation Length and Normal Generation

In this section, we discuss pseudo-Anosov mapping classes with small asymptotic
translation lengths and normal generation of mapping class groups. For a general
group G and g ∈ G, the normal closure 〈〈g 〉〉 of g is the smallest normal sub-
group of G containing g. The normal closure can be described in various ways:

〈〈g 〉〉 =
⋂

g∈N�G

N = 〈hgh−1 : h ∈ G〉.

In a particular case that 〈〈g 〉〉 = G, we say g normally generates G, and g is said
to be a normal generator of G.
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Normal generators of mapping class groups of surfaces have been studied by
various authors. In [Lon86], Long asked whether there is a pseudo-Anosov nor-
mal generator of a mapping class group. This question was recently answered
affirmatively by Lanier and Margalit in [LM22]. Indeed, they showed that there is
a universal constant so that pseudo-Anosovs with stretch factors less than the con-
stant should be normal generators. Then the asymptote LT (0, g) � 1/g by Penner
[Pen91] deduces the answer. Precisely, Lanier and Margalit proved the following.

Theorem 5.1 (Lanier–Margalit [LM22]). If a pseudo-Anosov φ ∈ Mod(Sg) has
the stretch factor less than

√
2, then φ normally generates Mod(Sg).

Since the logarithm of stretch factor of a pseudo-Anosov equals to the translation
length of the pseudo-Anosov on the Teichmüller space, Lanier and Margalit’s re-
sult also means that the small translation length on the Teichmüller space implies
the normal generation of the mapping class group. One natural question in this
philosophy is whether the same holds in the circumstance of curve complexes.
There are several ways to formalize this question:

(1) Is there a universal constant C > 0 so that if a pseudo-Anosov φ ∈ Mod(Sg)

has �C(φ) < C/g, then 〈〈φ 〉〉 = Mod(Sg)?
(2) Is there a universal constant C > 0 so that if a non-Torelli pseudo-Anosov

φ ∈ Mod(Sg) has �C(φ) < C/g, then 〈〈φ 〉〉 = Mod(Sg)?

Indeed, the first and the third authors of current paper, Kin and Shin, stated (1) in
[B+23, Question 1.2].

Remark 5.2. In the above questions, the factor 1/g is necessary since LC(2g,

g) � 1/g [BS20] and due to Theorem 1.6. Furthermore, we separately state above
two questions in order to forbid the trivial (Torelli) case in (2) and deal with the
same problem.

Proof of Theorem 1.6. The family of pseudo-Anosovs constructed in Theo-
rem 1.5 actually consists of non-normal generators, that is, 〈〈fg 〉〉 �= Mod(Sg).
To see this, recall that fg = T

p−1
g (β)

T −1
p−1

g (φβ)
T −1

p−1
g (φα)

. It can be rewritten as

fg = T
p−1

g (β)
(φ̃T −1

p−1
g (β)

φ̃−1)(φ̃T −1
p−1

g (α)
φ̃−1).

Hence, it follows that 〈〈fg 〉〉 ≤ 〈〈T
p−1

g (β)
, T

p−1
g (α)

〉〉, where the right-hand side

means the smallest normal subgroup containing T
p−1

g (β)
and T

p−1
g (α)

.

Since each component of p−1
g (β) is separating, T

p−1
g (β)

is Torelli, namely,

contained in the kernel of the symplectic representation Mod(Sg) → Sp(2g,Z).
Moreover, any two components of p−1

g (α) bound an essential subsurface, so they

are homologous, which means that T
p−1

g (α)
acts the same as T

g−1
α̃

on H1(Sg;Z).

As such, T
p−1

g (α)
acts trivially on the mod (g − 1) homology H1(Sg,Z/(g −

1)Z). Hence, we have that the symplectic representation of T
p−1

g (α)
is contained



940 H. Baik, D. M. Kim, & C. Wu

Figure 5 β and ξ fill the surface.

in the kernel of Sp(2g,Z) → Sp(2g,Z/(g −1)Z). Consequently, the normal clo-
sure 〈〈T

p−1
g (β)

, T
p−1

g (α)
〉〉 is contained in the kernel of the composition

Mod(Sg) → Sp(2g,Z) → Sp(2g,Z/(g − 1)Z),

which is surjective. It follows that

〈〈fg 〉〉 ≤ 〈〈T
p−1

g (β)
, T

p−1
g (α)

〉〉 �= Mod(Sg),

so fg is not a normal generator as desired.
Note that we have a concrete upper bound for �C(fg) in (4.2):

�C(fg) ≤ 2

� g−3
i(φβ,α)+i(φα,α)

� ≤ 2(i(φβ,α) + i(φα,α))

g − 3 − (i(φβ,α) + i(φα,α))
.

Hence, once we fix α, β , and φ, we get a quantitative restriction on the constant C

in the above questions. For instance, we can consider the configuration as in Fig-
ure 5.

Let λ = Tξβ . As β and ξ fill the surface S2, β and λ = Tξβ also fill the surface.
Since β is separating, λ = Tξβ is also separating. Hence, due to Penner [Pen88]
or Thurston [Thu88], φ = TλT

−1
β is a Torelli pseudo-Anosov. Furthermore, it fol-

lows that β and φβ also fill the surface. Therefore, we can construct fg as in
Theorem 1.5 starting with α, β , and φ depicted above.

Since i(ξ, β) = 6, i(λ,β) = i(Tξβ,β) = i(ξ, β)2 = 36 by [FM11, Proposi-
tion 3.2]. Now, from φα = Tλα and φβ = Tλβ , we have

i(φα,α) = i(Tλα,α) = i(λ,α)2 = 144,

i(φβ,α) = i(Tλβ,α) = i(λ,β)i(λ,α) = 432.

Hence, for the resulting fg ,

�C(fg) ≤ 1152

g − 579

for g > 579. Consequently, we conclude Theorem 1.6. �
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