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Minimal Asymptotic Translation Lengths on Curve
Complexes and Homology of Mapping Tori

HyuNGRrRYUL BAIK, DONGRYUL M. KiMm, & CHENXI WU

ABSTRACT. Let Sg be a closed orientable surface of genus g > 1.
Consider the minimal asymptotic translation length L4 (k, g) on the
Teichmiiller space of S, among pseudo-Anosov mapping classes
of Sp acting trivially on k-dimensional subspaces of Hj(Sg), 0 <
k < 2g. The asymptote of L7 (k, g) for extreme cases k =0, 2g have
been shown by several authors. Jordan Ellenberg asked whether there
is a lower bound for L(k, g) interpolating the known results on
L4(0, g) and L7(2g, g), which was affirmatively answered by Agol,
Leininger, and Margalit.

In this paper, we study an analogue of Ellenberg’s question, replac-
ing Teichmiiller spaces with curve complexes. We provide lower and
upper bound on the minimal asymptotic translation length Lz (k, g) on
the curve complex, whose lower bound interpolates the known results
on Le(0,g) and Le(2g, g).

Finally, for each g, we construct a non-Torelli pseudo-Anosov
fg € Mod(Sg) which does not normally generate Mod(Sg), so that
the asymptotic translation length of f, on the curve complex decays
faster than a constant multiple of 1/g as g — oco. From this, we pro-
vide a restriction on how small the asymptotic translation lengths on
curve complexes should be if the similar phenomenon as in the work
of Lanier and Margalit on Teichmiiller spaces holds for curve com-
plexes.

1. Introduction

Let S, be a closed connected orientable surface of genus g > 1, Mod(S,) be
its mapping class group, and C(S,) be its curve complex. Then Mod(Sy) iso-
metrically acts on C(Sg), hence the asymptotic translation length Lc(f) of f €
Mod(S,) on C(S,) is defined as follows:
de(x, f*
te(f) = limint 2 /700)
n—o0 n

for any x € C(Sy) where d¢ is the standard metric on C(Sg). The asymptotic
translation length is also called stable translation length.
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Note that Mod(S,) also acts on Hj(Sg), the first homology group of S, with
real coefficients. For f € Mod(S,), we denote the dimension of a maximal sub-
space of Hj(Sg) on which f is trivial by m(f). In particular, m(f) = 2¢g if and
only if f is in the Torelli group I, < Mod(S,), the subgroup consisting of ele-
ments that act trivially on H;(Sg). As an application of Mayer—Vietoris sequence,
one can observe that m( f) + 1 is the same as the first Betti number of the mapping
torus of f, which is hyperbolic if and only if f is pseudo-Anosov by Thurston
[ I

In this paper, we mainly study the minimal asymptotic translation lengths
among pseudo-Anosov mapping classes acting trivially on some subspaces of ho-
mology groups. Namely, for 0 < k <2g, we define

Le(k, g) :=inf{lc(f) : f € Mod(Sg), f is pseudo-Anosov, m(f) > k}.

Then we investigate asymptotes of L (k, g) with varying k and g.

By replacing the curve complex C(S,) with Teichmiiller space 7 (S,), one
can also define £7(-) and L7 (k, g) analogously. Note that £4( f) for a pseudo-
Anosov element f is the same as the logarithm of the stretch factor [ ], hence
coincides with the topological entropy of f [ Exposé Ten].

In each setting, there are two extreme cases: the first extreme is the case k =0
that the minimal asymptotic translation length is considered in the entire mapping
class group Mod(Sy). The other extreme is k = 2g, which means that the minimal
asymptotic translation length is considered in the Torelli subgroup T, < Mod(S,).
These four cases have been resolved by various authors as in Table 1.

Ellenberg [ ] asked if L7 (k, g) interpolates L7(0, g) and L+ (2g, g) in
the sense that there exists C > 0 such that

Lr(k,g)=Ck+1)/g (I.D
forall g > 1 and 0 < k < 2g. This was answered affirmatively by Agol, Leininger,
and Margalit in [ ]. Indeed, they actually showed L1 (k,g) < (k+1)/g.

We ask an analogous question whether L¢(k, g) interpolates L (0, g) and
Lc(2g, g) in a similar sense as Ellenberg’s question (1.1). We show that this is
indeed the case, and more concretely we obtain the following.

Table 1 Four extreme cases of L-(k, g) and L¢(k, g).

Teichmiiller spaces Curve complexes
Mod(S,) (Penner [ D (Gadre-Tsai [ D
L1(0,8)=<1/g Lc(0,8) < 1/g?
Z, (Farb—Leininger—Margalit (Baik—Shin [ 1))
[ DL7(2g 8 =1 Le(2g.8)=<1/g

1Throughout the paper, we write A(x) 2 B(x) if there exists a uniform constant C > 0 such
that A(x) < CB(x) for all x in the domain. We also write A(x) =< B(x) if A(x) 2 B(x)
and B(x) 2 A(x).
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THEOREM 1.1. There exist C,C’ > 0 such that
k+1
<Lc(k,g)<C’

g2g —k+1 — glogg
forallg >1and 0 <k <2g.

From the statement, if k grows at least 2g — C’ for some constant C’ > 0, then
Le(k, g) > 1/g while Le(0, g) < 1/g%. Observing this, we ask about minimal k
with L¢(k, g) < 1/g. For this discussion, see Section 4.

Although the lower bound in Theorem interpolates L (0, g) < 1/g2 and
Lc(2g, g) < 1/g, the upper bound in Theorem 1.1 does not interpolate these two

values well. Indeed, we construct some values of k and g showing that gklot;g is

larger than the actual asymptote. We also show that k /g2 works as an upper bound
for some choices of (k, g), which interpolates L¢ (0, g) < 1/g% and Lo (2g, g) =

1/g.

THEOREM 1.2. There is a uniform constant C > 0 satisfying the following: for any
integers g,k > 0, there exists a pseudo-Anosov f : Sy — S such that g’ > g,
m(f)=k' >k, and

/

k
le(f) =C—.
8

Applying Theorem inductively, it follows that there is a diverging sequence
(kj,gj) — cosothat Le(kj, gj) S kj/g?. See Corollary 3.1. Based on Table 1,
we conjecture that the upper bound in Theorem is actually the asymptote for
Le(k, ).

CONJECTURE 1.3. We have
k
Lok, g) = —
8
forg>1and 0 <k <2g.

We focus on specific dimensions of maximal invariant subspaces. In [ 1,
Torelli pseudo-Anosovs are constructed in a concrete way based on Penner’s or
Thurston’s construction. In a similar line of thought, we utilize finite cyclic cov-
ers of 5, so that we get pseudo-Anosovs f € Mod(Sg) with m(f) =2g — 1 and
satisfying the upper bound in Theorem [.2. As a consequence, this yields the
asymptote of L¢(2g — 1, g); only two extreme cases Mod(S,) and Z, were pre-
viously known. It is also interesting to figure out the asymptote L (k, g) for other
values (k, g):

QUESTION 1.4. Can we give a sequence (kj, g;), other than (0, g) and (2g, g),
with explicit asymptote for L¢(kj, g;) as j — oo?

We give one such example in the following.
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THEOREM 1.5. There exist a uniform constant C > 0 and pseudo-Anosovs f, €
Mod(Sg) such that
Cc

m(fg) =2¢—1 and EC(fg)Sg

for all g > 1. Moreover, the following asymptote holds:

1
Le(Qg—1,8) < —.
g

The construction involved in Theorem 1.5 can be modified to deal with the Torelli
case. Such a modification gives an asymptote for L (2g, g), which was already

shown by [ ] in a different way. See Remark 4.1. Further, only the last asser-
tion can also be deduced from Theorem and [ ]. See Section 4 for details.
In [ ], Lanier and Margalit showed that a pseudo-Anosov with small as-

ymptotic translation length on the Teichmiiller space has the entire mapping class
group as its normal closure. The first and the third authors, Kin, and Shin, made
an analogous question for asymptotic translation lengths on curve complexes in
[ ] (see [ Question 1.2]). We later show that pseudo-Anosovs f, con-
structed in Theorem 1.5 never normally generate the mapping class groups. Since
Lc(fg) is concretely estimated in Section 4, it provides how small the asymptotic
translation length should be to observe the similar phenomenon as in [ ].In
other words, we prove the following.

THEOREM 1.6. Suppose that there exists a universal constant C so that if a non-
Torelli pseudo-Anosov f € Mod(S,) has Lc(f) < C/g, then f normally gener-
ates Mod(Sy) for large g. Then

C <1,152.

Organization

In Section 2, we prove Theorem 1.1. Theorem is proved in Section 3. In
Section 4, explicit construction of pseudo-Anosovs realizing the asymptote of
Lc(2g — 1, g) is provided, implying Theorem 1.5. The discussion on small as-
ymptotic translation lengths on curve complexes and normal generation of map-
ping class groups is provided in Section 5.

2. Proof of Theorem

In this section, we prove Theorem

Lower Bound

The main idea of showing the lower bound is similar to the one used in the proof
in [ ] of L¢(2g, g) = C/g for some constant C > 0 and for all g > 1. First
note that for any homeomorphism f : S, — S,, the Lefschetz number L(f) is
2 —Tr(fs), where Tr(f;) is the trace of the induced map f : H1(Sg) — Hi(S,).
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Let us fix a pseudo-Anosov f : S, — S, whose restriction onto a k-
dimensional subspace of H(Sy) is the identity.
Fixing a suitable basis for H;(S,), the matrix for f; can be written as

Iy *

0 M)’
Suppose first that £ > 0. When k& is odd, let m = 2g — k, and when £ is even, let
m =2g — (k — 1). By taking the upper left block to be I;_; in case k is even,
one may assume M is an m x m square matrix with determinant 1 and m is odd

(determinant 1 comes from the fact that f is actually a symplectic matrix).
Recall that there is a relation between trace and determinant as follows.

Lemma 2.1 ([ Appendix B]). For any m x m matrix A,
Tr(A)
—1)"detA =
coraeas Y ()
Clyeees cm >0, =

c1+2cr++mey=m

Observe that at least one of the matrices M, M2, ..., M™ must have positive trace.
Otherwise the right-hand side of the equality in Lemma 2.1 is always nonnegative
when we plug in M in the place of A in the lemma. On the other hand, since
det(M) =1 and m is always odd by our choice, the left-hand side is —1, a con-
tradiction.

This implies that for some j satisfying 1 < j <m <2g —k+1, Tr(Mj) is
positive, that is, at least 1 since it is an integral matrix. Tr(f/) is the sum of
Tr(M/) and the trace of the upper left block, which is 2¢g — m > 1. Therefore,
Tr(f*]) is at least 2 in general. But in fact 2g — m > 3 as long as k > 3.

Assume k£ > 3. Now we have that L(fj) =2- Tr(f*J) < 0, and we can ap-
ply a result of Tsai [ ]. Then £c(f7) > C/g for some constant C > 0 and
consequently,

C
gRg—k+1)

Recall that Lc(0, g) =< 1/g>. Hence for each k > 0, there exists Cy such that
Lok, g) > ﬁ for all g > 1. Since the above argument works for any k >
3, replacing C by min{C, Cy, C1, C3}, we obtain the lower bound in Theorem

C
Kc(f)>—

Upper Bound

We now prove the upper bound provided in Theorem

Recall that the Teichmiiller space 7 (S,) is the space of marked hyperbolic
structures on S, and vertices of the curve complex C(S,) are isotopy classes of
essential simple closed curves on S,. Hence, we can associate each point x €
T (Sg) with systoles on S, the shortest simple closed geodesics, in the hyperbolic
structure x. Because systoles are within a uniformly bounded distance in the curve
complex, it gives a coarsely well-defined map g : 7(Sg) — C(Sg).
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Masur and Misnky studied 7, : 7(Sg) — C(Sg) in [ ] and showed that
g is coarsely Lipschitz.

PRrOPOSITION 2.2 ((K,, Dg)-coarsely Lipschitz, [ 1). There exist constants
K,, Dg > 0 such that for any x,y € T (Sg) we have

where d7 is the Teichmiiller metric.

Furthermore, 7, is coarsely Mod(S,)-equivariant in the sense that there exists a
constant A, such that d¢((7rg o f)(x), (f omg)(x)) < A, forany x € T(S,) and
f €Mod(Sg). Then, for f € Mod(S,), n >0, and x € T(S,), we have

de(mg(x), [ (g (X)) < dc(mg(x), e (f"(x))) + Ag
< Ked1(x, f"(x)) + Dg + Ag.
Hence, we now have the comparison between asymptotic translation lengths of
f € Mod(Sg) measured on C(S,) and T (S,):
Le(f) = Kl (f).
In particular, we have
Le(k,g) < KoL7(k, g). 2.1

Due to the work [ ] of Agol, Leininger, and Margalit, we already know
the asymptote of L7 (k, g). Hence, it remains to figure out the asymptote of K.

In[ ], Gadre, Hironaka, Kent, and Leininger considered the minimal pos-
sible Lipschitz constant K, which is defined as

kg :=1inf{Kg > 0: 7 is (Kg, Dg)-coarsely Lipschitz for some Dy > 0}.

Then they showed that
1
T logg’
Combining this with [ ] and inequality (2.1), we deduce the upper bound
in Theorem

Kg

3. Upper Bound Interpolates L:(0, g) and L¢c(2g, g)

The upper bound provided in Theorem does not interpolate L (0, g) and
Lc(2g, g), and it is not sharp enough as one can see in Section 4. As stated in
Theorem 1.2, the upper bound conjectured in Conjecture can be observed
along a certain sequence (k;, g;) — oo. This section is devoted to proving Theo-
rem

Proof of Theorem 1.2. Let fy be a pseudo-Anosov map in the Torelli group of
genus go > 1. Let M be its mapping torus, « € H' (M) be the first cohomology
class of M corresponding to fo, B be an element in H'(M), which is restricted
to a cohomology class dual to a simple closed curve y on Sg,. For large enough
n > g +k,let f, be the pseudo-Anosov monodromy corresponding to 2"« + S.
Then f, has the fiber of genus O (2"), and £¢(f,) is 0Q72m) (cf. [ D.
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A way to construct the surface S, and map f, corresponding to 2" +Bis
as follows: let S be the Z-fold cover corresponding to f restricted to S, f be a
lift of fp, and & be the deck transformation; then, with a suitable choice of f we
have S, = §/ (h* f) and f, is lifted to #. Now consider a simple closed curve on
a fundamental domain of S that is not homologous to the boundary, such that the
homology class c¢ represented by this curve y is preserved by f The existence of
such a homology class is due to the construction in Baik and Shin [ ]. Then

Y2~ fic i invariant und d for k <n, 1 —2’k1l2N
i_o Jfac is invariant under f,, and for k < n, let cx = Y ;_ fi% c. Now

k . . . . .
Span{ck, fuck,- .. fn2 ~ler} is a 2% dimensional invariant subspace of fn . This
proves Theorem 1.2. (]

Since the constant C in Theorem does not depend on the choice of given g

and k, we can apply the theorem inductively: at each jth step with g; and k;,

Theorem applied to g; and k; gives g’ > g;, k' > k;, and a pseudo-Anosov

fi+1:8g — Sgr with £e(fj41) < CK'/g'?. Thenweset gj+1:= g’ and kj41 :=
J J J' e j

k}. As a consequence, we obtain the following corollary that interpolates L (0, g)

[ Jand Lo (2g,2) [ ] in a partial way.

CoOROLLARY 3.1. There are a constant C and a diverging sequence (kj, g;) — 00
as j — oo such that

k]
J

Corollary can be regarded as an evidence for Conjecture because it has
a similar form to the desired asymptote. On the other hand, due to the inexplicit
choice made in the proof of Theorem 1.2, it is hard to explicitly understand from
which diverging sequence (k;, g;) we can deduce the desired asymptote. Hence
it may require different approaches to make a concrete progress towards Conjec-
ture

However, pseudo-Anosov mapping classes we construct in the later section
(Section 4) satisfy the asymptotes in Theorem and Corollary

4. Pseudo-Anosovs with Specified Invariant Homology Dimension

To the best of the authors’ knowledge, asymptotes of Lg(k, g) are known only
when k = 0 (whole mapping class groups) and k = 2g (Torelli groups). In this
section, we construct pseudo-Anosovs f, € Mod(S,) with m(f,) =2g — 1 and
realizing the asymptote of Lo(2g — 1, g).

From the definition of Le(k,g), Le(k,g) < Le(k',g) if k < k'. Since
Lc(2g,g) < 1/g from [ ], the lower bound in Theorem implies that
Le(k, g) < 1/g if k behaves like 2g; for instance, k > 2g — C for some constant
C > 0. However, Lc(0,g) =< 1/g% by [ ]. In this regard, we ask whether
there is a sort of threshold for k that L¢(k, g) becomes strictly smaller than 1/g,
such as 1/g2.



934 H. Baik, D. M. Kim, & C. Wu

Figure 1 g-fold finite cyclic covering.

As a potential approach for this question, we think of constructing pseudo-
Anosovs of specified maximal invariant homology dimensions on surfaces of
large genera with small asymptotic translation lengths. In order to get pseudo-
Anosov maps on surfaces of large genera, some previous results ([ ;

; ]) employ a fixed hyperbolic mapping torus and consider its mon-
odromy obtained from a fibered cone. Since the first Betti number of a mapping
torus of f is the same as m(f) 4+ 1, such monodromies in a fibered cone share the
same m-value.

In contrast, we come up with finite cyclic covers of a genus 2 surface to get
the desired pseudo-Anosov maps on large genera surfaces as lifts of a fixed map.
From the concrete estimation on how covering maps distort the distances on curve
complexes [ ], asymptotic translation length of the lift via degree g covering
would be at least 1/g, up to a constant multiple. We believe that constructing such
lifts with specified maximal invariant homology dimensions would help to figure
out the minimal k = k(g) with L¢(k, g) < 1/g.

We start with a nonseparating simple closed curve « on the genus 2 surface S,
and take g copies of S \ « for g > 1. Gluing two different copies of $> \ « along
one boundary component in a cyclic way, we obtain the finite cyclic cover pgy1
of degree g as in Figure 1. Let us denote the resulting cover by S, since it is of
genus g + 1.

This cover pg41 corresponds to the kernel of the composed map

i (-,a) mod g

m($H) —Z —>7Z/g7Z,
where zA'(~, -) stands for the algebraic intersection number. To see this, one can
observe that an element of 71 (S>) can be lifted to 771(Sg41) via pgq if and only
if its lift departs one copy of S> \ @ and then returns to the same copy. If the
lift departs and returns through the same boundary component of S, \ «, then
the element of 1 (S>) has the algebraic intersection number 0 with «. Otherwise,
if the lift departs and returns through different boundary components, then the
algebraic intersection number is an integer multiple of g.

In[ ], the first author and Shin directly constructed pseudo-Anosovs on S,
that are Torelli and of small asymptotic translation lengths on curve complexes.
In the following, we construct pseudo-Anosovs with specific maximal invariant
homology dimensions and satisfying the upper bound provided in Theorem
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Figure 2 A nonseparating curve o and a separating curve  on Sy
withaN B =0.

and Corollary 3.1. As a result, we obtain Theorem 1.5. Our strategy is to fix a
suitable pseudo-Anosov on S, and then to lift it via p,y1. Due to the symmetry
of the covering, we can find a number of invariant homology classes proportional
to the degree of the cover.

Proof of Theorem 1.5. The last assertion is a direct consequence of the first as-
sertion and Theorem |.1. By Theorem 1.1, there exists C’ > 0 so that Lo (2g — 1,
C/

g) > T for all g > 1. Hence, it remains to show the existence of the desired
pseudo-Anosovs.

Fix g > 1, and in the rest of the proof, we simply denote p := pg41. Leta be a
nonseparating curve on S, and let B be a separating curve on S disjoint from «.
Then each lift of 8 through p is also separating. For instance, see Figure 2.

Now let ¢ be a Torelli pseudo-Anosov mapping class in Mod(S2) such
that d¢ (B, ¢B) > 3. Note that this means that 8 and ¢f are separating sim-
ple closed curves on S, that fill the surface. Such a ¢ may be obtained as fol-
lows: let ¥ € Mod(S,) be a pseudo-Anosov mapping class. Since a pseudo-
Anosov mapping class acts on C(Sy) as a loxodromic isometry by [ 1,
limy,, oo dc (B, ¥"B)/n = £c(¥) > 0. Hence replacing ¢ with ¥" for some large
n if necessary, we may assume that dc (8, ¥8) > 3. We then consider a map-
ping class Tg T, }31 that is pseudo-Anosov by Thurston [ ] or Penner [ 1.

Again, since Tg Tw_ﬂl acts on C(S7) as a loxodromic isometry, we can set ¢ to

be some power of Tg Ty, ! 5o that ¢ is a pseudo-Anosov mapping class with the
property that d¢ (8, ¢B8) = 3.

Now let f =Tg T&; T¢_a]. Since B, ¢8, and ¢« fill the surface and ¢S N pao =
@, f is pseudo-Anosov again by Thurston [ ] and Penner [ ]. Since
B and ¢f are separating, Tg and T¢751 are Torelli, in particular, they preserve
the homology class [«] of «. Furthermore, since ¢ is Torelli, [¢pa] = [«], which
implies that T¢;1 also preserves [«]. Hence, f preserves [«], and thus f( fO),a)=

~ e d
i(-, ). In particular, f preserves the kernel of 71 (S>) M) 7 28 Z/g7.

Consequently, f can be lifted through p.

— -1 —1 . . . ~
Let f = TP*l(ﬁ)Tp‘l(W)Tp‘l(W) be a lift of f via p. We now estimate £¢(f).

Our strategy to obtain the desired upper bound for £¢( f) is to find a simple closed
curve @ such that & and its image under a sufficiently high power of f do not fill
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Figure 3 A curve intersecting a lift of the new curve (nonindexed
one) in some X sprea}ds into X j-1 UXjy1 by twist%ng along the lift.
It describes how the image of & under multitwists is trapped in the
certain number of lifts of a subsurface, as in (4.1).

the surface, which means that they are within distance 2 in the curve complex.
We do this by counting the number of intersections of images of & and lifts of
subsurfaces.

Recall the construction of p: take g copies X1, ..., X of $; \ & and glue X;
and X; 1 along one of their boundary components. Throughout, we write each
index i modulo g. Let & = dXo N dX;. Thatis, let @ be a boundary component of
Xo and X | where they are glued. Due to the construction, & is a lift of «.

Noting that f(d)a, a) = 0 since ¢ is Torelli, we get

i(pa,a)/2
X, 4.1
j=—i(¢a,0)/2
where i(-,-) is the geometric intersection number (cf. Figure 3). Similarly,
i(¢B,a) =0 and

-1

Tp"(m)a

IN

i ti(gae)
—1 —1 ~
T T ac U X;.
p~l@B) ple)” = g
. i(@Ba)ti(pa,a)
J=E 7
Since Tp—l(ﬁ) fixes each X ;, we have
i@ tigare)
Fa C U X;.
. i(@B)ti(pa,a)
J===7
Conducting this procedure inductively, we finally get
n- i(¢ﬁva)-§i(¢a,a)
j=—n- i(¢ﬁva)-§i(¢a,a)

~ ~ 82 -
Hence, for large enough g, there exists j such that f lieparrivanla N X = 0.
Since there exists an essential simple closed curve in X i which is a 2-holed torus,

~ g2 " 82 .. .
we have de (@, fLi@ﬂﬂHi(w»a)Ja) <2s0 €C(fL'<¢ﬁva>+l<¢ava>J) < 2. This implies the
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Figure 4 Basis for H|(Sg1).

following estimate. Note that ¢, i(¢8, @), and i (¢, ) are universal quantities
independent on p and g.

2 2
te(f) s ————— (42)

@B TG ]

We now show that m(f) = 2g + 1. Recall that 8 C S is a separating curve
and o C 7 is a nonseparating curve disjoint from 8. Temporarily, let us denote
by Y the component of $; \ B that does not contain «. Let y and § be nonseparat-
ing simple closed curves whose homology classes form a basis for H;(Y) = R?.
Let us also denote n to be a nonseparating curve on S; \ 8 with i(n, @) = 1.
Then p~'(y), p~1(8), p~'(»), and one component of p~! () form a basis for
Hi(Sg41) = R*¢+2. See Figure 4 for instance.

Let 7; = p~ ()N X}, §; = p~'(6) N X;, and 7j = p~' (). Further, let & =
9Xo N X1, which is a component of p~!(«). Since ¢ is Torelli, it has a lift é
through p. Hence, homology classes {[(5)7/], [&g./], [q;ﬁ], [(;3&]} also form a basis
for Hi(Sg+1).

Recall that f =T _1(,3)T 1(¢/3)Tp e Since y N (¢ U B) = (J, we have

¢y, N (p~pa) N p’l(qﬁﬁ)) = (). Here, note that ¢~5)7j is a lift of ¢y which is
a component of p~!(¢y). Hence it follows that [f~¢~>)7]] =17, 1(/3)(13)7]] Since
each component of p~!(8), which is a lift of 8, is separating, T »-1(p) 18 Torelli.

As a result, [fq&yj] = [qbyj] Slmllarly, we have [f¢>8 1= ¢8 1.
Now we consider [f¢a] Since ¢a is a lift of ¢a, T ,1(¢a)¢>& = ¢&. Fur-
thermore, smce a N B =10, ¢a, alift of pa, does not intersect p~—! (¢p). It im-
plies that T ,1 ( ¢ﬁ)¢>a = ¢a. Finally, since 7,14, is Torelli again, we conclude
[féal= [¢0t]
So far, we have proved m( f )>2g+ 1. Suppose to the contrary that m(f )
2¢ +2, Wthh means that f is Torelli. Then f $7 should be homologous to ¢7j.

It implies [T 71(@3) - l(¢a)¢n] [qbn] since Tp—l(ﬁ) is Torelli. Because any two
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components of p~!(¢a) bound a subsurface, they are homologous. In particu-
lar, since @ is a component of p~!(¢a), each of its components is homologous

to ¢&. Hence, [T —‘(qbﬂ)Tp—‘(qba)‘l;”] (T —'(¢,3) o —$47). Noting that T_ %7 can

be isotoped into arbitrary neighborhood of & U7, Tngbn can also be isotoped into

arbitrary neighborhood of (5& U (;Sﬁ Since ¢pa U @7 and p~ ! (¢B) are disjoint com-

pact sets, we have T _ ,1 @B) ¢ Spi = TT&gq;ﬁ. Summing up the above argument,
we obtain
e 7 -1 %4 T 867

where the first equality is the assumption. However,
T35 b1 = 167] — g -1 (®7. @) prl.

which implies that f((j;ﬁ, $a) = 0. It contradicts our choice of 7 that i (7, &) = 1.
Therefore, m(f) =2g+1. Setting fo1 = f completes the proof of Theorem

O
The lower bound on £¢( f) for f, constructed in the proof can also be calculated
in a concrete way by Aougab, Patel, and Taylor [ ] as follows:
be(f)
< ZC (fg)

(g—1)-80- 28357

REMARK 4.1. In the proof, all figures describe one specific example. Any choice

of o, B, v, &, and n works if it satisfies the condition we provide. That is,

e « and B are nonseparating and separating curves on S, respectively, and are
disjoint;

e y and § are nonseparating simple closed curves that form a basis for the first
homology group of the component of S \ B disjoint from «;

e 1) is a nonseparating curve on S, \ g withi(n,a) = 1.

Furthermore, if we modify the map on S to be f = Tﬁ w , then its lift via
Pg+1 is Torelli, which gives another proof of L¢(2g, g) < §'

5. Small Translation Length and Normal Generation

In this section, we discuss pseudo-Anosov mapping classes with small asymptotic
translation lengths and normal generation of mapping class groups. For a general
group G and g € G, the normal closure ({g)) of g is the smallest normal sub-
group of G containing g. The normal closure can be described in various ways:

() N=(hgh™':heG).
geN<G

In a particular case that (( g )) = G, we say g normally generates G, and g is said
to be a normal generator of G.
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Normal generators of mapping class groups of surfaces have been studied by
various authors. In [ ], Long asked whether there is a pseudo-Anosov nor-
mal generator of a mapping class group. This question was recently answered
affirmatively by Lanier and Margalit in [ ]. Indeed, they showed that there is
a universal constant so that pseudo-Anosovs with stretch factors less than the con-
stant should be normal generators. Then the asymptote L7 (0, g) < 1/g by Penner
[ ] deduces the answer. Precisely, Lanier and Margalit proved the following.

THEOREM 5.1 (Lanier—Margalit [ 1. If a pseudo-Anosov ¢ € Mod(S,) has
the stretch factor less than ~/2, then ¢ normally generates Mod(Sg).

Since the logarithm of stretch factor of a pseudo-Anosov equals to the translation
length of the pseudo-Anosov on the Teichmiiller space, Lanier and Margalit’s re-
sult also means that the small translation length on the Teichmiiller space implies
the normal generation of the mapping class group. One natural question in this
philosophy is whether the same holds in the circumstance of curve complexes.
There are several ways to formalize this question:

(1) Is there a universal constant C > O so that if a pseudo-Anosov ¢ € Mod(S,)
has £¢(¢) < C/g, then ({(¢)) = Mod(Sg)?

(2) Is there a universal constant C > 0 so that if a non-Torelli pseudo-Anosov
¢ € Mod(S,) has £c(¢p) < C/g, then ((¢)) =Mod(S,)?

Indeed, the first and the third authors of current paper, Kin and Shin, stated (1) in
[ Question 1.2].

REMARK 5.2. In the above questions, the factor 1/g is necessary since L¢(2g,
g =1/gl ] and due to Theorem |.6. Furthermore, we separately state above
two questions in order to forbid the trivial (Torelli) case in (2) and deal with the
same problem.

Proof of Theorem 1.6. The family of pseudo-Anosovs constructed in Theo-
rem actually consists of non- normal generators that is, (( fg)) # Mod(Sy).
To see this, recall that f, = T -1 _1 T~ _1 . It can be rewritten as

S pe @B) pg (o)’

-1
fe =Ty @T A, 3 HG@T

Hence, it follows that ({ f,)) < ({(T il (B) T P (@) )), where the right-hand side
means the smallest normal subgroup containing T S and T )

o h.

Since each component of p, L(B) is separatmg, i) is Torelli, namely,
contained in the kernel of the symplectic representation Mod(S,) — Sp(2g, Z).
Moreover, any two components of p,’ !(«) bound an essential subsurface, so they
are homologous, which means that T 7' (@) acts the same as T~ ~Lon H(Sg: Z).
As such, T ' (@) acts trivially on the mod (g — 1) homology H((Sq,Z /(g —
1)7Z). Hence we have that the symplectic representation of T i@ is contained
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Figure 5 g and & fill the surface.

in the kernel of Sp(2g, Z) — Sp(2g, Z /(g — 1) Z). Consequently, the normal clo-

sure (( Tpg‘ )’ Tp;‘ @) )) is contained in the kernel of the composition

Mod(Sg) — Sp(2g,Z) — Sp(28,Z /(¢ — 1) Z),
which is surjective. It follows that
() = U Ty Tt g ) # Mod(Sy),

so fg is not a normal generator as desired.
Note that we have a concrete upper bound for £¢(f,) in (4.2):

2 - 2¢B o) +i(da, @)

¢ .
C(fg)f mj T g-3—-((¢B,a) +i(pa,a))

Hence, once we fix «, 8, and ¢, we get a quantitative restriction on the constant C
in the above questions. For instance, we can consider the configuration as in Fig-
ure 5.
Let A = T¢ 8. As B and & fill the surface S», B and A = T B also fill the surface.
Since B is separating, A = T¢ 8 is also separating. Hence, due to Penner [ ]
or Thurston [ l,o=T, Tﬁ_l is a Torelli pseudo-Anosov. Furthermore, it fol-
lows that B and ¢B also fill the surface. Therefore, we can construct f, as in
Theorem starting with «, B, and ¢ depicted above.

Since i(§,8) =6, i(A, B) =i(T:B,B) = 1’(5,,3)2 =36 by [ Proposi-
tion 3.2]. Now, from ¢ = T)« and ¢8 = T, B, we have

i(po, ) =i(Too, ) =i(h, @) = 144,
(@B, a) =i(T,B,a) =i(A, B)i(A, ) =432.
Hence, for the resulting f,,

1152
g—579

for g > 579. Consequently, we conclude Theorem 1.6. U

be(fe) =
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