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ABSTRACT. Let M be a geometrically finite hyperbolic 3-manifold whose
limit set is a round Sierpinski gasket, i.e. M is geometrically finite and
acylindrical with a compact, totally geodesic convex core boundary. In
this paper, we classify orbit closures of the 1-dimensional horocycle flow
on the frame bundle of M. As a result, the closure of a horocycle in M is
a properly immersed submanifold. This extends the work of McMullen-
Mohammadi-Oh where M is further assumed to be convex cocompact.

1. INTRODUCTION

Let M be a complete hyperbolic 3-manifold, and let x C M be an isometri-
cally immersed copy of R with torsion zero and geodesic curvature 1, referred
to as a I-dimensional horocycle or simply a horocycle. Shah [14] and Ratner
[13] classified the closure ¥ C M in the case Vol(M) < oo, proving that X is
a properly immersed submanifold of M. This classification was generalized
to infinite-volume hyperbolic 3-manifolds by McMullen-Mohammadi-Oh in
[9], where they considered convex cocompact hyperbolic 3-manifolds with
round Sierpinski limit sets.

We call M convex cocompact if its convex core core(M) is compact, and
geometrically finite if the unit neighborhood of core(M) has finite volume.
We say that M has a round Sierpiriski limit set if the limit set A C C of the
Kleinian group 71(M) < PSLy(C) is a round Sierpinski gasket, i.e.,
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is a countable union of round open disks B; C C with disjoint closures (see
Figure .

A geometrically finite hyperbolic 3-manifold M has a round Sierpinski
limit set if and only if core(M) has a non-empty interior and a compact,
totally geodesic boundary. Moreover, such M is acylindricaﬂ and has no
rank-1 cusps (Lemma [3.1). Indeed, as shown by Thurston [I5] and Mec-
Mullen [8, Corollary 4.3], every geometrically finite, acylindrical hyperbolic
3-manifold M with compact 0 core(M) is quasiconformally conjugate to a
unique one with a round Sierpinski limit set.

1A 3-manifold is called acylindrical if its compact core (also called Scott core) has
incompressible boundary and every essential cylinder therein is boundary-parallel.
1
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F1GURE 1. A round Sierpiriski limit set with rank-2 para-
bolic limit points, drawn on C — {oo}. The point oo is also a
parabolic limit point.

Convex cocompact hyperbolic 3-manifolds with round Sierpinski limit sets
have been the only known infinite-volume examples where the topological
behavior of closures of horocycles is fully understood [9]. In this paper, we
extend the classification to geometrically finite 3-manifolds:

Theorem 1.1. Let M be a geometrically finite hyperbolic 3-manifold with a
round Sierpinski limit set. For any I-dimensional horocycle x C M, one of
the following holds:

(1) x =X is closed.

(2) X is a 2-dimensional compact horosphere.

(3) X is a properly immersed 2-manifold, parallel to a totally geodesic

surface S C M.
(4) X is the entire 3-manifold M.

Horocycle flows on frame bundles. As in [9], Theorem is a con-
sequence of the classification of orbit closures of the horocycle flow on the
frame bundle of M. To be precise, let G = PSLy(C) = Isom™(H?) and
consider the following subgroups:

H = PSLy(R), N = {nZZG) 'i) :ZG(C},
U={ns:seR}, and V ={n;s:seR}.

2Image credit: Yongquan Zhang
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For a hyperbolic 3-manifold M = I'\H? with an associated Kleinian group
I' < G, we have the identification of its frame bundle FM with I'\G:

FM =T\G.

Then every (oriented) horocycle x C M lifts uniquely to a U-orbit U C FM
for some x € FM and vice versa.
We denote by

RF,M C FM

the set of all frames directed toward core(M) under the frame flow; that is,
their forward trajectories project to geodesic rays in M that remain within
a bounded distance of core(M). For a precise definition, see (3.1)). This set
RF M is U-invariant, and any U-orbit outside RF M is a properly immersed
copy of R. Hence, interesting dynamics appear only within RF; M. We now
state our classification of U-orbit closures in FM.

Theorem 1.2. Let M be a geometrically finite hyperbolic 3-manifold with a
round Sierpiriski limit set. Then for any x € FM, one of the following holds:

(1) 2U is closed.

(2) 2U = =N which is compact.

(3) 2U = xvHv ' NRF M for some v € V.
(4) 2U = RF M.

Note that N-orbits and H-orbits in FM project to 2-dimensional horo-
spheres in M and the images of totally geodesic immersions of a hyperbolic
plane into M, respectively. In particular, a compact N-orbit in FM corre-
sponds to a compact horosphere in M, and a closed H-orbit in FM corre-
sponds to a totally geodesic plane in M. Therefore, Theorem follows
from Theorem .2

When M is convex cocompact, Thoerem was proved by McMullen-
Mohammadi-Oh [9] and (2) does not occur in that case. This was extended
by Lee-Oh [7] to higher-dimensional convex cocompact hyperbolic manifolds
whose convex cores have non-empty interiors and totally geodesic bound-
aries. In their work, they classified orbit closures of any connected, closed
subgroup of SO°(n,1) = Isom™ (H") generated by unipotent elements.

Remark 1.3. We emphasize that U < G is a non-mazrimal unipotent sub-
group, i.e. U is not a horospherical subgroup of G. This non-maximality
introduces a fundamental difficulty in studying behavior of U-orbits. For
these reasons, manifolds with round Sierpiriski limit sets, or equivalently,
convex cores with compact, totally geodesic boundaries, were considered in
[9] and [7] as well as in this paper.

Indeed, the orbit closure of a horospherical subgroup has been classified
for any geometrically finite hyperbolic manifold by Dal’bo [2], Ferte [4], and
Winter [I7], without requiring any additional geometric assumption.
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On the proof. We briefly outline our strategy. We adapt the idea of
McMullen-Mohammadi-Oh [9], which uses the classification of closures of
geodesic planes to classify closures of horocycles, to our setting. On the
other hand, the presence of cusps poses an obstacle to directly applying the
arguments in [9]. To address this, we incorporate techniques developed by
Dani-Margulis [3] and Shah [14] as well as the specific features of a limit set,
which ensure that every compact horocycle is contained within a compact
horosphere.

Given a horocycle x C M, we assume that y is neither closed nor is its
closure X a compact horosphere. We then show that its closure  is a surface
parallel to a closed geodesic plane or equal to M. Our proof proceeds in two
major steps:

The first step is to prove that, under the given hypothesis, ¥ contains a
surface in M equidistant from a geodesic plane (Proposition. This step
relies on the classification of closures of geodesic planes by Benoist-Oh [IJ.
To achieve this, we consider the following two cases:

(a) X contains a compact horocycle xo C M;
(b) X does not contain any compact horocycle in M.

A key observation in handling case (a) is that every compact horocycle
is contained in a compact horosphere due to the specific feature of a limit
set. Using the unipotent blowup developed in ([3], [14]), we scatter xo
along geodesics or horospheres and deduce that Y contains either a surface
or a compact horosphere (Corollary . Then employing the expansion
of horospheres, we obtain that % always contains a surface (Theorem [8.1).
We remark that this is the place where the presence of cusp introduces an
obstruction to directly adapting the arguments in [9].

To address case (b), we utilize the notion of relatively U-minimal sets
introduced in [10]. As shown in [I], horocycles in M exhibit recurrence to
certain compact subsets. Based on the recurrence, we adapt the approach
of [9] to our setting and show that  is scattered along a geodesic ray or a
horosphere (Lemma . From this, we deduce that X contains a surface
(Theorem [9.1)).

As the second step, we show that if ¥ contains a surface in M, then either
X is entirely contained within the surface, or the surface is scattered along a
horosphere within %, from which the conclusion follows. In this step, we use
the recurrence properties of horocycles established in [I] and the unipotent
blowup for such horocycles ([10], [9]).

Geodesic planes. As mentioned above, we heavily use Besnoist-Oh’s clas-
sification of closures of geodesic planes [I] to classify closures of horocycles.
For other works classifying closures of geodesic planes in infinite-volume
hyperbolic manifolds, see ([10], [7], [11], [18], [I], [6], [16], [5]).
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Open question. It is an open question whether a similar classification of
closures of horocycles holds for a general geometrically finite (acylindrical)
hyperbolic 3-manifold.

Structure of the paper.

e In Section [2] and Section [3, we fix notations and terminologies used
throughout the paper.
— Section [2|is about subgroups of PSLy(C), and
— Section [3] is about Kleinian groups and geometrically finite 3-
manifolds.

e Section 4] is devoted to the recurrence of horocycle flows and the
unipotent blowup lemmas.

e In Section [5] we explain the expansion of horospheres and deduce
properties of horocycles contained in an expanding sequence of horo-
spheres by applying unipotent blowup.

e Closed geodesic planes and the horocycles contained within them are
discussed in Section [6l

e In Section [7], we prove Theorem for the closure of a horocycle
that contains a closed geodesic plane.

e In Section [§] we classify closures of horocycles intersecting compact
horospheres.

e The classification of closures of horocycles that do not contain any
compact horocycle is addressed in Section [9}

e Finally, we prove Theorem in Section

Acknowledgements. We thank our advisor, Professor Hee Oh, for intro-
ducing us to this topic, suggesting this problem, and providing invaluable
inspiration, insightful discussions, and many helpful comments on earlier
drafts of this paper. We also thank Yongquan Zhang for providing us with
a beautiful image (Figure . Finally, we thank the referee for their helpful
comments and their careful reading of the original manuscript.

2. SUBGROUPS OF PSLy(C)

In this section, we introduce basic notions and fix notations for subgroups
of PSL(C) that we use throughout the paper. We mainly use the upper
half-space model for the hyperbolic 3-space H? = {(z,t) € C x R : t > 0}
whose boundary is the Riemann sphere C=Cu {oc}. We fix a basepoint
o = (0,1) € H3. The group of orientation-preserving isometries on H? is
identified with PSL2(C), and its action on H? extends to a conformal action
of PSLy(C) on C given by linear fractional transformations. Including the
ones in the introduction, we fix the following notations for subgroups of
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PSLQ(C)
G := PSLy(C)
K := stabg(o) = PSU(2)
H ={<‘c‘ Z)EG:a,b,c,deR}%PSLQ(R)
et/? 0
aimfui= (G 0n) 02}
i0/2
21 M= {ap= (60 ?9/2> .0 € R} = PSU(1) = §!
1 z
N.:{nz.:(o 1) zeC}
0= {uri= g ) oemf<w
= Y Ug = 0 1 s € <
V‘—{ '—<1 i5>' G]R}<N
=si=lg 1)

We then have the identification
G/K =H® and G/MAN =C

where identity cosets K € G/K and MAN € G/M AN correspond to o € H3
and oo € C respectively. Moreover, equipping G/K and G/M AN with the
left-multiplications by G, the above identifications are G-equivariant.

Let R = RU{cc} C C be the standard circle given by the real axis. Then
H is the orientation-preserving stabilizer of Rin G. In addition, R is the
boundary of the H?-copy in H? invariant under H. Observes also that

AU C H.

Note that A and M commute, and U and V commute. For a subgroup
S < G, we denote by N (S) < G the subgroup consisting of the normalizers
of S in G. Then

AM C Ng(N), AV CNg(U), and AU C Ng(V).
Moreover, for n, € N, we have
at_lnzat =Nyt —+ € ast— +00.

Throughout the paper, we use the notations a;, n,, us, ut, vs, and v
to represent matrices as defined in . Abusing notations, we occasion-
ally use an, uy, or v, to represent sequences in A, U, or V respectively,
where n serves as an index rather than a matrix value. When sequences
explicitly track the values of matrices, we use sequences in R and nota-
tions in . For example, we take a sequence t, € R and consider

tn/2

e 0
atn - ( O eit”/2> (S A
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Frame bundle. Denote by FH? the frame bundle over H?, the space of all
(positively oriented, orthonormal) frames on H3. The induced action of G
on FH? is transitive, and hence we identify

G = FH?

so that the quotient map G — G/K becomes the basepoint projection
FH?® — H?, and the right-multiplication by A and U give the (geodesic)
frame flow and horocycle flow on FH?, in directions of the first and the
second components of a frame respectively.

For g € G, let

gt i=g(x) € C and ¢ := g(0) € C.

Via the map G — G/K, the orbit gA projects to the bi-infinite geodesic
gAo C H? with endpoints g+ € C. Similarly, the orbit g - {a; € A:t > O}
projects to the geodesic ray in H? based at go € H? and toward g € C.
Moreover, noting that N < G projects to the horizontal plane No = {(z,1) €
H?:z e C}, the orbit gNo C H? is the horosphere passing through go € H?
and resting at g € C. For each n € N, the frame gn 1s based at the
horosphere gNo and its first component is toward (gn)™ = gt € C.

Finally, Ho C H? is the oriented copy of H? whose boundary is RcC
and H corresponds to the set of all frames whose first two components are
restricted to positively oriented frames on the geodesic plane Ho. Hence,
gHo C H? is the geodesic plane spanned by the first two components of the
frame g € G and gH is the set of all frames whose first two components
are restricted to positively oriented frames on gHo. The boundary of the
geodesic plane gHo is the circle gR = {ght € C:he H}.

3. HYPERBOLIC 3-MANIFOLDS

A discrete subgroup I' < G is called a Kleinian group, and the quotient
M := I'\H? is a complete hyperbolic orbifold (manifold if T is torsion-free).
We denote by A C C the limit set of I', which is defined as the set of
accumulation points of 'o € H? in the compactification H? U C. When
#A > 3, T is called non-elementary. In this case, the I'-action on A is
minimal and #A = co.

The convex core of M is defined as

core(M) :=T'\ hull(A) c M

where hull(A) C H? is the convex hull of A in H3. We call T and M geomet-
rically finite if the unit neighborhood of core(M) has finite volume.

In this paper, we are interested in a geometrically finite Kleinian group I'
such that A is the round Sierpinski gasket. In other words,

@—A:GBi
=1
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is a countable union of round open disks B; C C with disjoint closures
(Figure [I). It is clear from the definition that I' is non-elementary, and
moreover Zariski dense in G =2 SO°(3,1). We say that such I" and M = I'\H3
have round Sierpinski limit set.

We remark that these conditions imply that M is acylindrical in the sense
of [15], and O core(M) is compact and totally geodesic. Indeed, every geomet-
rically finite, acylindrical hyperbolic 3-manifold M with 0 core(M) compact
is a quasiconformal deformation of a unique geometrically finite hyperbolic
3-manifold with a round Sierpiriski limit set ([I5], [8, Corollary 4.3]).

Conical and parabolic limit points. Let I' < G be a Kleinian group with
the limit set A ¢ C. A limit point x € A is called conical if any geodesic
ray in H? toward x has an accumulation point in the quotient M = I'\H3
and parabolic if x is fixed by a parabolic element of I, an element conjugate

to <(1] 1) For a parabolic limit point € A, its stabilizer stabp(z) in I’

is virtually abelian, and its rank is called rank of x and is either 1 or 2. A
parabolic limit point x € A is called bounded parabolic if the stabp(z)-action
on A — {z} is cocompact.

When T is geometrically finite, the limit set A is a disjoint union of conical
limit points and bounded parabolic limit points. Moreover, there are finitely
many bounded parabolic limit points x1,--- ,x, € A so that

n
A = {conical limit points} U U ;.
i=1

In particular, there are at most countably many parabolic limit points.

Lemma 3.1 (cf. [I, Lemma 11.2]). Let I' < G be geometrically finite with
a round Sierpinski limit set A. Then every parabolic limit point is of rank

2.

Proof. Suppose that there exists a parabolic limit point of rank 1, say co € A
without loss of generality. Since I' is geometrically finite, oo is bounded par-
abolic, and hence stabr(co) acts cocompactly on A — {oco}. Since stabr(oo)
is virtually conjugate to the subgroup ((1) ?), there are two parallel lines
Ly, Ly C C such that A—{oo} is contained in the region bounded by L; and
Ls. Then there exist two components B, By C C — A such that 1 C B
and Lo C Bs. Since A — {oo} is bounded by L; and Lo, By # By. On the

other hand since L1 and L9 are lines in (C their closures in the Riemann
sphere C are circles passing through oo € (C and hence By N By # (. This
contradicts the hypothesis that A is a round Sierpinski limit set. U

Renormalized frame bundle. Let I' < G be a Kleinian group and M :=
I'\G. Since the identification FH?® = G is G-equivariant, this induces the
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identification of the frame bundle FM of M with I'\G:
FM = I'\G.

Then frame flow and horocycle flow on FH? descend to FM and they are
given as the right-multiplications of A and U on I'\G respectively. We
denote by the projection

m:I\G - T'\G/K

which is the basepoint projection FM — M. Throughout the paper, we
denote by [g] € I'\G the coset I'g for g € G, and we refer to elements of I'\G
and G as frames in M and H3, respectively.

Interesting dynamics arise in certain subsets of FM. We define the renor-
malized frame bundle over M as

RFM := {[¢g] e T\G : g* € A} C FM.

This is the closed set consisting of all frames in M whose orbits under the
frame flow are based at core(M). It is clear that RFM is AM-invariant. We
also set

(3.1) RF,M:=RFM-N = {[g] e T\G : g7 € A}
which is M AN-invariant. The projection 7|gr, M : RE4M — M is surjective.

Boundary frames. In the rest of the section, let I' < G be a geometrically
finite Kleinian group with a round Sierpiriski limit set, and M := T'\G. Since
d core(M) is totally geodesic and compact, there are finitely many elements
21, ,2n, € T'\G with compact H-orbits so that the set of frames whose
first two components are tangent to d core(M) is equal to |J;—, zH C I'\G.
We set

n
(3.2) BFM := | J z:H
i=1
and call boundary frames. Note that BFM C RFM and BFM - H = BFM.
Due to the specific feature of the limit set A, we observe the following:

Lemma 3.2. For any x € RFLM,
x€RFM-U or ze€BFM.V.

Proof. Let © = [g] € RFLM — RFM - U for g € G. Then for any u € U,
(gu)~ ¢ A since (gu)™ = gt € A. Then the set {(gu)” : v € U} is a
connected subset of C — A, and hence for some component €y of C - A,
{(gu)” :u e U} C Qp and g* € 9Qp. Then {g7} U{(gu)™ : u € U} is the
round circle in Qg tangent to 9y at g*. This implies that for some v € V,
{97y U{(gvu)”™ : u € U} = 9Qp. Noting that (gv)™ = gT, it follows that
xv = [gv] € BFM. O

Proposition 3.3. [9, Theorem 4.1] Let x,, € REM - U be a sequence such
that x, -y € RFM as n — oo.
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(1) if y & BEM, then there exists a sequence u, — e in U such that
Tn, € REM for alln > 1. In particular, z,u, — y as n — oo.

(2) if y € BEM, then passing to a subsequence of x,, there exists a
sequence u, € U such that x,u, € RFM and x,u, converges to an
element of BEM as n — oo, which is potentially different from y.

Proof. This was proved in [9] under an extra assumption that M is convex
cocompact. On the other hand, the proof only uses the fact that A is a
round Sierpiriski gasket. Therefore, the same proof works verbatim in our
setting. ([

Volume of horospheres. Since every parabolic limit point is of rank two
(Lemma , every compact U-orbit in I'\G is contained in a compact N-
orbit (Lemma. This observation is useful in our classification of closures
of horocycles.

Let € I'\G be such that N is compact. We denote by V(x) the volume
of x N with respect to the Haar measure of N. We then have

(3.3) V(zam) = e ?V(z) for all t € R, n € N.
For each £ > 0, we define the following closed subsets of I'\G:
F¢(N):={2 € '\G : N is compact and V(z) < £}
Fg = Fg(N) - K.

Geometrically, the set F¢(IN) consists of frames tangent to horospheres in
a horoball, while F¢ consists of all frames based in the horoball. Note that
71 (core(M)) —int(F) is a compact subset of I'\G, since M is geometrically
finite and every parabolic limit point is of rank 2 (Lemma .

Cusp neighborhoods. For an (open) horoball 4 in H? and p > 0, let , C 4
be the horoball in £ with distance p from 94. Since M is geometrically finite,

there exists £y > 0 and finitely many horoballs 4!, - -- | A* C H? with disjoint
closures so that

(3.4) int(m(Fy,)) = | JT#
=1

where T'A" C M is the image of A* under the quotient map H? — M. Fixing
such &y > 0 and A*’s, we simply write

H = int(Fg,) = {a: e'\G:7n(z) € CJ Fﬁl}
i=1

For p > 0, we similarly define

H, = {xEI‘\G:W(x) < Orﬁ;}.
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Since every parabolic limit point is of rank two (Lemma, it follows from
that
(3.5) H, = int(F-20¢,, ).
We also define
W, := RFM — #,
which is a compact subset of I'\G. Note that Wy = RFM — #{.

4. RECURRENCE OF HOROCYCLE FLOWS AND UNIPOTENT BLOWUP

Let I' < G be a geometrically finite Kleinian group with a round Sierpinski
limit set and M = I'\H3. In this section, we discuss recurrence of horocycle
flows on FM, i.e., U-action on I'\G. We also collect lemmas concerning
the sequence of non-trivial elements in the double coset space S\G/U that
converges to the identity coset where S = U, N, or H. In [I0], they were
referred to as “unipotent blowup”.

Recurrence of horocycle flows. To study the recurrence, we use the
notion of thickness.

Definition 4.1 (Thickness). Let £ > 1 and T'C R. We say that
o T is k-thick if
TN ([—ks,—s]U[s,ks]) 0 for all s > 0;
e T'is k-thick at oo if there exists s > 0 such that
TN ([—ks,—s]U[s,ks]) #0 for all s > sp.
Recall from that

U:{ut:<(1) i):tGR} and V:{’Ut:<(1) Zf):tE]R}.

Via the maps u; <> t and vy <> t, we identify U and V with R and define
the thickness of subsets of U and V as well: 7' C U is called k-thick (resp.
k-thick at oo) if {t € R : u; € T'} is k-thick (resp. k-thick at co). Similarly,
T C V is called k-thick (resp. k-thick at oo) if {t € R : v, € T} is k-thick
(resp. k-thick at co).

We use the term “thickness” for subsets of R, U, and V', with the specific
choice made for convenience in each context. In many cases, we measure
the thickness of the recurrence time for horocycle flows.

Definition 4.2 (Recurrence time). For z € I'\G and W C I'\G, set
Tw(z) ={uelU:zuec W}

The following recurrence of horocycle flows was established by McMullen-
Mohammadi-Oh:

Proposition 4.3. [10, Lemma 9.2] There exists ky > 1 depending only on
M such that for all x € RFM, the set Trpm(x) is km-thick.
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Proof. The proposition is stated in [I0] for the case when IT" is further as-
sumed to be convex cocompact. On the other hand, their proof only relies
on the fact that A is a round Sierpinski gasket. Therefore, the same proof
works in our setting. O

For practical applications, it is desirable for the set W in Definition
to be compact. Recall that W, = RFM — #, is compact for all p > 0.
When M admits a cusp and hence RFM is not compact, W, will replace the
role of RFM in Proposition We deduce the following from the work of
Benoist-Oh, where general geometrically finite, acylindrical Kleinian groups
were considered.

Proposition 4.4. [I], Corollary 5.5, Proposition 5.4] Let {y > 0 and kv > 1
be as in (3.4) and Proposition respectively. Then there exists R > 0 such
that the following holds:

(1) for any p >0 and x € W,, the set Tw, . (x) is 4km-thick.
2) for any p >0 and x € W, g, the set Ty, .(x) is 4km-thick at co.
P+ p+R
3) for any x € RFM — F,_sr, (N), the set Ty, (x) is 4km-thick at oco.
e );:M R

Proof. Let us explain how the statement can be deduced from [I], accounting
for the differences in formulation. In [I, Corollary 5.5, Proposition 5.4], they
considered the set

ec T and T - u~ ! is k-thick Vu € T/
for each k£ > 1 and showed that for some R > 0,

TrEM—s, () is 4k-thick for all z € RFyM — #;
TRrEM—s, () is 4k-thick at oo for all z € RFxM — #5.

Now we take k = ky given by Proposition Then for any z € RFM,
e € Trrm(z). Moreover, for any u € Trpm(x), xu € RFM and Trpm(zu) =
Trem(z) - u~!. Hence, it follows from Proposition 4.3| that Trpm(z) - u~! is
km-thick for all uw € Trpm(z). This verifies that RFxM = RFM with k = ky
in our setting, and therefore (1) and (2) for p = 0 follow from ([4.1]), noting
that Wy = RFM — H and Wi = RFM — #Hp. In fact, only the fact that
7 consists of disjoint horoballs was used in the proof of [I, Corollary 5.5,
Proposition 5.4]. Hence, we can replace # and #Hpr with deeper horoballs
H, C #H and #, g C Hp for arbitrary p > 0 in (4.1)). Therefore, (1) and (2)
hold for general p > 0.

As for item (3), recall that # = int(F,) and Hg = int(F,-2rg,) from
the identification we made in (3.5). Hence in terms of Fg,,, item (2) with
the choice of p = 0 translates into the statement that for R > 0 given
in the previous statement, Ty, (x) is 4km-thick at oo for all z € RFM —
int(F,-2rg, ). In the proof of [I, Proposition 5.4], the condition that = ¢
int(F,-2rg,) was used to have that zU is not contained in int(F,-2grg,,).
However, it is enough to have x ¢ F,-2r¢,(N) to guarantee that zU is

!
RFyM := {l‘ € RFM : 3T C Trem(z) s.t. }

(4.1)
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not contained in F,-2rg,,. Therefore, the argument therein works and (3)
follows. O

Unipotent blowup: thick sets. The notion of topological limsup will be
repeatedly used throughout the paper. We mainly consider a sequence of
sets parametrized by a subset of R.

Definition 4.5. Let X be a metric space. For T' C R and family of subsets
{Y, c X :teT}, we define

limsup Y; := {:E e X:

J sequences t, € T and y, €Y}, }
teT t—o0

s.t. t, = o0 and ¥y, — T as n — oo.

In other words,

(4.2) limsup Y¥; = ﬂ U Y:.

teT t—o00 to>0teT,t>to

When T = N or (t9,00) C T for some ty € R, we simply write lim sup,,_, . Y5
or limsup,_,., Y; respectively.

We use the above definition for X = G or X = I'\G. Note that by (4.2),
the topological limsup is closed. We first record unipotent blowup lemmas
that take thick sets into account.

Lemma 4.6. [I, Lemma 6.1] Let T C U be k-thick at co for some k > 1.
If g, € G — AN is a sequence such that g, — e, then limsup,,_,., T9,U
contains a sequence b, — e in AV — {e}.

Lemma 4.7. [9, Theorem 3.1] Let T,, C U be a sequence of k-thick sets for
some k > 1. If g, € G — HV is a sequence such that g, — e, then there
exists k' > 1 depending only on k, and a k'-thick set Vo C V' such that
Vo C limsup Hg,T,,.
n—oo

Unipotent blowup: polynomials. We now discuss the unipotent blowup
lemma involving some polynomials, which was studied by Dani-Margulis [3]
and Shah [14]. For simplicity, we use the following notations: for z € C—{0}
and s € R,

z1 0) (1 is)
d(z)-( 0 - € AM and wv(s) = 0 1 eV.
Using the notations in (2.1)), d(2) = a_310g|2/0—2iarg(z) and v(s) = vs. We
will consider real polynomials o,v € R[t] and d(o(t))v(v(t)) € AV, or a
complex polynomial o € C[t] and d(o(t)) € AM, for t € R such that o(t) #
0. The following is the unipotent blowup with polynomials:

Lemma 4.8. [14, Proposition 4.3.2] Let S < G be either U or N. Let
gn € G — Ng(5) be a sequence converging to the identity e € G.
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(1) If S = U, then there exist polynomials o,v € R[t] such that at least
one of them is non-constant, o(0) =1, v(0) =0, and

d(o(t))v(v(t)) € limsupUg,U  for all t € R with o(t) # 0.

(2) If S = N, then there exists a non-constant polynomial o € C[t] such
that 0(0) = 1 and

d(o(t)) € limsup Ng,U  for all t € R with o(t) # 0.

n—oo

Proof. As our formulation is slightly different from [14, Proposition 4.3.2],
let us explain how we deduce the desired statement. Given a subgroup
S < G which is either U or N and a sequence g, — e in G — Ng(S), what
directly follows from [14, Proposition 4.3.2] is that

(1) if S = U, then there exist polynomials o, € R]t] such that at least
one of them is non-constant, o(0) = 1, »(0) = 0, and

d(o(t))o(v(t)) € | UgaU for all t € R with o(t) # 0.
neN

(2) if S = N, then there exists a non-constant polynomial o € C[t] such
that o(0) =1 and

d(o(t)) € | J NgaU for all t € R with o(t) # 0.

neN
We handle both cases simultaneously by setting
o
(1) = d(o(t))v(v(t)) 1 S=U
d(o(t)) ifS=N

for t € R with o(t) # 0, where o and v are polynomials given above.
Then it suffices to deduce that for each t € R with o(t) # 0,

(4.3) ®(t) € limsup Sg,U.

n—o0

Suppose not. Then ®(t) ¢ limsup,,_,., Sg,U for some t € R with o(t) # 0.
Since ®(t) € (J,enyS9nU, there exists n € N and sequences s, € S and
u, € U such that

O(t) = lim spgpug.
k—o00

Since g, ¢ Ng(S), there exists s € S such that g,sg, ' ¢ S. Noting that S
and U commute, we have

(4.4) kli)n;o sk(gnsgy, syt = kli_)ngo(skgnuk)s(skgnuk)_l = o(t)sd(t) e S

since ®(t) € Ng(9).
For some a, b, c,d € C and a sequence ¢, € C, we write

1 _fa b (1 ck)
InSq,, _<c d> and sk—(o 1 for all k£ € N.
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We then have

a+cer b—ac, + de — cci)

—1y—1 _
Sk(gnSQn )Sk = ( ¢ d — ccp,
which converges to an element in S by (4.4). This implies ¢ = 0, and hence

1y - a b+cp(d—a
swlansai s = (5 ")

Again, since this sequence converges to an element in S, we must have a = d,
and hence

sk(gnsgn sy = (3 2) for all k € N.
1

Hence, we now have that the constant sequence sg(gnsg,, 1)3,; converges to
an element of S as k — oo. In particular,

sk(gnsg, )sy € S forall k € N.
This implies g,sg, ! € S, which is a contradiction. Therefore, (4.3]) follows.
O

The following proposition was proved by Dani-Margulis when ¢ is non-
constant, and by Shah in general:

Proposition 4.9 ([3, Proposition 2.4], [14, Proposition 4.4.3]). Let o,v €
R[t] be polynomials such that one of them is non-constant. Let tg > 0 be
such that o(t) # 0 for all t > tg. Defining a function ® : (tg,00) — AV as

(4.5) D(t) := d(o(t))v(v(t)),
there exists a mon-trivial one-parameter subgroup L < AV, and for every
t € L, there exists a function fy: (0,00) — R such that as t — oo,

t+ fo(t) = 00 and B(t)TIO(t+ fo(t)) — L.
Recalling Definition [4.5, we have:
Corollary 4.10. Let ®(t) = d(o(t))v(v(t)) be as in ({4.5). For any Y C
I'\G, there exists a one-parameter subgroup L < AV such that

limsup Y®(t) is invariant under L.
t—o0

Proof. Let X¢ := limsup, ,., Y ®(¢t) and 9 € Xo be arbitrary. Then zg =
limy, 00 Yyn®(t,) for some sequences y, € Y and t, — oo as n — oco. We
then apply Proposition let L < AV and {f, : ¢ € L} be as in the
proposition associated to ®(t). Then for every £ € L, t, + fo(t,) — oo and
Yn®(tn + fi(tn)) = yn®(tn)(@(tn) @ (tn + foltn))) — zol.
This implies that
zol = lim 3, ®(t, + fo(tn)) € Xo.
n—oo

Since g € Xp and ¢ € L are arbitrary, we get XoL C Xy, and hence
XoL = Xp. O
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The following is standard (cf. [I4] Lemma 2.2.2]):

Lemma 4.11. If L is a one-parameter subgroup of AV, then either L =V
or L =vAv~! for somev € V.

5. EXPANSION OF N-ORBITS

In this section, we discuss some properties of horospheres in a complete
hyperbolic 3-manifold I'\H?, which correspond to N-orbits in FM = I'\G.
We begin with the classification of N-orbit closures. The following was
proved by Ferte, and the last claim follows from Lemma [3.1

Lemma 5.1. [4, Theorem A, Theorem B] Let I be a non-elementary Kleinian
group and M = T\H?. Let x = [g] € RF4M for g € G.

(1) If g* is a conical limit point, then

(2) If g* is a parabolic limit point of rank 1, then xN is closed and not
compact.
(3) If g* is a parabolic limit point of rank 2, then xN is compact.

In particular, if I' is geometrically finite with a round Sierpiniski limit set,
then for any x € RF M, either (1) or (8) occurs.

One key feature of horospheres is the expansion along frame flows in
negative time as in the following lemma, which is a consequence of the
equidistribution result due to Winter [17]:

Lemma 5.2. [I7, Theorem 6.1] Let ' < G be a Zariski dense geometrically
finite Kleinian group and M = T\H?. Let x € RF.M. For any sequence
t, — +o0 in R and m, € M, we have
limsupzNmpa_¢, = RFLM.
n—oo

In the rest of the section, let I' < G be a geometrically finite Kleinian
group with a round Sierpinski limit set A, and M = I'\H3. Note that both
Lemma [5.1] and Lemma [5.2] apply to M. From the expansion of horospheres
above, the classification of N-invariant subsets follows:

Proposition 5.3. Let Xg C RF4M be a closed N-invariant set. Then either
Xo = RF M, or there exists n > 0 such that Xo C Fy,(N).

Proof. Suppose Xy # RF;M. By Lemma for x = [g] € RF+M such
that g™ € A is a conical limit point of I, the orbit zN C RF,M is dense.
Therefore, for any x = [g] € X, we have that gt € A is a parabolic limit
point of I'. This implies that there are finitely many z1,---,2; € RFLM
such that

k
Xg C U ZziNMA.
=1



HOROCYCLES IN GEOMETRICALLY FINITE HYPERBOLIC 3-MANIFOLDS 17

Suppose to the contrary that Xg ¢ F,,(N) for all n > 1. Then there exists
a sequence x, € Xo — F,,(N) for all n > 1. For each n > 1, write

Tp = Zi, PnMn_y, € 2i, NMA.

After passing to a subsequence, we may assume that z;, = z is constant.
Since V(z,) = e*"V(zp,my) = €*"V(z) by (3.3), we must have ¢, — +oo
as n — 00. We then have that X, contains , N = zNmya_;, for all n > 1.
Therefore, RFLM C X by Lemma5.2] which is a contradiction. This proves
the lemma. ([l

U-orbits in expanding N-orbits. We now consider a sequence of U-orbits
contained in an expanding sequence of N-orbits. We will show that we can
find a vAUv ™ -orbit for some v € V in the set of accummulation points of
such U-orbits (Proposition . We first prove the following lemma:

Lemma 5.4. Let x, € REM-U be a sequence such that for any subsequence
{@n; : @y, N is compact}, we have V(xy;) — o0o. Then for any n > 0, there
exists a neighborhood O,(N) C I'\G of F,;(N) such that RFM — O,(N) is
compact and

<limsupa:nU> NRFM — O, (N) # 0.

n—oo

In particular, (limsup,,_,. 2,U) NRFM — F,(N) # 0.

Proof. Let &, R > 0 be as in (3.4)) and Proposition respectively, and
& = e 2R¢y. Given any 1 > 0, choose s > 0 satisfying e 2% < 0.5¢;.

We claim that z,Uas "NRFM — F¢, (N) # 0 for all sufficiently large n > 1.
Note that by (3.3)),
znUas NRFM — Fe (N) = (2,U N RFM — Flaug, (N))as,

and it suffices to check that x,,UNRFM—F_2:¢, (N) # (). Since z,, € RFM-U,
there exists Z,, € ,U N RFM for each n > 1. If z, N is not compact, then
neither is 7, N, and hence T, & Fias¢ (N) trivially. Hence it suffices to
consider the case that x, N is compact for infinitely many n > 1. If x, N is
compact, then Z,, N is compact as well and V(&,) = V(z,), which diverges
as n — oo by the hypothesis. Hence Z,, € F2s¢, (N) for all sufficiently large
n > 1. This proves the claim.

Note that Wr = RFM — int(Fg, ) using notations in Proposition It
then follows from the above claim and Proposition [£.4)(3) that for ky > 1
given in Proposition[d.3|and all sufficiently large n > 1, there exists y,, € z,U
such that Ty, (ynas) is 4km-thick at co. In particular,

zoUas N Wg = y,Uas " Wg = ypasU N Wg # 0.

Denote by O, (N) := int(F, )a;'. From the definition of Wg and RFM =

RFM - ag, it follows that

(5.1) 2,U NRFM — O, (N) # ()
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for all large enough n > 1. Note that O,(N) is an open neighborhood of
F,,(N) because

int(Fﬁl)a;1 ) F0.5€1a;1 D Fose, (N)agl = F0.5625£1 (N) D> FU(N)

by (3.3). Since RFM—0,,(N) = (RFM—int(Fg, ))a; ! is compact, the lemma
follows from (5.1]). O

We now prove the existence of a vAUv ™ -orbit for some v € V mentioned
above. Recall that for z € C — {0} and s € R,

271 O) (1 is)

d(z)-( 0 - € AM and wv(s) = 0 1 eV.
Proposition 5.5. Let y € RF{M. Let o,v € R[t] be polynomials and set
O(t) = d(o(t)v(v(t)) for t € R with o(t) # 0. Suppose that o is non-
constant and y®(t) € REM - U for all sufficiently large t > 0. Then there
exists v € V such that

limsup yU®(t) contains a vAUv ™ -orbit.

t—o0
Proof. Let Xy := limsup,_,., yU®P(t). We first claim that for any n > 0,
(5.2) Xo N RFM — F,(N) # 0.

Fix a sequence t,, — oo and for each n > 1, let z, := y®(t,,) € REFM - U. If
Tp; is a subsequence such that x,, N is compact for all n > 1, then yN is
compact as well, and moreover it follows from ({3.3)) that

V(zn,) = V(yd(o(tn,))) = lo(ta,)|* - V(y).

Since ¢ is non-constant and lim; , t,; = 0o, we have |o(t,,)| — oo, from
which we deduce V(z,;) — 0o as j — oo. Therefore, the sequence z,, €
RFM - U satisfies the condition of Lemma and hence for any n > 0,

(limsup:c,J]) NREM — F,(N) # 0.

n—oo
Since ®(t,) € AV < Ng(U),
limsup yU®(t,,) = limsup y®(t,)U = limsup z,,U,
n—00 n— 00 n—0o0
and therefore
XoNRFM — F,,(N) D (limsup yU@(tn)) NRFM — F,(N) # 0.
n—oo

This shows the claim.

Now by Corollary Xy is invariant under a one-parameter subgroup
L < AV, and it follows from Lemma that either L =V or L = vAv~!

for some v € V. Moreover, since ®(t) € AV < Ng(U), Xq is U-invariant.
Together with the commutativity of U and V', we now have that

X is invariant under N = UV or vAUv .
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Suppose first that X is N-invariant. By Proposition [5.3, we have Xy =
RF M or X C F;(N) for some n > 0. The latter is forbidden by the claim
, and hence

Xo=RF.M
in this case. Then Xg is a non-empty AU-invariant set, and therefore X
contains an AU-orbit as desired.

Now suppose that Xy is invariant under vAUv™! for some v € V. By
(5.2), we in particular have that Xy is non-empty. Therefore, there exists a
vAUv ! -orbit in Xj. This completes the proof. O

6. A CLOSED H-ORBIT AND U-ORBITS THEREIN

Let I" < G be a geometrically finite Kleinian group with a round Sierpinski
limit set and M = T'\H?. We will also employ geometry and dynamics
appearing in geodesic planes in M = I'\H?3, or H-orbits in FM = I'\G. In
this section, we discuss properties of a closed H-orbit and U-orbits therein.
Recall that H < G is a copy of PSLy(R) which is an orientation-preserving

stabilizer of R C (@, the boundary of H?-copy in H? invariant under H. The
following is the classification of H-orbit closures by Benoist-Oh:

Theorem 6.1. [I, Theorem 11.10] Let y € RFM. FEither
yH is closed or yH =RF, M- H.

Remark 6.2. We note that Benoist-Oh showed Theorem [6.1]in a more general
setting that M is geometrically finite and acylindrical with 0 core(M) totally
geodesic.

When yH is closed and y = [g] for g € G, the conjugate I'Y := g~ 'T'g is
the stabilizer of y € I'\G for the right-multiplication, and the orbit map
¢: (HNTI\H — T'\G

(6.1) (HNT9)h > yh

is a proper embedding [12, Section 4.2]. Via ¢, the closed H-orbit xH can be
identified with the unit tangent bundle (HNI'9)\ H of the hyperbolic surface
(H NTY9)\H2. In this regard, we recall the following, which is a special case
of the work of Dal’bo:

Lemma 6.3. [2, Proposition B] Let 'y < H be a non-elementary discrete
subgroup with the limit set Ap,,. Lety = [h] € Ty \H be such that h* € Ap,,.

(1) If k't is a conical limit point of Ty, then
y7U = {Z = [ﬁ S FH\H A= AFH}-

(2) If k™ is a parabolic limit point of Uy, then yU is compact.

In particular, if Ty is geometrically finite, then for any y = [h] € T'y\H
with h* € Ar,,, either (1) or (2) occurs.
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Note that this is a surface version of Lemma/[5.1] Although we can try to
apply Lemma to H NT'Y < H, the limit set we are interested in is the
limit set A of I' or the limit set g~'A of I'Y, not the limit set of H NTY. We
first need to handle this subtlety.

U-orbits in a closed H-orbit. We deduce from the work of Oh-Shah [12]
that in our setting, the limit set of HNI'Y is precisely equal to the intersection
of the limit set of I'Y with the circle R stabilized by H.

Proposition 6.4. Let y = [g] € RFM for some g € G be such that yH is
closed. Then HNT'Y9 < H is a non-elementary geometrically finite subgroup

and its limit set is equal to g~ AN R.

Proof. 1t was shown in [I2, Theorem 4.7] that HNI'Y is a geometrically finite
subgroup of H. Moreover, it is clear that the limit set of HNTY is contained
in g7 'AN R. Since y € RFM, g~ 1A N R is s perfect; otherwise, g 1A N R has
an isolated point z. Since g7'A N R c C is contained in a circle R this
means that there exists an open segment I C R such that I N g A = {z}.
Since components of C- ¢~ 'A are round open disks with mutually disjoint
closures, there exists a component B C C - g~ 'A containing I — {z}. This
implies g 1A NR — {z} C B, contradicting to y € RFM.

In particular, g_lAﬂ]R is uncountable. Since g~'A is the union of conical
limit points of I'Y and countably many parabolic limit points of 'Y, ¢ -IANR
contains infinitely many conical limit points of I'Y. By [12] Lemma 4.5], all
conical limit points of T'Y in g~ 'A N R are conical limit points of H N TY.
Therefore, H N 1Y is non-elementary.

Finally, we show that the limit set of HNI'Y is equal to g_lAﬂ]lA%. Without
loss of generality, we may assume that 0 € g~ 'A N R and it suffices to show
that 0 is in the limit set of H NI'Y. There are two cases:

e Suppose first that there are sequences e/, £, > 0 such that e,,¢,, — 0
asn — oo and &, —¢!, ¢ g71A for all n > 1. Then g~ 'A N (—¢), &)
is compact.

We claim that g~'AN(—¢, &,) has no isolated point for all n > 1.
Suppose to the contrary that z € g7*A N (—¢),,&,) is isolated. Then
for some 0 > 0, open segments (z—4, z) and (z, z+5) in (—e),,e,) are
disjoint from g~'A. Since z € g7'A and g “IANR is uncountable, this
implies that there are two distinct components By, By of C - g_lA
such that (z — d,2) C By and (z,2z 4+ ) C By. On the other hand,
2 € By N By, which is a contradiction to the hypothesis that A, and
hence g~'A, is a round Sierpinski limit set.

By the above claim, g7'A N (—¢’,,¢,) is perfect for all n > 1. In
particular, g~'A N (—¢’,e,) is uncountable, and hence contains a
conical limit point of T'Y for all n > 1. Since &,,&,, — 0 as n — oo,
this implies that there is a sequence of conical limit points of I'Y in
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g AN R that converges to 0. Since every conical limit point of I'Y
is a conical limit point of H NTY [12, Lemma 4.5], it follows that 0
is a limit point of H NI'Y, as desired.

e Otherwise, there exists § > 0 such that at least one of the segments
[~8,0] or [0,6] is contained in g~ *A N R. This implies that there is
a sequence of conical limit points of T'Y in g7*A N R that converges
to 0. As in the previous case, it follows that 0 is a limit point of
HnNTY.

In any case, 0 is a limit point of H NT'Y, finishing the proof. U

We are now able to apply Lemma [6.3]to H NT"Y and obtain the following:

Corollary 6.5. Let y € RFEM be such that yH is closed. Let z = [g,] €
yHNRF M forg, € G.

e If gt is a conical limit point of T, then
2U = yH NRF M.

o Otherwise, zU is compact.

In particular, for any y € BFM, we have yU = yH.

Proof. We first prove the claim for z = y. Let g € G be such that y = [g].
By Proposition HNTY < H is a non-elementary geometrically finite
subgroup and its limit set is equal to g_lAﬁI@. Since e™ = 0o € g_lAﬂ@, we
can apply Lemma [6.3] to the identity coset [e] € (HNT'9)\H. As mentioned
in the proof of Proposition et is a conical limit point of H NTY if and
only if g7 is a conical limit point of T by [I2, Lemma 4.5]. Hence, applying
Lemma [6.3] we obtain the following dichotomy:

e if g7 is a conical limit point of ', then
(6.2) []U={z=[( e (HNTI)\H : {* € g 'ANR}.

e otherwise, [e]U is compact.

Recall the proper embedding ¢ : (H NTY)\H — I'\G from (6.1). Since
¢([e]U) = yU and the right hand side of has the image yH N RF .M
under ¢, the claim follows for y.

Now let z € yH NRF M be arbitrary. Since yH meets RFM, there exists
u € U such that zu € RFM. We then have that zuH = yH is closed, and
hence the above claim applies to zu. Since zuU = zU, this finishes the
proof. ([l

The following AU-minimality is a direct consequence of Proposition [6.4
Corollary 6.6. Let y € RFM be such that yH is closed. For any z €
yH N RF+M,

zAU = yH NRF M.
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Proof. We first prove the claim for z = y. Let g € G be such that y = [g].
By Proposition HNTY < His non-elementary and geometrically finite,
and its limit set is g "' ANR. Since g7 € A, et = oo is contained in the limit
set of H NT9. As H NTY is non-elementary, it acts minimally on its limit
set, and hence

(HNT9)et =g A NR.

Since R = H JAU, the above identity is equivalent to the following identity
in (HNIY9)\H:

[e]AU = {[h] € (HNTI\H : ht € g "ANR}.

As in the proof of Corollary [6.5] taking ¢ implies the claim for y. The claim
for general z € yH NRFM can be deduced by the same argument as in the
proof of Corollary O

Expansion of U-orbits within a closed H-orbit. In the rest of this
section, we discuss expanding behaviors of compact U-orbits in a closed H-
orbit. The following may be standard, and can be shown by arguments in
the proof Proposition [5.3

Lemma 6.7. Let 'y < H be a non-elementary geometrically finite subgroup
with the limit set Ar,,. Lety, € I'y\H be a sequence such that y,U is
compact for alln > 1 and the length of y,U with respect to the Haar measure
of U diverges as n — co. Then

limsupy,U = {[h] € Ty\H : h* € Ar, }.
n—oo
Proof. We sketch the argument. Since I'gy is geometrically finite, there are
finitely many elements z1,---,2; € I'y\H such that all compact U-orbits
are contained in the union Ule z;UA. After passing to a subsequence, we
may assume that y, € 21U A for all n > 1, and hence there exists a sequence
t, € R such that y, U = z1Uay, for all n > 1. Since the length of y,U
diverges, we must have t,, — —00 as n — 0o, by the scaling property of the
U-Haar measure along the geodesic flow, which is similar to (3.3]). Then the
equidistribution result of Winter [I7, Theorem 6.1] applies and finishes the
proof as in Proposition [5.3 ([l

We now obtain the following expansion of compact U-orbits within a
closed H-orbit:

Lemma 6.8. Let y € RFM be such that yH 1is closed. Let n, € R be a
sequence such that n, — co as n — oco. Let y, € yH be a sequence such
that y,U is compact and y, ¢ F,, (N) for alln > 1. Then

limsup y,U = yH N RF M.

n—oo
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Proof. Let g € G be such that y = [g] € T'\G and let I'Y := g~ 'I'g be its
stabilizer. By Proposition H NTY is a non-elementary geometrically
finite subgroup of H and its limit set is g7'ANR. Recall that the orbit map
¢: (HNTI)\H - T'\G
(HNTY9)h — yh
is a proper embedding [12, Section 4.2].

For each n > 1, let z, € (H NTY9)\H be such that ¢(z,) = y,. Since
ypU is compact and ¢ is proper, z,U C (H NT9)\H is compact as well.
Since y, € F,, (N) and 7, — oo, the length of y,U diverges as n — oo, and
hence the length of z,U does so. We now apply Lemma [6.7] to the sequence
2, € (HNTY9)\H. Since the limit set of HNTY < H is g"'ANR, it follows
from Lemma that

limsup z,U = {[h] € (HNTI\H : h* € g"'ANR}.

n—o0

Therefore, applying ¢ finishes the proof. ([

7. A U-ORBIT CLOSURE CONTAINING A CLOSED H-ORBIT

Let I' < G be a geometrically finite Kleinian group with a round Sierpinski
limit set and M = T'\H?. The goal of this section is to classify a U-orbit
closure X = zU in the case when X contains a closed H-orbit meeting RFM.

Theorem 7.1. Let © € RFM and X = zU. Suppose that there exists
y € RFM such that yH is closed and yH NRFM C X. Then either
X=yHNRF;M or X =RFiM.
Recall the notion of boundary frames from (3.2). We first make the
following observation on the dichotomy of closed H-orbits:
Lemma 7.2. Let y € I'\G be such that yH is closed. Then either
yH C BFM  or yHNBFM:-V = .
Proof. Suppose that the closed H-orbit yH intersects BEM - V. We then
have yo € yH, z € BFM, and v € V such that
Yo = 20.

For ¢t > 0, we have yga; = zat(at_lvat). Since za; belongs to a compact set
BFM, there exists a sequence t,, — oo as n — 0o so that zay, converges to
a point in BFM. We denote by zp € BFM its limit. Since at_lvat — e as
t — o0,

Yoat, = zatn(a;llvatn) — 29 € BEM.
On the other hand, ypa;, € yH and yH is closed, and hence zy € yH as
well. Since BFM is H-invariant, we have

yH = 2oH C BFM.
This finishes the proof. O
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The following is the key lemma of this section:

Lemma 7.3. Let y € RFM be such that yH is closed. Let v, € V be a
sequence such that v, — oo as n — oo. Suppose that yHv, N RFM - U # ()
for alln > 1. Then
limsup(yHv, NRF{M) = RF{M.
n—oo
Proof. For simplicity, we set Y := yH N RF M which is AU-invariant and
Xo := limsup,,_,, Yv,. Then the lemma is equivalent to Xo = RF M.
Since Y is AU-invariant and U and V' commute,
X = limsup Yy, (v, ! Av,)U.

n—oo
Since V = limsup,,_, ., v, "Av, and N = VU, we have that
Xo=Xo-N.
By , Xy is closed as well. Now it follows from Proposition that

either
(7.1) Xo=RF{M or XyC F,(N) forsomen>0.

We apply Lemma [5.4] to finish the proof, by finding a sequence 7, € Y such
that y,v, € Yu, satisfies the condition therein. By Lemma [7.2] there are
two cases:

yH Cc BEFM or yHNBFM.-V = .

Suppose first that yH C BFM. In this case, for each n > 1, we choose any
element y, € yH such that y,v, € RFM-U, which exists by the hypothesis.
This in particular implies y, € RF_M as well, and hence y, € Y. Since
Yn € BFM, y,, H is compact, and hence y,v,N = y, N is not compact for all
n > 1 by Lemma Therefore, the sequence y,v,, € REM - U satisfies the
condition in Lemma [5.41

We now consider the case that yH N BFM -V = (). In this case, we fix
any sequence t, > 0 such that ¢, — co as n — oo, and set y,, := ya;}1 ey

tn /2

c 0/ e*?n/Z)' Since Y NBFM - V = 0, we
also have that y,v, ¢ BEM -V, and hence y,v, € REM - U for all n > 1 by
Lemma [3:2] If y,v,N =y, N is compact, then

V(ynvn) = V(yay,'vn) = ¥ V(y).

for each n > 1, where a;, = (

Since t, — oo as n — oo, the sequence y,v, € RFM - U also satisfies the
condition in Lemma [5.41

In any case, we obtain a sequence y,v, € Yv, NRFM-U to which Lemma
applies. Therefore, we have for any n > 0 that

<lim sup ynan> NRFM — F,(N) # 0.

n—oo
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Since y,v,U C Yv,U = Yu,, this implies that

XoNRFM - F,(N) = <limsquan> NRFM —F,(N) #( for any n > 0.

n—oo

Together with (7.1]), we must have
Xo = RF, M,
completing the proof. ([l

A closed H-orbit in BFM. To prove Theorem [7.1] we first consider the
case when the U-orbit closure contains an H-orbit in BFM C RFM.

Proposition 7.4. Let x € RFM and X = 2U. Suppose that there exists
y € BFM such that yH C X. Then either

X=yH or X=RFiM.

Proof. Note that y € BFM implies that yH is closed. Since y € X, there
exists a sequence x,, € U C RFM - U such that =, — vy as n — oco. By
Proposition (2), after passing to a subsequence, there exists a sequence
Uy € U such that x,u, € RFM and z,u, — yo for some yo € BFM.
Replacing x,, with x,u,, we assume that x, € RFM and z,, — yo.

Then there exists a sequence g, € G such that g, — e and x, = yogn
for all n > 1. After passing to a subsequence, g, € HV for all n > 1 or
gn ¢ HV for all n > 1.

If g, € HV for all n > 1, we write g, = hyv, for some h,, € H and
v, € V, and hence

X =z,U = yog,U = yohnpvp,U = yohp,Uv, for all n > 1.

Since yoh,U C yoH and yoH is compact as yg € BFM, it follows from
Corollary that yoh,U = yoH. Therefore,

X =yyHv, foralln>1.

Since X already contains a closed H-orbit yH, we must have v, = e and
X =yoH =yH

in this case.

Now consider the case that g, ¢ HV for allm > 1. Let kyy > 1 and R > 0
as in Proposition [£.3] and Proposition [£.4] respectively. Let p > 0 be such
that ¥, — yo in W,. Then by Proposition 4.4(1), the set T, := TWP+R(azn)
is 4kpm-thick. Applying Lemma togn € G— HV and T,, C U, we have
an unbounded subset Vy C V such that

Vo C limsup Hg,T,,.

n—oo
In particular, for any v € Vj, there exist sequences h,, € H and u,, € T}, such
that h,g,u, — v as n — oo. Since yoH is compact, yghgl € yoH converges
to some element, say y; € yoH. Then for each n > 1,

yohgl(hngnun) =zpuy € XN WerR
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and hence taking n — oo, we have y1v € X N W, r. Therefore,
(7.2) yoHv = y1Uv =yvU C X

where the first equality is due to Corollary [6.5] Moreover, since yjv €
W,y+r C REM and y1v € yoHv, we in particular have that yoHvNRFM-U #
(). Since this holds for any v € Vj and Vy C V is unbounded, we take any
sequence v, — oo in Vp and apply Lemma [7.3] to conclude that

limsup(yoHv, N RFLM) = RF{M.

n—00
Since yoHVy C X as in ([7.2)), this implies
X =RF_ M,
as desired. O

A closed H-orbit outside BFM. We next turn to the case that yH is
disjoint from BFM. Unlike the case that the H-orbit is contained in BFM,
yH can contain a compact U-orbit. The proof of the following lemma is
similar to that of Lemma [5.4

Lemma 7.5. Let x, € RFM be a sequence converging to y € RFM such
that the A-orbit yA is compact. Let km > 1 be as in Proposition[{.3 Then
for any n > 0, there exists a neighborhood O,(N) C I'\G of F,,(N) such that
RFM — O, (N) is compact and

TreM-0,(v)(@n) = {u € U : zpu € RFM — Oy(N)}
is dkm-thick for all sufficiently large n > 1.

Proof. Let R > 0 be the constant as in Proposition We choose p > 0
and set £ := e~2°¢y such that

yA C Wy, C int(W,) = int(RFM — int(F%))

which is possible by the compactness of yA.

We set & := e 2l¢ = e 2(0tR)gy . Let 1 > 0 be arbitrary and fix s > 0
such that e™2n < 0.5¢. We set O,(N) := int(Fg, )a; ', which is an open
neighborhood of F,(N) since

int(Fﬁl)agl ) F0.5£1a;1 D Fose (N)agl = FO.562S§1 (N) 2 FW(N>

Moreover, RFM — O, (N) = (RFM — int(Fg, ))a; ! is compact.
To see the thickness, note that for u € U,

z,u € RFM — O, (N) < z,u € RFM — int(Fg, )a;
& (wpas)(a; luas) € RFM — int(Fp, )

& a;luas € Tw, . r(Tnas)

since W,4p = RFM — int(F, ). Observing that a;* (é i) as = (é tel_ >

for all t € R, it suffices to show that TWP+R($nas) is 4kp-thick.
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On the other hand, since yA is contained in the open subset int(W,) C
RFM, it follows from z,as — yas that x,as € W, for all large n > 1.
Therefore, Ty, . (wnas) is 4km-thick by Proposition 1). This completes
the proof. O
1 it

Recall that v; = (O 1

) eVforteR.

Lemma 7.6. Let v € RF4M and X = 2U. Let y € RFM be such that yH
is closed. Let I C R be a compact subset. Suppose that for any n > 0, there
exist t, € I and y, € yH NRFLM such that y,v,, € X — F,(N). Then there
exists Tr € I such that

(yH NRF M)or, C X.

Proof. Since U and V' commute and X is U-invariant, W”tn C X for all
n > 0. Hence, if W = yH N RF M for some ng > 0, setting 17 := t,,
verifies the claim.

We now assume that y,U # yH NRFM for all n > 0. By Corollary
y,U # yH N RF4M implies that y,U is compact for all > 0. Since I is
compact, there exists a sequence 7,, > 0 such that n, — oo and t,, :=t,,, € 1
converges to some Ty € I as n — oco. Since yy, vy, & F,(N), or equivalently
Ynn & Fy(N), we have

limsup y,, U = yH NRF M

n—oo
by Lemma, Since vy, — vr, as n — oo, this implies
lim sup yy, v, U = limsup y,, Uvy,, = (yH NRFM)vr,.
n—oo n—oo

Since X is a closed U-invariant set and y,,v;, € X for all n > 1, it follows
that

(yH NRFM)vr, C X,
as desired. (]

We now classify the U-orbit closure containing a closed H-orbit outside

of BFM.

Proposition 7.7. Let x € RFM and X = zU. Suppose that there exists
y € RFM — BFM such that yH is closed and yH "NRF M C X. Then either

X=yHNRF:M or X =RF;M.

Proof. By Proposition there exists a compact A-orbit in yH. Hence,
by replacing y with an element of yH, we may assume that yA is compact.
Note that we still have y € RFM —BFM after the replacement due to Lemma

Since y € X, there exists a sequence z,, € xzU such that x, — y as
n — oo. Since y € BFM, by Proposition (1), we may further assume that
Tn € RFM by modifying x,, € zU, without changing .



28 DONGRYUL M. KIM AND MINJU LEE

We next write z,, = yg, for some sequence g, € G such that g, — e as
n — oco. After passing to a subsequence, g, € HV foralln > 1or g, ¢ HV
for all n > 1. Suppose first that g, € HV for all n > 1. For each n > 1,
write g, = hnv, for some h,, € H and v, € V. We then have

X =z,U =yh,Uv, foralln>1.

Note that yh, € yH NRF M and hence either yh,U is compact or yh,U =
yH N RF{M by Corollary [6.5] Since yH N RF4M C X by hypothesis,
necessarily v, = e and X = yH N RF M in this case.

Now consider the case that g, ¢ HV for alln > 1. Let kp > 1 be given in
Proposition and & > 1 the constant given in Lemma but associated
to k = 4k instead of kp.

We claim that for every n > 0 and r > 0,
3ty € [—k'r,—r]U[r,k'r] and y,, € yH NRFLM

such that y, vy, . € X — F(N).

Let us verify the claim. Fix arbitrary n, 7 > 0 and let O,(N) be the open
set in Lemma associated to n > 0. Then T, := Trrm—0, () (xy) is 4km-
thick for all sufficiently large n > 1 by Lemma Next, apply Lemma
to obtain a k’-thick set Vy C V with k' = k’(4ky) such that

Vo C limsup Hg,Th,.

n—oo
Since Vj is k'-thick, we can find ), € [—k'r, —=r]U[r, k'r] such that v;, . € Vo.
Hence, there exist sequences h,, € H, u,, € T,, such that h,g,u, — Vg, ,. as
n — 0o. Note that

(yhy ) (hngnun) = Tpun, € X NREM — Oy (N)  for all n > 1.

Since RFM — O,,(N) is compact, z,u, is convergent after passing to a subse-
quence, and so is yh, !, to some element y, , € yH. Since O, (N) is a neigh-
borhood of F,(IV), taking the limit n — oo, we obtain y, ,vy, , € X —F,(N).
Since X C RF M, we have y,, € RF4M and the claim follows.

Fixing r > 0 and by varying n > 0, we apply Lemma to the compact
set [—k'r,—r]U[r, k'r]. The previous claim and Lemma [7.6|imply that there
exists T, € [—k'r,—r] U [r, k'r] such that

(7.3) (yH NRFM)vr, ¢ X

Repeating this for increasing values of r > 0, we obtain a sequence |T;.| = co.
Since y ¢ BFM, we in particular have y ¢ BFM -V by Lemma This

implies that yvy, ¢ BFM -V for all » > 0. Since y € RFM, we have

yur, € RF{M, and hence yvp,, € REM - U by Lemma In particular,

yHup, NRFM - U # 0 for all r > 0.
Since vy, — 00 as r — 00, it follows from Lemma [7.3 that
limsup(yHvp, N RF4M) = RF4M.

7—00
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Together with (7.3), X = RF M. This finishes the proof. (]

Proof of Theorem Let # € RFM and X = zU. Suppose that there
exists y € RFM such that yH is closed and yH N RF M C X. If y €
RFM — BFM, then the claim follows from Proposition[7.7} If y € BFM, then
X = yH or X = RF{M by Proposition [7.4] Since yH C BFM C RFM in
this case, this completes the proof. O

8. A U-ORBIT CLOSURE MEETING A COMPACT N-ORBIT

Let I' < G be a geometrically finite Kleinian group with a round Sierpinski
limit set and M = T\H®. The goal of the section is to prove the following
dichotomy for U-orbit closures meeting compact N-orbits.

Theorem 8.1. Let x+ € RF4M and X := zU. Suppose that X meets a
compact N-orbit. Then one of the following holds:

(1) N is compact.
(2) X contains a vAUv~t-orbit for some v € V.

The proof is based on unipotent blowup involving polynomials. Recall
that for z € C — {0} and s € R,

d(z) = <z61 2) € AM and wv(s) = (é Zf) eV.

Lemma 8.2. Let x € RF.M and X := xU. Suppose that there exists y € X
such that yN is compact. Then one of the following holds:
(1) N is compact.

(2) there exist polynomials o,v € R[t] such that at least one of them is
non-constant, o(0) =1, v(0) =0, and

yUB(t) C X forallt €R s.t. o(t) #0
where ®(t) = d(o(t))v(v(t)).

Proof. Since y € X, there exists a sequence x, € xU such that z, — y
as n — oo. We may write z, = yg, for some sequence g, — e in G.
After passing to a subsequence, we have either g, € Ng(U) for all n > 1 or
gn & Ng(U) for all n > 1.

Suppose first that g, € Ng(U) for all n > 1. Then for each n > 1,

zU = ygnoU = yUgy,

and hence there exists u, € U such that x = yung,. Since yu, € yN and
yN is compact, after passing to a subsequence, we may assume that yu,
converges to some z € yN. It then follows from g, — e that x = z, and
therefore

xN = zN = yN is compact.
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Now assume that g, ¢ Ng(U) for all n > 1. Applying Lemma[4.8(1) with
S = U, we obtain polynomials o, € R[t] such that at least one of them is
non-constant, o(0) = 1, ¥(0) = 0, and

(8.1) @(t) =d(o(t))v(v(t)) € imsupUg,U for all t € R s.t. o(t) # 0.

Let ¢t € R be such that o(t) # 0. By (8.1), there exist sequences u,, u), € U
such that @, gnul, — ®(t) as n — oo, after passing to a subsequence. Observe
that
v, (Ungnul,) = xpul, € X for all n > 1.
Since yN is compact, passing to a subsequence, there exists y; € yU such
that yi, ! — y; as n — oo. This implies
yt(I)(t) € X.
Since yU is a U-minimal subset of a compact N-orbit yN, it follows from
®(t) € AV < Ng(U) that
yUd(t) = y,UD(t) = y: P (1)U C X.
Therefore, (2) holds. O
As a corollary, we obtain:

Corollary 8.3. Let v € RF4M, and X = zU. Suppose that X meets a
compact N-orbit. Then one of the following holds:

(1) N is compact.
(2) foranyye X,

yN is compact = yN C X.
(3) X contains a vAUv™ -orbit for some v € V.

Proof. Assume that (1) and (2) do not hold. We will prove that (3) is the
case. Since (2) does not hold, there exists y € X such that y N is compact
and yN ¢ X. We then apply Lemma Lemma [8.2[1) cannot occur by
our assumption, and hence there exist polynomials o, v € R[t] such that at
least one of them is non-constant, o(0) = 1, v(0) = 0, and

(8.2) yU®(t) Cc X forallt € Rs.t. o(t)#0
where ®(t) = d(o(t))v(v(t)).
We claim that o is non-constant. Suppose not and let
X1 = limsupyU®(t) C X.

t—o0
Since (0) = 1, ®(¢) € V and hence yU®(t) C yN. Since yN is compact,
we have X7 # (). Applying Corollary to Y := yU, it follows that X7 is
invariant under a one-parameter subgroup L < AV. By Lemma [4.11], either
L =vAv~! for some v € V or L = V. Since X; C yN and yN is compact,
we must have L = V. Together with the U-invariance of X7, we have

X1 =yN.
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This contradicts yIN ¢ X, and the claim follows.

To finish the proof, suppose first that y®(t) € RFM - U for all suffi-
ciently large t > 0. Then by Proposition lim sup;_, . yU®P(t) contains a
vAUv ™ t-orbit for some v € V, and therefore (3) holds due to (8.2).

Otherwise, y®(t) € BEM - V for some t € R by Lemma Since ®(t) €
AV, we have y = zv~! for some z € BEFM and v € V. Since zH is a compact
H-orbit, we have from Corollary that

yU = 200" = zHv™t = 20 Y (wHo™Y).
Therefore,
2w wAUv™) € 2o Y (wHY ™) =yU C X,
and hence (3) holds, completing the proof. O

We prove one more lemma.

Lemma 8.4. Let x € RF,M and X := xU. Suppose that there exists y € X
such that yN is compact. Then one of the following holds:

(1) N is compact.
(2) there exists a mon-constant polynomial o € Cl[t] with o(0) = 1 so
that for any t € R satisfying o(t) # 0, there exists y; € yN such that

yd(o(t)) € X.

Proof. Since y € X, there exists a sequence z,, € zU such that x, — y as
n — oo. We may write x, = yg, for some sequence g, — e in G. After
passing to a subsequence, we may assume that either g, € Ng (V) for all
n>1or g, ¢ Ng(N) for all n > 1.

If g, € Ng(IV) for all n > 1, then

z € x,U =yg,U C ygnN =yNg, foralln > 1.

Since yN is compact and g, — e, this implies that N is compact, and (1)
follows.
Now assume g, € Ng(N) for all n > 1. Applying Lemma (2) with

S = N, we obtain a non-constant polynomial ¢ € C[t] with ¢(0) = 1
satisfying
(8.3) d(o(t)) € limsup Ng,U for all t € R s.t. o(t) # 0.

n—0o0

Let ¢t € R be such that o(t) # 0. By (8.3), there exist sequences p,, € N and
un € U such that p,gnu, — d(o(t)) as n — co. Since yN is compact, after
passing to a subsequence, yp, ! converges to some y; € yN. We then have

1 —1 o
yed(o(t)) = Tm yp,~ (pagntin) = lim zpu, € X,
Therefore, (2) holds. O

Remark 8.5. We remark that proofs of Lemma [8.2] and Lemma [8.4] work for
a general Kleinian group I' < G.
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Proof of Theorem Suppose that zN is not compact. By Corollary
it suffices to consider the case Corollary [8.3|2) that any compact N-
orbit meeting X is contained in X. Assume that we are in such a case. By
the hypothesis, there exists y € X such that yN is compact. Since xN is
not compact, it follows from Lemma that we can find a non-constant
polynomial o € C[t] such that for all ¢ € R satisfying o(t) # 0, we have for
some y; € yIN that

yd(o(t)) € X.
Note that d(o(t)) € Ng(N) and hence

yd(o(t))N =y Nd(o(t)) = yNd(o(t))

is a compact N-orbit meeting X. Therefore, it follows from the hypothesis
that

yNd(o(t)) C X.
Since o € CJ[t] is non-constant, we have |o(t)| — oo as t — oo in R. Hence

X = RFM by Lemma In particular, X contains a vAUv ™ '-orbit for
some v € V. This finishes the proof. U

9. A U-ORBIT CLOSURE WITHOUT ANY COMPACT U-ORBIT

Let I' < G be a geometrically finite Kleinian group with a round Sierpinski
limit set and M = ['\H®. In this section, we consider an orbit closure xU
without any compact U-orbit. The following is the main theorem of this
section:

Theorem 9.1. Let + € RFM and X := 2U. Suppose that X does not
contain any compact U-orbit. Then one of the following holds:

(1) there exists a compact N-orbit in X.

(2) there exists a vAUv~!-orbit in X for some v € V.

To prove Theorem we recall the notion of relatively minimal sets,
introduced in [10]:

Definition 9.2. Let W C I'\G. A closed subset Y C I'\G is called U-
minimal relative to W if Y "W # () and yU =Y forally € Y N W.

Note that a relatively U-minimal set is U-invariant. If W is compact,
then any closed U-invariant set Y C I'\G such that Y N W # () contains a
U-minimal set relative to W. This usually follows from Zorn’s lemma.

Given two closed subsets in I'\G, we collect elements of G that deliver
one subset to the other.

Definition 9.3. For any closed subsets Y7, Yo C I'\G, We define
D(Y1,Ys) :={g € G:YignNYs # 0}.
Note that for z € I'\G and a closed subset Y C I'\G,
Ty(z) = D({z},Y)NU.
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Lemma 9.4. Let Y1,Ys C T'\G be closed subsets and S1,S5; < G.
(1) If one of Y; (i = 1,2) is compact, then D(Y1,Y2) is closed.
(2) IfY;S; =Y, fori=1,2, then D(Y1,Ys) = S1D(Y1,Y2)Ss.
The proof of Lemma [9.4] is rather straightforward and will be omitted.

Lemma 9.5. Let Y1, Yo C I'\G be closed U-invariant sets and W C I'\G a
compact subset. Suppose that Y1 is U-minimal relative to W. Then

D(Y1nW.Y2) "NNg(U) ={g € Na(U) : Y1g C Y}
In particular, D(Y1 N W, Y1) NNg(U) is a closed subsemigroup of Ng(U).
Proof. The hypothesis that Y7 is U-minimal relative to W implies that Y7 D
Y1 NW # (), and hence {g € Ng(U) : Y1g C Yo} C D(Y1 N W,Y2) NNg(U).
Conversely, let g € D(Y1NW,Y2) NNg(U). Then y1g9 = yo for some y; €

Y1 NW and yy € Ys. Since Y7 is U-minimal relative to W and g € Ng(U),
we have

Yig=11Ug =y1gU = y2U C Ys.

Hence, the reverse inclusion follows. The last assertion is straightforward.
O

We will use the following lemma:

Lemma 9.6. [I, Lemma 8.2] Let Y C I'\G be a U-minimal set relative to a
compact subset W C T\G andy € Y N W. If Tyaw(y) is unbounded, then
there exists a sequence u, — oo in U such that yu, — y as n — oo.

An analogue of the following proposition was proved in [I0, Theorem 9.4]
when I is further assumed to be convex cocompact:

Lemma 9.7. Let Y C I'\G be a U-minimal set relative to a compact subset
W C I'\G. Suppose that'Y is not a compact U-orbit, and that Ty (y) is k-
thick at oo for somey € YNW and k > 1. Then there exists a one-parameter
subsemigroup Ly < AV such that

YL, CY.

Proof. Since Y NW is compact, D(Y NW,Y) is closed by Lemma (1) We
claim that there exists a non-trivial element in D(Y NW,Y)N AV arbitrarily
close to e. Since AV < Ng(U) is closed and

D(YﬂW,Y) ﬂNg(U) = {g S Ng(U) :Yg C Y} < Ng(U)
is a closed subsemigroup by Lemma the lemma follows from the claim.

Let y € Y N W be such that Ty (y) is k-thick at co. Since yU C Y,
Tyaw(y) = Tw(y) is unbounded. By Lemma there exists a sequence
Uy — o0 in U such that yu, — y as n — co. We can write yu, = yg, for
some sequence g, — e in G as n — co. We in particular have

(9.1) gn € D(Y NW,Y).
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We first observe that g, ¢ U for all but finitely many n > 1. Since
yU =Y and Y is not a compact U-orbit, yU is not compact. Hence, if
gn € U, then it follows from yu,g,! = y that u, = g,. Since u, — oo and
gn — € as n — 00, this is possible only for finitely many n > 1.

We now construct a non-trivial sequence ¢, — e in D(Y N W,Y) N AV,
which completes the proof as mentioned above. After passing to a subse-
quence, either g, € AN for all n > 1 or g, ¢ AN for all n > 1. First,
consider the case that g, € AN for all n > 1. Since N = VU, there exists a
sequence u,, — e in U such that g,u, € AV for all n > 1, and ¢,u, — € in
particular. By the above observation, g,u, # e for all large enough n > 1.
By and Lemma [9.4(2), we have g,u, € D(Y NW,Y) for all n > 1.
Therefore, we take £, = g,u, in this case.

Now assume that g, ¢ AN for all n > 1. Let

T:=Tw(y) .
For any v € T" and n € N, we have
yuteYNW and yu t(ugn) = ygn €Y.
This implies T'g, C D(Y NW,Y) for all n > 1. By Lemma [9.4(2),
Tg,UCDYNW)Y) foraln>1.

Since Tw (y) is k-thick at co, T' C U is so. By Lemma.6] limsup,,_,, T'g,U
contains a sequence £, — e in AV — {e} as n — oo. Since D(Y NW,Y) is
closed, limsup,, ,, T'g,U C D(YNW,Y). Therefore, ¢, € D(YNW,Y)NAV
is the desired sequence, finishing the proof. O

Remark 9.8. We remark that Lemma[9.6) and Lemma[9.7 hold for more gen-
eral geometrically finite, acylindrical hyperbolic 3-manifolds, as the original
statement of Lemma in [I] was proved in such a setting. The proof of
Lemma [9.7| works verbatim as long as Lemma holds.

Proof of Theorem Let ky > 1 and R,&y > 0 be constants as in
Proposition Proposition and respectively. Since ©z € RFM,
there exists p > 0 such that x € W, r. We simply write W := W, g which
is compact. Since X = zU is U-invariant and X N W # (), there exists a
U-minimal set Y C X relative to W.

Since Y cannot be a compact U-orbit and Ty (y) is 4km-thick at oo for
any y € Y NW by Proposition (2), it follows from Lemma that there
exists a one-parameter subsemigroup L < AV such that YL, C Y.

We claim that one of the following holds:

(a) Y contains a compact N-orbit.
(b) there exist yo € Y and vy € V such that yovg € BFM and

YovoH vy Ley.
(c) there exists a sequence ¢,, — 0o in L4 such that
limsup Y4, # 0.

n—o0
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Suppose first that there exists z € Y such that zN is compact. Since
zU C'Y € X and X does not contain any compact U-orbit, zU is not
compact. This implies

N =z2U CY,
from which (a) follows.
Now assume that
(9.2) zN is not compact for all z € Y.

Fix y € YNW and let ¢ € G be such that y = [g]. Let L < AV be the
one-parameter subgroup containing L. By Lemma L = vAv~! for
some v € V or L = V. Suppose first that L = vAv~—! for some v € V. There
are two possible cases:

e Suppose that ypUNRFM = (). By Lemma[3.2] we have yv € BFM-V,
and hence yvg € BFM for some vy € V. Recalling that BFM C RFM
is a union of finitely many compact H-orbits,

(9.3) yvoH = yuoU = yUvg = Yy
since yvgH is U-minimal by Corollary Therefore, (b) follows in
this case.

e Suppose that yoU NREFM # (. Then we have either (gvU)~ C A or

(gvU)~ meets both A and C — A. In any case, there exists u € U
such that (guv)™ = (gvu)™ € A is conical. Hence, we can find a
sequence t, — oo such that

(9.4) the sequence yuva_y, converges.

By Lemma (guv)™ = g* is conical as well, since yN is not
compact. We then have that for some sequence s, — 0o,

(9.5) the sequence yuvas, converges.

Writing A" := {a; € A : t > 0}, there are two subcases:
—if Ly = vATv™Y set £, = vas,v™! € Ly. Then by (9.5), the
sequence
yuly, = yu(vas, v?)
converges.
—if Ly = v(AT) oL set £, = va_y, v~ € L. Then by ([9.4)
the sequence

yuby, = yu(va,tnv_l)

converges.
Since yu € Y, we have limsup,, . Y4, # 0. Since ¢,, € L diverges,
this shows (c).

Next, suppose L = V. There are two cases:
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e if Y NBFM -V # (), then yovg € BFM for some yg € Y and vg € V.
Recalling that BFM C RFM is a union of finitely many compact
H-orbits,

Yovo = yovoU = yoUvy C Yo
since yovgH is U-minimal by Corollary and Y = yU is U-
invariant. Therefore, (b) follows in this case.

e if YNBFM-V = (), then Yv C RFM-U for all v € V by Lemma |[3.2
Choose any sequence ¢,, — oo in Ly < V. Then by the U-invariance
of Y, there exists a sequence y,, € Y such that y,¢, € RFM for all
n > 1. By the hypothesis , Ynln N = y, N is not compact for all
n > 1. We then have that

Ynln € REM — F, 2r¢ (N) for all n > 1.

By Proposition (3),
Ynln U NWg #0 foralln >1

where Wir = RFM — int(Feszgm). Since y, 0, U C Y{, and Wg
is compact, it follows that limsup,,_,. Y¥, # 0, and therefore (c)
holds.

To finish the proof, it suffices to consider the case (c) of the claim that
for some sequence ¢, — oo in Ly, we have limsup,_,. Y4, # (. Let
yo € limsup,,_, Y, and take a sequence y,, € Y such that y,¢, — yo as
n — 0o. Then for any ¢ € L, we have ¢,/ € L, for all large enough n > 1,
and hence

ynlnl € YLy CY.
Taking the limit n — oo, this implies yof € Y. Since ¢ € L is arbitrary, we
have yoL C Y, and hence
ywlU CY.
Again, L = vAv~! for some v € V or L =V by Lemma .11} If L = vAv~!
for some v € V, then yovAUv™! C Y. If L =V, then yoN C Y. By Lemma
we have either yoN = RF M or yoN is compact. Since yoN C X, this
completes the proof. O

10. THE CLASSIFICATION

In this last section, we prove our classification of U-orbit closures. We
restate Theorem [I.2] below:

Theorem 10.1. Let M = T\H?® be a geometrically finite hyperbolic 3-
manifold with a round Sierpinski limit set. Then for any x € FM, one
of the following holds:

(1) 2U is closed.

(2) 2U = &N which is compact.
(3) 2U = zvHv ' NRF4M for somev € V.
(4) 2U = RF M.
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In the rest of the section, let M and I" be as in Theorem [I0.1} As observed
in Theorem and Theorem 8.1] it sometimes happen that a U-orbit closure
contains a vAUv ™ '-orbit for some v € V. In this regard, we investigate AU-
orbit closures further.

AU-orbit closures. Using the classification of H-orbit closures (Theorem
, we obtain the following;:

Lemma 10.2. For any x € RFM, there exist y € RE4M and v € V' such
that yv € RFEM, yvH is closed, and

yoHv ' NRF,M C zAU.

Proof. Suppose first that x € RFM - U. We take u € U so that zu € RFM.
Recall K = PSU(2) from (2.1) and let Ky = H N K. Since H = AUKy
and Ky is compact, we have

rAUKg = vH = ruH.
By Theorem either xuH is closed or zuH = RF M - H.
e If xuH is closed, then
AU N (zuH NRFLM) # 0

since Ky < H. By the AU-minimality of zuH N RF M (Corollary
, this proves the claim with y = xu € RFM and v = e.
e Otherwise, we have

tAUKpy =RF:M - H.
Let y € BFEM. Then yH C RFM is closed. Hence
zAU NyH # 0,

from which we can deduce the claim as above.

Now suppose that * ¢ RFM-U. By Lemma[3.2) x € BFM -V, and hence
xv € BFM for some v € V. We then have xvH C RFM and xvH is compact.
This implies that zvH is U-minimal by Corollary [6.5], and hence

2AU D 2U = zoUv ! = zvHv ™ L.
Setting y = x, this finishes the proof. O

Corollary 10.3. For any x € RFLM and vg € V, there exist y € RFLM
and v € V such that yv € RFM, yvH is closed, and

yoHv ' NRF,M C :cngUvo_l.

Proof. By Lemma there exists y' € RF{M and v € V such that
y'v' € RFM, y/'v'H is closed, and

Yo' H'"'NRF M C zvyAU.
This implies that
y'vy t (vov' Hv' 1oy ) NRF LM C v AU, .
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We set y = y'vy' € RF4M and v = vpv' € V. Then yv = y/v' € RFM
and yvH = y/'v'H is closed. Moreover, the above inclusion is rewritten as
follows:

yoHv ' NRFLM C xvoAUvO_l.
This completes the proof. O

‘We now show the intermediate classification of U-orbit closures based on
results from Section [§] and Section [ as follows:

Proposition 10.4. Let x € RF.M. Then one of the following holds:

(1) zU 1is closed.

(2) 2U = =N which is compact.

(3) there exist y € RF4M and v € V such that yv € RFEM, yvH is
closed, and

yoHuv ' NRF,M C zU.

Proof. We first note that N is compact or zN = RF,M by Lemma
This implies that if 2U = 2N, and hence zN is closed, then N is compact.
Therefore, it suffices to show that if 2U is neither zU nor zN, then (3)
holds.

Suppose that zU is neither zU nor zN. If x € BFM -V, then zv €
BFM C RFM for some v € V, and hence zvH is a compact U-minimal set
by Corollary Therefore,

2vH = zvU = zUv,

from which (3) follows.

Now assume that z ¢ BFM - V. By Lemma[3.2] # € RFM - U and hence
we may assume that x € RFM by replacing « with an element of zU. We
claim that xU contains a vgAU vy Lorbit for some vy € V. Once we show
the claim, we apply Corollary and (3) follows, finishing the proof.

To see the claim, first consider the case that U does not contain any
compact U-orbit. By Theorem 2U contains a vo AU vy Lorbit for some
vo € V or a compact N-orbit. In the former case, we are done. If zU
contains a compact IN-orbit, it follows from Theorem that zU contains
a vpAUv, Lorbit for some vy € V or &N is compact. On the other hand,
since zU is neither U nor N, N cannot be compact. Indeed, if zN were
compact, then xU is either compact or dense in N, which is not the case
here. Therefore, the claim follows.

Now suppose that zU contains a compact U-orbit, say yU. If ¢ € G
is such that y = [g], then g* is a parabolic limit point, and hence yN is
compact by Lemma Hence 2U meets a compact N-orbit and the claim
follows from Theorem as above. This finishes the proof. U

Combined with the results from Section [/} we now complete the classifi-
cation.
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Proof of Theorem Let x € FM. If x ¢ RF M, then it is easy to see
that zU is closed, noting that the I'-action on H3 U Cis a non-elementary
convergence action with the limit set A.

Hence, we assume that z € RF M. Suppose first that © € BEFM-V. Then
zv € BFM for some v € V', and hence

2U = zoUv ™! = goHv ™!

since zvH C BFM C RFM is a compact U-minimal set by Corollary
Therefore, (3) follows in this case.

It remains to consider the case + ¢ BFM - V. By Lemma [3.2] we have
xz € RFM-U. By Proposition it suffices to consider the case that there
exist y € RF4M and v € V such that yv € RFM, yvH is closed, and

yoHv ' NRF,M C zU.

Since x ¢ BFM -V, zv ¢ BFM - V and hence v € RFM - U by Lemma (3.2
Replacing x with an element of U, we may assume that xv € RFM.
If yv € BEM, then

yvH = yvH NRFM C a2vU.
By Proposition [7.4] this implies that either
2Uv = 20U = yoH or zUv = RF4M.

In any case, (3) or (4) follows.
If yv ¢ BFM, it then follows from Proposition that either

2Uv =yvHNRF{M or zUv=RF.M.
Again, (3) or (4) follows in either case. This completes the proof. O
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