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Abstract. Let G be a connected semisimple real algebraic group. The
class of transverse subgroups of G includes all discrete subgroups of
rank one Lie groups and any subgroups of Anosov or relative Anosov
subgroups. Given a transverse subgroup Γ, we show that the Γ-action
on the Weyl chamber flow space determined by its limit set is properly
discontinuous. This allows us to consider the quotient space and de-
fine Bowen-Margulis-Sullivan measures. We then establish the ergodic
dichotomy for the Weyl chamber flow, in the original spirit of Hopf-
Tsuji-Sullivan. We also introduce the notion of growth indicators and
discuss their properties and roles in the study of conformal measures,
extending the work of Quint. We discuss several applications as well.
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1. Introduction

Patterson-Sullivan theory on conformal measures of a discrete subgroup
of a rank one simple real algebraic group G has played a pivotal role in the
study of dynamics on rank one homogeneous spaces. One of the basic results
due to Sullivan in 1979 is the relation between the support of a conformal
measure and its dimension, which we recall for G = SO◦(n, 1), the identity
component of the special orthogonal group SO(n, 1). The group SO◦(n, 1)
is the group of orientation-preserving isometries of the real hyperbolic space
(Hn, d). The geometric boundary of Hn can be identified with the sphere
Sn−1. For a discrete subgroup Γ < G, denote by Λcon ⊂ Sn−1 the conical
set of Γ, which consists of the endpoints of all geodesic rays in Hn which
accumulate modulo Γ. Let δΓ denote the critical exponent of Γ, which is the
abscissa of convergence of the Poincaré series s 7→

∑
γ∈Γ e

−sd(o,γo), o ∈ Hn.
For a given Γ-conformal measure ν, we denote by mν the Bowen-Margulis-

Sullivan measure on the unit tangent bundle T1(Γ\Hn), which is a locally
finite measure invariant under the geodesic flow. The following theorem is
often referred to as the Hopf-Tsuji-Sullivan dichotomy (see [43], [19], [42],
[1], [39, Theorem 1.7]).

Theorem 1.1 (Sullivan, [42, Corollaries 4, 20, Theorem 21], see also [1],
[12], [39]). Let Γ < SO◦(n, 1), n ≥ 2, be a non-elementary discrete subgroup.
Suppose that there exists a Γ-conformal measure ν on Sn−1 of dimension
s ≥ 0.

(1) We have
s ≥ δΓ.

(2) The following are equivalent:

(a)
∑

γ∈Γ e
−sd(o,γo) = ∞ (resp.

∑
γ∈Γ e

−sd(o,γo) <∞);

(b) ν(Λcon) = 1 (resp. ν(Λcon) = 0);
(c) the geodesic flow on (T1(Γ\Hn),mν) is completely conservative

and ergodic.
(resp. the geodesic flow on (T1(Γ\Hn),mν) is completely dissi-
pative and non-ergodic.)

In the former case, s = δΓ and ν is the unique Γ-conformal measure
of dimension δΓ.

The main aim of this paper is to establish an analogous result for a class
of discrete subgroups of a general connected semisimple real algebraic group
G, called θ-transverse subgroups. The class of θ-transverse subgroups in-
cludes all discrete subgroups of rank one Lie groups, θ-Anosov subgroups
and their relative versions. This class is regarded as a generalization of all
rank one discrete subgroups while Anosov subgroups are regarded as higher
rank analogues of convex cocompact subgroups.

We need to introduce some notations to state our results precisely. Let
P < G be a minimal parabolic subgroup with a fixed Langlands decom-
position P = MAN where A is a maximal real split torus of G, M is the
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maximal compact subgroup of P commuting with A and N is the unipo-
tent radical of P . Let g and a respectively denote the Lie algebra of G and
A. Fix a positive closed Weyl chamber a+ < a so that logN consists of
positive root subspaces and set A+ = exp a+. We fix a maximal compact
subgroup K < G such that the Cartan decomposition G = KA+K holds.
We denote by µ : G → a+ the Cartan projection defined by the condition
g ∈ K expµ(g)K for g ∈ G. Let Π denote the set of all simple roots for
(g, a+). As usual, the Weyl group is the quotient of the normalizer of A
in K by the centralizer of A in K. Let i : a → a denote the opposition
involution, that is, i(u) = −Adw0(u) for all u ∈ a where w0 is the longest
Weyl element. It induces an involution on Π which we denote by the same
notation i. Throughout the introduction, we fix a non-empty subset

θ ⊂ Π.

Let aθ =
⋂
α∈Π−θ kerα and let pθ : a → aθ be the unique projection, in-

variant under all Weyl elements fixing aθ pointwise. Let Pθ be the standard
parabolic subgroup corresponding to θ (our convention is that P = PΠ) and
consider the θ-boundary:

Fθ = G/Pθ.

We say that ξ ∈ Fθ and η ∈ Fi(θ) are in general position if the pair (ξ, η)
belongs to the unique open G-orbit in Fθ × Fi(θ) under the diagonal action
of G.

Let Γ < G be a discrete subgroup. The following properties of Γ are
natural to consider in studying analogues of Theorem 1.1 for Γ-conformal
measures on the θ-boundary Fθ. Let Λθ = Λθ(Γ) denote the θ-limit set of
Γ in Fθ (Definition 5.1).

Definition 1.2. A discrete subgroup Γ is said to be θ-transverse if

• Γ is θ-regular, i.e., lim infγ∈Γ α(µ(γ)) = ∞ for all α ∈ θ; and
• Γ is θ-antipodal, i.e., if any two distinct ξ, η ∈ Λθ∪i(θ) are in general
position.

A θ-transverse subgroup Γ is called non-elementary if #Λθ ≥ 3.

Note that the θ-transverse property is hereditary: a subgroup of a θ-
transverse subgroup is also θ-transverse.

We assume that Γ is θ-transverse in the rest of the introduction. We
define the θ-growth indicator ψθΓ : aθ → [−∞,∞] as follows: fixing any
norm ∥ · ∥ on aθ, if u ∈ aθ is non-zero,

ψθΓ(u) = ∥u∥ inf
u∈C

τ θC (1.1)

where τ θC is the abscissa of convergence of the series
∑

γ∈Γ,µθ(γ)∈C e
−s∥µθ(γ)∥

and C ⊂ aθ ranges over all open cones containing u. Set ψθΓ(0) = 0. This
definition is independent of the choice of a norm on aθ. For θ = Π, ψΠ

Γ
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coincides with Quint’s growth indicator ψΓ [35]. For a general θ ⊂ Π, we
have:

ψθΓ ◦ pθ ≥ ψΓ. (1.2)

(Lemma 3.13, see also Lemma 3.14 for a precise relation for G simple). We
show that ψθΓ < ∞, and ψθΓ is a homogeneous, upper semi-continuous and
concave function. It also follows from (1.2) that

{ψθΓ ≥ 0} = Lθ and ψθΓ > 0 on intLθ (1.3)

where Lθ = Lθ(Γ) is the θ-limit cone of Γ (Theorem 3.3).
Denote by a∗θ = Hom(aθ,R) the space of all linear forms on aθ. For ψ ∈ a∗θ,

a Borel probability measure ν on Fθ is called a (Γ, ψ)-conformal measure if

dγ∗ν

dν
(ξ) = eψ(β

θ
ξ (e,γ)) for all γ ∈ Γ and ξ ∈ Fθ

where γ∗ν(D) = ν(γ−1D) for any Borel subset D ⊂ Fθ and βθξ denotes the

aθ-valued Busemann map defined in (5.6). We find it convenient to call the
linear form ψ the dimension of ν.

For a collection {En : n ∈ N} of subsets of a given metric space X , its
topological limsup is the set of accumulation points of all sequences {xn ∈
En : n ∈ N}, and is denoted by lim supnEn. We define the θ-conical set of
Γ as

Λcon
θ =

®
gPθ ∈ Fθ : lim sup

γ∈Γ
γgMθA

+ ̸= ∅
´
, (1.4)

where Mθ = K ∩ Pθ (see Lemma 5.4 for an equivalent definition). If Γ is
θ-regular, then Λcon

θ ⊂ Λθ (Proposition 5.6).

Definition 1.3. We say ψ ∈ a∗θ is (Γ, θ)-proper if ψ ◦ µθ : Γ → [−ε,∞) is a
proper map for some ε > 0.

For example, a linear form ψ ∈ a∗θ which is positive on Lθ − {0} is (Γ, θ)-
proper. For a (Γ, θ)-proper form ψ, the critical exponent 0 < δψ = δψ(Γ) ≤
∞ of the ψ-Poincaré series Pψ(s) =

∑
γ∈Γ e

−sψ(µθ(γ)) is well-defined and we
have

δψ = lim sup
t→∞

1

t
# log{γ ∈ Γ : ψ(µθ(γ)) < t}

(see Lemma 4.2).
A linear form ψ ∈ a∗θ is said to be (Γ, θ)-critical if ψ is tangent to the θ-

growth indicator ψθΓ, i.e., ψ ≥ ψθΓ and ψ(u) = ψθΓ(u) for some u ∈ a+θ − {0}.

Main theorems. Our main theorems extend Theorem 1.1 to higher rank.

Theorem 1.4. Let Γ < G be a Zariski dense θ-transverse subgroup. Suppose
that there exists a (Γ, ψ)-conformal measure ν on Fθ for ψ ∈ a∗θ.

(1) If ψ is (Γ, θ)-proper, then

ψ ≥ ψθΓ. (1.5)

(2) The following are equivalent:
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(a)
∑

γ∈Γ e
−ψ(µθ(γ)) = ∞ (resp.

∑
γ∈Γ e

−ψ(µθ(γ)) <∞);

(b) ν(Λcon
θ ) = 1 (resp. ν(Λcon

θ ) = 0).
In the former case, any (Γ, θ)-proper ψ is necessarily (Γ, θ)-critical
and ν is the unique (Γ, ψ)-conformal measure on Fθ.

When θ = Π, Theorem 1.4(1) for a Zariski dense discrete subgroup was
proved by Quint. For a general θ, only a weaker bound as (8.7) was known
by [36, Theorem 8.1]. It implies:

Theorem 1.5. Let Γ < G be a Zariski dense θ-transverse subgroup. If there
exists a (Γ, ψ)-conformal measure on Fθ for a (Γ, θ)-proper ψ ∈ a∗θ, then

δψ ≤ 1.

Remark 1.6. (1) Canary-Zhang-Zimmer [9, Theorem 1.4] proved the equiv-
alence of (a) and (b) in Theorem 1.4(2) for θ symmetric, that is,
θ = i(θ), and for conformal measures supported on Λθ. We mention
that transverse subgroups are sometimes called RA-subgroups (cf.
[14]).

(2) For θ symmetric and conformal measures supported on Λθ, Theorem
1.5 was shown in [9, Theorem 1.4]. For some special class of θ-Anosov
subgroups and for conformal measures supported on Λθ, Theorem 1.5
was also proved in [34, Theorem C] and [41, Theorem A].

As in the original Hopf-Tsuji-Sullivan dichotomy (Theorem 1.1), Theorem
1.4 can be extended to the dichotomy on the ergodicity of the Weyl chamber

flow. Recalling the Hopf parametrization Γ\(F (2)
Π × a) ≃ Γ\G/M , a natural

space to consider is the quotient space Γ\(F (2)
θ × aθ) where F (2)

θ = {(ξ, η) ∈
Fθ × Fi(θ) : ξ, η are in general position} and Γ acts on F (2)

θ × aθ from the
left by

γ.(ξ, η, u) = (γξ, γη, u+ βθξ (γ
−1, e)) (1.6)

for all γ ∈ Γ and (ξ, η, u) ∈ F (2)
θ × aθ. However the Γ-action on F (2)

θ × aθ is

not properly discontinuous in general; so the quotient space Γ\(F (2)
θ × aθ)

is not locally compact.

On the other hand, the restriction of the Γ-action on the subspace Λ
(2)
θ ×aθ

turns out to be properly discontinuous where Λ
(2)
θ = F (2)

θ ∩ (Λθ × Λi(θ))
(Theorem 9.1):

Theorem 1.7 (Properly discontinuous action). Let Γ < G be a non-elementary

θ-transverse subgroup. Then the Γ-action on Λ
(2)
θ ×aθ given by (1.6) is prop-

erly discontinuous, and hence the quotient space

Ωθ := Γ\Λ(2)
θ × aθ

is a locally compact Hausdorff space on which aθ acts by translations from
the right.
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Indeed, we prove a stronger property of the action: for a (Γ, θ)-proper

φ ∈ a∗θ, we have a projection Λ
(2)
θ × aθ → Λ

(2)
θ × R given by (ξ, η, u) 7→

(ξ, η, φ(u)). The action (1.6) descends to the action

γ.(ξ, η, s) = (γξ, γη, s+ φ(βθξ (γ
−1, e))) (1.7)

for all γ ∈ Γ and (ξ, η, s) ∈ Λ
(2)
θ × R. We show that the action (1.7) is

properly discontinuous, and prove the following (Theorem 9.2):

Theorem 1.8. Let Γ < G be a non-elementary θ-transverse subgroup. For

any (Γ, θ)-proper φ ∈ a∗θ, Ωφ := Γ\Λ(2)
θ × R is a locally compact Hausdorff

space. Moreover, Ωφ is compact if and only if Γ is θ-Anosov.

Furthermore, we have a trivial kerφ-bundle Ωθ → Ωφ so that Ωθ is home-
omorphic to Ωφ × kerφ (10.4).

For ψ ∈ a∗θ, we denote by Mθ
ψ the space of all (Γ, ψ)-conformal measures

supported on Λθ. For a pair (ν, νi) ∈ Mθ
ψ × Mi(θ)

ψ◦i , we denote by mν,νi

the associated Bowen-Margulis-Sullivan measure on Ωθ (see (10.1) for its
definition).

We expand Theorem 1.4 to the dichotomy on conservativity and ergodicity
of the aθ-action on the space (Ωθ,mν,νi). See Theorem 11.2 for a more
elaborate statement.

Theorem 1.9. Let Γ < G be a non-elementary θ-transverse subgroup. Let
ψ ∈ a∗θ be (Γ, θ)-proper such that Mθ

ψ ̸= ∅. In each of the following comple-

mentary cases, the claims (1)− (4) are equivalent to each other.
The first case:

(1)
∑

γ∈Γ e
−ψ(µθ(γ)) = ∞;

(2) For any ν ∈ Mθ
ψ, ν(Λ

con
θ ) = 1;

(3) For any (ν, νi) ∈ Mθ
ψ ×Mi(θ)

ψ◦i , the Γ-action on (Λ
(2)
θ , ν × νi) is com-

pletely conservative and ergodic;

(4) For any (ν, νi) ∈ Mθ
ψ × Mi(θ)

ψ◦i , the aθ-action on (Ωθ,mν,νi) is com-

pletely conservative and ergodic.

The second case:

(1)
∑

γ∈Γ e
−ψ(µθ(γ)) <∞;

(2) For any ν ∈ Mθ
ψ, ν(Λ

con
θ ) = 0;

(3) For any (ν, νi) ∈ Mθ
ψ ×Mi(θ)

ψ◦i , the Γ-action on (Λ
(2)
θ , ν × νi) is com-

pletely dissipative and non-ergodic;

(4) For any (ν, νi) ∈ Mθ
ψ × Mi(θ)

ψ◦i , the aθ-action on (Ωθ,mν,νi) is com-

pletely dissipative and non-ergodic.

When θ is symmetric, the equivalences (1)-(3) in both cases were proved
in [9, Theorem 1.4] by a different approach.
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Disjoint dimensions phenomenon. Let

Dθ
Γ = {ψ ∈ a∗θ : (Γ, θ)-proper, δψ(Γ) = 1 and Pψ(1) = ∞} .

This is in fact same as

{ψ ∈ a∗θ : (Γ, θ)-proper,∃ a (Γ, ψ)-conformal measure,Pψ(1) = ∞}

when Γ is a θ-transverse subgroup (see Lemma 12.4).
Inspired by the entropy drop phenomenon proved by Canary-Zhang-Zimmer

[9, Theorem 4.1] for θ = i(θ), we deduce from Theorem 1.4 the following
disjointness of dimensions (Theorem 12.5), which turns out to be equivalent
to the entropy drop phenomenon (Corollary 12.6):

Corollary 1.10 (Disjoint dimensions). Let Γ < G be a non-elementary θ-
transverse subgroup. For any subgroup Γ0 < Γ with Λθ(Γ0) ̸= Λθ(Γ), we
have

Dθ
Γ ∩ Dθ

Γ0
= ∅.

In the rank one case, this corollary says that if Λ(Γ0) ̸= Λ(Γ) and Γ0 < Γ
are of divergence type, that is, their Poincaré series diverge at the critical
exponents, then δΓ0 < δΓ. We refer to [9] for a more detailed background
on this phenomenon.

θ-Anosov subgroups. A finitely generated subgroup Γ < G is a θ-Anosov
subgroup if there exists C > 0 such that for all γ ∈ Γ,

min
α∈θ

α(µ(γ)) ≥ C|γ| − C−1 (1.8)

where |γ| denotes the word length of γ with respect to a fixed finite gen-
erating set of Γ ([28], [17], [21], [22], [23]). All θ-Anosov subgroups are
θ-transverse and Λθ = Λcon

θ ([18], [22]). We deduce the following from The-
orem 1.4:

Theorem 1.11. Let Γ < G be a Zariski dense θ-Anosov subgroup. Suppose
that there exists a (Γ, ψ)-conformal measure ν on Fθ for ψ ∈ a∗θ. We have:

(1) The linear form ψ is (Γ, θ)-proper and ψ ≥ ψθΓ.
(2) The following are equivalent to each other:

(a)
∑

γ∈Γ e
−ψ(µθ(γ)) = ∞ (resp.

∑
γ∈Γ e

−ψ(µθ(γ)) <∞);

(b) ν(Λθ) = 1 (resp. ν(Λθ) = 0);
(c) ψ is (Γ, θ)-critical (resp. ψ is not (Γ, θ)-critical).

(3) For each (Γ, θ)-critical ψ ∈ a∗θ, there exists a unique (Γ, ψ)-conformal
measure, say, νψ, on Fθ, which is necessarily supported on Λθ. More-
over the aθ-action on (Ωθ,mνψ ,νψ◦i) is completely conservative and
ergodic.

The equivalence (a) ⇔ (b) in (2) answers a question asked by Sambarino
[41, Remark 5.10].
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Analogue of Ahlfors measure conjecture for θ-Anosov groups. We
denote by Lebθ the Lebesgue measure on Fθ, which is the uniqueK-invariant
probability measure on Fθ. The following corollary is motivated by the
Ahlfors measure conjecture [2].

Corollary 1.12. If Γ < G is Zariski dense θ-Anosov, then

either Λθ = Fθ or Lebθ(Λθ) = 0.

Moreover, in the former case, θ is the simple root of a rank one factor, say
G0, of G and Γ projects to a cocompact lattice of G0.

See Theorem 12.1 for a more general version stated for a θ-transverse
subgroup.

Critical forms and conformal measures. We set

T θ
Γ := {ψ ∈ a∗θ : ψ is (Γ, θ)-critical}.

Note that Dθ
Γ ⊂ T θ

Γ (Corollary 4.6). For θ-Anosov subgroups, we further

have T θ
Γ = Dθ

Γ, which is again same as the set of all ψ ∈ a∗θ for which there
exists a (Γ, ψ)-conformal measure supported on Λθ (Lemma 13.4). A Γ-
conformal measure is said to be of critical dimension if the associated linear
form belongs to T θ

Γ . Using Sambarino’s parametrization of the space of all
conformal measures on Λθ as {δψ = 1} [41, Theorem A], we deduce:

Corollary 1.13. For any Zariski dense θ-Anosov subgroup Γ < G, we have
a one-to-one correspondence among

(1) the set T θ
Γ of all (Γ, θ)-critical forms on aθ;

(2) the set of all unit vectors in intLθ;
(3) the set of all Γ-conformal measures supported on Λθ;
(4) the set of all Γ-conformal measures on Fθ of critical dimensions.

More precisely, for any ψ ∈ T θ
Γ , there exists a unique unit vector uψ ∈ a+θ

such that ψ(uψ) = ψθΓ(uψ); moreover uψ ∈ intLθ. There also exists a unique
(Γ, ψ)-conformal measure νψ on Fθ, which is necessarily supported on Λθ.
Moreover every Γ-conformal measure supported on Λθ arises in this way.

Corollary 1.14 (Disjoint critical dimensions). Let Γ < G be a Zariski dense
θ-Anosov subgroup. For any subgroup Γ0 < Γ such that Λθ(Γ0) ̸= Λθ(Γ), we
have

T θ
Γ ∩ T θ

Γ0
= ∅ and ψθΓ0

< ψθΓ on intLθ(Γ).

Indeed, the above two conclusions are equivalent to each other by the
vertical tangency and concavity of ψθΓ (see Corollary 13.3 for the proof).

Remark 1.15. Related dichotomy properties for conformal measures were
studied in [14], [6], [30], [15], [41], [9], etc. In particular, when Γ is Π-
Anosov, Theorem 1.11, Corollaries 1.12 and 1.13 were proved by Lee-Oh
[30, Theorems 1.3, 1.4]. The papers [14], [41], and [9] study conformal
measures supported on the limit set Λθ and the papers [6] and [15] study the
role of directional conical sets in the ergodic behavior of conformal measures.
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Our focus on this paper is to address general conformal measures without
restriction on their supports following [30] and to study the relationship
between the dimensions of conformal measures and θ-growth indicators so
as to establish an analogue of Sullivan’s theorem (Theorem 1.1) and the
analogue of the Ahlfors measure conjecture. We also emphasize that the
θ-growth indicator is first introduced in our paper. Notably, Theorem 1.7

provides a new locally compact Hausdorff space Ωθ := Γ\Λ(2)
θ × aθ which

is a non-wandering set for the Weyl chamber flow Aθ. This allows us to
define Bowen-Margulis-Sullivan measures as in the rank one setting. Hence
the dynamical properties of the Weyl chamber flow can be studied also in
higher rank, fully recovering the original work of Hopf-Tsuji-Sullivan.

Finally, we mention that there is a plethora of examples of θ-transverse
subgroups which are not θ-Anosov. First of all, any subgroup of θ-Anosov
subgroups are θ-transverse. For instance, a co-abelian subgroup of a θ-
Anosov subgroup of infinite index is θ-transverse but not θ-Anosov. The
images of cusped Hitchin representations of geometrically finite Fuchsian
groups by [7] are also θ-transverse but not θ-Anosov. Another important
examples are self-joinings of geometrically finite subgroups of rank one Lie

groups, that is, Γ = (
∏k
i=1 ρi)(∆) = {(ρi(g))i : g ∈ ∆} where ∆ is a geo-

metrically finite subgroup of a rank one simple real algebraic group G0 and
ρi : ∆ → Gi is a type-preserving isomorphism onto its image ρi(∆) which
is a geometrically finite subgroup of a rank one simple real algebraic group
Gi for each 1 ≤ i ≤ k. It follows from [44, Theorem 3.3] and [13, Theorem
A.4] (see also [46, Theorem 0.1]) that there exists a ρi-equivariant home-
omorphism between the limit set of ∆ and the limit set of ρi(∆) for each
1 ≤ i ≤ k. This implies that Γ is Π-transverse.

Organization.

• In section 2, we introduce the notion of convergence of elements of
G to those of Fθ and present some basic lemmas which will be used
in the proof of our main theorems.

• In section 3, we define the θ-growth indicator ψθΓ for a θ-discrete
subgroup Γ < G. Properties of the θ-growth indicator and its rela-
tionship with Quint’s growth indicator [35] are also discussed.

• In section 4, we introduce (Γ, θ)-proper linear forms and (Γ, θ)-
critical linear forms and discuss properties of their critical exponents.

• In section 5, we define the θ-limit set and the θ-conical set of Γ. For
θ-regular subgroups, we show that the θ-conical set is a subset of
the θ-limit set and construct conformal measures supported on the
θ-limit set for each ψ ∈ Dθ

Γ.
• In section 6, we prove that for θ-transverse subgroups, θ-shadows
with bounded width have bounded multiplicity, which is one of the
key technical ingredients of our main results.
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• In section 7, we show that if Γ is a θ-transverse subgroup, the di-
mension of a Γ-conformal measure is at least ψθΓ (Theorem 7.1).

• In section 8, we prove the zero-one law for the ν-size of the conical set
depending on whether or not the associated Poincaré series converges
at its dimension (Theorem 8.2).

• In section 9, we prove that a θ-transverse subgroup Γ acts prop-

erly discontinuously on Λ
(2)
θ ×aθ and define Bowen-Margulis-Sullivan

measures on the space Ωθ = Γ\Λ(2)
θ × aθ. For any (Γ, θ)-proper form

φ, we also show that the φ-twisted Γ-action on Λ
(2)
θ ×R is properly

discontinuous and gives rise to a trivial vector bundle Ωθ → Ωφ =

Γ\Λ(2)
θ × R.

• In section 10, we give the definition of Bowen-Margulis-Sullivan mea-
sures.

• In section 11, we expand the equivalence between dichotomies to
conservativity and ergodicity of the aθ-action on Ωθ, proving Theo-
rem 1.9. We also explain how to deduce Theorem 1.4 from Theorems
7.1 and 8.2.

• In section 12, we discuss several consequences of Theorem 8.2, in-
cluding disjoint dimension phenomenon.

• Finally, in section 13 we discuss how our theorems are applied for
θ-Anosov groups. We also prove Corollary 1.12.

Acknowledgement. We would like to thank Jean-François Quint for useful
conversations about Lemma 3.14.

2. Convergence in G ∪ Fθ.

In the whole paper, let G be a connected semisimple real algebraic group.
Let P < G be a minimal parabolic subgroup with a fixed Langlands decom-
position P = MAN where A is a maximal real split torus of G, M is the
maximal compact subgroup of P commuting with A and N is the unipotent
radical of P . Let g and a respectively denote the Lie algebras of G and A.
Fix a positive closed Weyl chamber a+ < a so that logN consists of positive
root subspaces and set A+ = exp a+. We fix a maximal compact subgroup
K < G such that the Cartan decomposition G = KA+K holds. We denote
by

µ : G→ a+

the Cartan projection defined by the condition g ∈ K expµ(g)K for g ∈ G.
Let X = G/K be the associated Riemannian symmetric space, and set
o = [K] ∈ X. Fix a K-invariant norm ∥ · ∥ on g induced from the Killing
form on g and let d denote the Riemannian metric on X induced by ∥ · ∥.
Lemma 2.1. [3, Lemma 4.6] For any compact subset Q ⊂ G, there exists
C = C(Q) > 0 such that for all g ∈ G,

sup
q1,q2∈Q

∥µ(q1gq2)− µ(g)∥ ≤ C.
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Let Φ = Φ(g, a) denote the set of all roots, Φ+ ⊂ Φ the set of all positive
roots, and Π ⊂ Φ+ the set of all simple roots. We denote by NK(A) and
CK(A) the normalizer and centralizer of A in K respectively. Consider the
Weyl group W = NK(A)/CK(A). Fix an element

w0 ∈ NK(A)

representing the longest Weyl element so that Adw0 a
+ = −a+ and w−1

0 =
w0. Hence the map

i = −Adw0 : a → a

defines an involution of a preserving a+; this is called the opposition invo-
lution. It induces a map Φ → Φ preserving Π, for which we use the same
notation i, such that i(α) ◦Adw0 = −α for all α ∈ Φ. We have

µ(g−1) = i(µ(g)) for all g ∈ G . (2.1)

In the rest of the paper, we fix a non-empty subset θ ⊂ Π. Let Pθ
denote a standard parabolic subgroup of G corresponding to θ; that is, Pθ is
generated by MA and all root subgroups Uα, α ∈ Φ+∪ [Π−θ] where [Π−θ]
denotes the set of all roots in Φ which are Z-linear combinations of Π − θ.
Hence PΠ = P . The subgroup Pθ is equal to its own normalizer; for g ∈ G,
gPθg

−1 = Pθ if and only if g ∈ Pθ. Let

aθ =
⋂

α∈Π−θ
kerα, a+θ = aθ ∩ a+,

Aθ = exp aθ, and A+
θ = exp a+θ .

Let
pθ : a → aθ

denote the projection invariant under w ∈ W fixing aθ pointwise.
Let Lθ denote the centralizer of Aθ; it is a Levi subgroup of Pθ and

Pθ = LθNθ where Nθ = Ru(Pθ) is the unipotent radical of Pθ. We set
Mθ = K ∩ Pθ ⊂ Lθ. We may then write Lθ = AθSθ where Sθ is an almost
direct product of a connected semisimple real algebraic subgroup and a
compact subgroup. Then Bθ = Sθ ∩A is a maximal R-split torus of Sθ and
Π− θ is the set of simple roots for (LieSθ,LieBθ). Letting

B+
θ = {b ∈ Bθ : α(log b) ≥ 0 for all α ∈ Π− θ},

we have the Cartan decomposition of Sθ:

Sθ =MθB
+
θ Mθ.

Any u ∈ a can be written as u = u1 + u2 for unique u1 ∈ aθ and u2 ∈
LieBθ, and we have pθ(u) = u1. In particular, we have

A = AθBθ and A+ ⊂ A+
θ B

+
θ .

We denote by a∗θ = Hom(aθ,R) the dual space of aθ. It can be identified
with the subspace of a∗ which is pθ-invariant: a∗θ = {ψ ∈ a∗ : ψ ◦ pθ = ψ};
so for θ1 ⊂ θ2, we have a∗θ1 ⊂ a∗θ2 .
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The θ-boundary Fθ and convergence to Fθ. We set

Fθ = G/Pθ and F = G/P.

Let

πθ : F → Fθ
denote the canonical projection map given by gP 7→ gPθ, g ∈ G. We set

ξθ = [Pθ] ∈ Fθ. (2.2)

By the Iwasawa decomposition G = KP = KAN , the subgroup K acts
transitively on Fθ, and hence

Fθ ≃ K/Mθ.

We consider the following notion of convergence of a sequence in G to an
element of Fθ.

Definition 2.2. For a sequence gi ∈ G and ξ ∈ Fθ, we write limi→∞ gi =
lim gio = ξ and say gi (or gio ∈ X) converges to ξ if

• minα∈θ α(µ(gi)) → ∞; and
• limi→∞ κgiξθ = ξ in Fθ for some κgi ∈ K such that gi ∈ κgiA

+K.

Points in general position. Let P+
θ be the standard parabolic subgroup

of G opposite to Pθ such that Pθ ∩ P+
θ = Lθ. Set P+ := P+

Π . We have

P+
θ = w0Pi(θ)w

−1
0 and hence

Fi(θ) = G/P+
θ .

In particular, if θ is symmetric in the sense that θ = i(θ), then Fθ = G/P+
θ .

Let N+
θ denote the unipotent radical of P+

θ . The set N+
θ Pθ is a Zariski open

and dense subset of G. In particular, N+
θ ξθ∩hN

+
θ ξθ ̸= ∅ for any h ∈ G. The

G-orbit of (Pθ, P
+
θ ) is the unique open G-orbit in G/Pθ ×G/P+

θ under the
diagonal G-action. Since P =MAN and P+ =MAN+, a ∈ A+ centralizes
MA, and its conjugation action on N (resp. N+) contracts (resp. expands),
the following is immediate:

Lemma 2.3. Let Q ⊂ P and Q+ ⊂ P+ be bounded subsets. For any se-
quence ai ∈ A+, both sequences a−1

i Qai and aiQ
+a−1

i are uniformly bounded.

Definition 2.4. Two elements ξ ∈ Fθ and η ∈ Fi(θ) are said to be in

general position if (ξ, η) ∈ G.(Pθ, w0Pi(θ)) = G.(Pθ, P
+
θ ), i.e., ξ = gPθ and

η = gw0Pi(θ) for some g ∈ G.

We set

F (2)
θ = {(ξ, η) ∈ Fθ ×Fi(θ) : ξ, η are in general position}, (2.3)

which is the unique open G-orbit in Fθ ×Fi(θ). It follows from the identity

P+
θ = N+

θ (Pθ ∩ P+
θ ) that

(gPθ, P
+
θ ) ∈ F (2)

θ if and only if g ∈ N+
θ Pθ. (2.4)
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Basic lemmas. We generalize [29, Lemmas 2.9-11] from θ = Π to a general
θ as follows. For subsets Si ⊂ G, we often write g = g1g2g3 ∈ S1S2S3 to
mean that gi ∈ Si for each i, in addition to g = g1g2g3.

Lemma 2.5. Consider a sequence gi = kiaih
−1
i where ki ∈ K, ai ∈ A+, and

hi ∈ G. Suppose that ki → k0 ∈ K, hi → h0 ∈ G, and minα∈θ α(log ai) →
∞, as i→ ∞. Then for any ξ ∈ h0N

+
θ ξθ (i.e., ξ is in general position with

h0P
+
θ ), we have

lim
i→∞

giξ = k0ξθ.

Proof. Since h−1
i ξ converges to the element h−1

0 ξ ∈ N+
θ ξθ by the hypothesis

and N+
θ ξθ ⊂ Fθ is open, we have h−1

i ξ ∈ N+
θ ξθ for all large i. Hence we can

write h−1
i ξ = niξθ with ni ∈ N+

θ uniformly bounded. Since minα∈θ α(log ai) →
∞ and ni ∈ N+

θ is uniformly bounded, we have ainia
−1
i → e as i → ∞.

Therefore the sequence aih
−1
i ξ = ainia

−1
i ξθ converges to ξθ. Hence we have

lim
i→∞

giξ = lim
i→∞

ki(aih
−1
i ξ) = k0ξθ.

□

Corollary 2.6. If w ∈ NK(A) is such that mw ∈ N+
θ Pθ for some m ∈Mθ,

then w ∈ Mθ. In particular, if wPθ and P+
θ are in general position, then

w ∈Mθ.

Proof. Choose any sequence ai ∈ A+
θ such that minα∈θ α(log ai) → ∞. Since

mwξθ ∈ N+
θ ξθ, we deduce from Lemma 2.5 that aimwξθ converges to ξθ as

i → ∞. On the other hand, since w ∈ NK(A), A ⊂ Pθ and m ∈ Mθ, we
have aimwξθ = mw(w−1aiw)ξθ = mwξθ for all i. Hence mwξθ = ξθ. Since
m ∈Mθ, this implies wξθ = ξθ and hence w ∈ Pθ ∩K =Mθ. □

It turns out that the convergence of gi → ξ is equivalent to gip → ξ for
any p ∈ X. More generally, we have

Lemma 2.7. If a sequence gi ∈ G converges to ξ ∈ Fθ and pi ∈ X is a
bounded sequence, then

lim
i→∞

gipi = ξ.

Proof. Let g′i ∈ G be such that g′io = pi; then g′i is bounded. Since

lim gi = ξ, we may write gi = kiaiℓ
−1
i with ki, ℓi ∈ K and ai ∈ A+ where

minα∈θ α(log ai) → ∞, and kiξθ → ξ as i → ∞. Write gig
′
i = k′ia

′
i(ℓ

′
i)
−1 ∈

KA+K. Since g′i is bounded, limi→∞minα∈θ α(log a
′
i) = ∞, by Lemma

2.1. Let q ∈ K be a limit of the sequence qi := k−1
i k′i. By passing to a

subsequence, we may assume that qi → q. Since d(o, pi) = d(gio, gipi) =
d(o, a−1

i qia
′
io), the sequence h−1

i := a−1
i qia

′
i is bounded. Passing to a sub-

sequence, we may assume that hi converges to some h0 ∈ G. Choose any
η ∈ N+

θ ξθ ∩ h0N
+
θ ξθ. By Lemma 2.5, we have

lim
i→∞

aih
−1
i η = ξθ and lim

i→∞
qia

′
iη = qξθ.
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Since aih
−1
i = qia

′
i, it follows that qξθ = ξθ; so q ∈ K ∩ Pθ. Hence ξ =

lim kiξθ = lim k′iξθ. It follows that lim gipi = ξ. □

Lemma 2.8. If a sequence gi ∈ G converges to g and a sequence ai ∈ A+

satisfies minα∈θ α(log ai) → ∞ as i→ ∞, then for any p ∈ X, we have

lim
i→∞

giaip = gξθ.

Proof. By Lemma 2.7, it suffices to consider the case when p = o. Write
giai = kibiℓ

−1
i with ki, ℓi ∈ K and bi ∈ A+. Since the sequence gi is

bounded, limi→∞minα∈θ α(log bi) = ∞ by Lemma 2.1. Let k0 be a limit of
the sequence ki; without loss of generality, we may assume that ki converges
to k0 as i → ∞. Then limi→∞ giaio = k0ξθ. We may also assume that ℓi
converges to some ℓ0 ∈ K. Choose ξ ∈ ℓ0N

+
θ ξθ ∩ N

+
θ ξθ. Then by Lemma

2.5, as i → ∞, giaiξ → k0ξθ and aiξ → ξθ. Since gi converges to g, this
implies that k0ξθ = gξθ. This finishes the proof. □

3. Growth indicators

Let Γ < G be a discrete subgroup. We set

µθ := pθ ◦ µ : G→ a+θ . (3.1)

Definition 3.1. We say that Γ is θ-discrete if the restriction µθ|Γ : Γ → a+θ
is proper.

The θ-discreteness of Γ implies that µθ(Γ) is a closed discrete subset of
a+θ . Indeed, Γ is θ-discrete if and only if the counting measure on µθ(Γ)

weighted with multiplicity is a Radon measure on a+θ .

Definition 3.2 (θ-growth indicator). For a θ-discrete subgroup Γ < G, we
define the θ-growth indicator ψθΓ : aθ → [−∞,∞] as follows: if u ∈ aθ is
non-zero,

ψθΓ(u) = ∥u∥ inf
u∈C

τ θC (3.2)

where C ⊂ aθ ranges over all open cones containing u, and ψθΓ(0) = 0. Here

−∞ ≤ τ θC ≤ ∞ denotes the abscissa of convergence of the series Pθ
C(s) =∑

γ∈Γ,µθ(γ)∈C e
−s∥µθ(γ)∥, that is,

τ θC = sup{s ∈ R : Pθ
C(s) = ∞} = inf{s ∈ R : Pθ

C(s) <∞}.

This definition is independent of the choice of a norm on aθ. For θ = Π,
we set

ψΓ := ψΠ
Γ .

The main goal of this section is to establish the following properties of ψθΓ
for a general θ ⊂ Π: for θ = Π, this theorem is due to Quint [35, Theorem
1.1.1].

Theorem 3.3. Let Γ < G be a Zariski dense θ-discrete subgroup.
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(1) ψθΓ <∞.

(2) ψθΓ is a homogeneous, upper semi-continuous and concave function.

(3) Lθ = {ψθΓ ≥ 0}, ψθΓ = −∞ outside Lθ and ψθΓ > 0 on intLθ.

Here, Lθ ⊂ a+θ denotes the θ-limit cone of Γ, which is the asymptotic cone
of µθ(Γ):

Lθ = {lim tiµθ(γi) : γi ∈ Γ, ti → 0}. (3.3)

We set L = LΠ, which is the usual limit cone. By [3, Sections 1.2, 4.6], if Γ
is Zariski dense, then L is a convex cone with non-empty interior and µ(Γ)
is within a bounded distance from L. We have

L = {ψΓ ≥ 0}, and ψΓ > 0 on intL (3.4)

and ψΓ = −∞ outside L [35, Theorem 1.1.1]. Noting that Lθ = pθ(L), we
get:

Lemma 3.4. Let Γ be a Zariski dense θ-discrete subgroup. The θ-limit cone
Lθ is a convex cone in a+θ with non-empty interior and µθ(Γ) is within a
bounded distance from Lθ.

ψθΓ < ∞ and θ-critical exponent. In this subsection, we show Theorem

3.3(1), that is, for a Zariski dense θ-discrete Γ < G, ψθΓ does not take +∞-

value. This will be achieved by proving δθΓ <∞ (Proposition 3.7) where

−∞ ≤ δθΓ ≤ ∞

denotes the abscissa of convergence of the series s 7→
∑

γ∈Γ e
−s∥µθ(γ)∥. For

θ = Π, we have 0 < δΓ = δΠΓ < ∞ [35, Theorem 4.2.2]. Since ∥µθ(g)∥ ≤
∥µ(g)∥ for all g ∈ G and hence

∑
γ∈Γ e

−s∥µ(γ)∥ ≤
∑

γ∈Γ e
−s∥µθ(γ)∥ for all

s ≥ 0, we have

0 < δΓ ≤ δθΓ. (3.5)

Lemma 3.5. If Γ is Zariski dense and θ-discrete, then

δθΓ = lim sup
t→∞

1

t
# log{γ ∈ Γ : ∥µθ(γ)∥ < t} ∈ (0,∞].

Proof. For x ∈ aθ, we denote by Dx the Dirac mass at x. Since
∑

γ∈ΓDµθ(γ)

is a Radon measure on a+θ and δθΓ > 0 by (3.5), it follows from [35, Lemma
3.1.1]. □

For a general discrete subgroup Γ < G, δθΓ may be infinite (e.g., Γ =
Γ1 × Γ2 where Γi is an infinite discrete subgroup of Gi for both i = 1, 2 and
θ consists of simple roots of G1). Since τ

θ
C ≤ δθΓ for all cones C in aθ, we have

sup
u∈aθ,∥u∥=1

ψθΓ(u) ≤ δθΓ.

Hence Theorem 3.3(1) follows once we show the that δθΓ < ∞ for any θ-
discrete subgroup Γ < G as in Proposition 3.7.
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a+

kerα2

kerα1

u

p−1
α1

(u) ∩ a+

Figure 1. G = PSL3(R) and θ = {α1}.

Lemma 3.6. If pθ|a+ is a proper map (e.g., G is simple), then

δθΓ <∞
for any discrete subgroup Γ < G. In particular, if G is simple, any discrete
subgroup Γ < G is θ-discrete.

Proof. First, observe that if G is simple, then the angle between any two
walls of a+ is strictly smaller than π/2 and hence pθ|a+ is a proper map (see
Figure 1). Now, if pθ|a+ is a proper map, then for some constant C > 1, we
have

C−1∥u∥ ≤ ∥pθ(u)∥ ≤ C∥u∥
for all u ∈ a+. Hence δΓ <∞ implies that

δθΓ <∞.

□

It follows from the definition of δθΓ that the finiteness of δθΓ implies the
θ-discreteness of Γ. Indeed, the converse holds as well from which Theorem
3.3(1) follows.

Proposition 3.7. We have

Γ is θ-discrete if and only if δθΓ <∞.

Proof. It suffices to show that the θ-discreteness of Γ implies δθΓ <∞. Write
G = G1G2 as an almost direct product of semisimple real algebraic groups
where G1 is the smallest group such that θ is contained in the set of simple
roots for (g1, a

+
1 = a+ ∩ g1). Then µθ(Γ) ⊂ a+θ ⊂ a+1 . Since the kernel of

pθ|µ(Γ) contains µ(Γ ∩ ({e} × G2)), the properness hypothesis implies that
Γ ∩ ({e} × G2) is finite. By passing to a subgroup of finite index, we may
assume that Γ ∩ ({e} × G2) is trivial. The properness of µθ|Γ also implies
that the projection of Γ to G1 is a discrete subgroup, which we denote by Γ1.
Since there exists a unique element, say, σ(γ1) ∈ G2 such that (γ1, σ(γ1)) ∈ Γ
for each γ1 ∈ Γ1, we get a faithful representation σ : Γ1 → G2, and Γ is of the
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form {(γ1, σ(γ1)) : γ ∈ Γ1}. Since µθ(γ) = µθ(γ1) for γ = (γ1, σ(γ1)) ∈ Γ,
we have

δθΓ = δθΓ1
.

Hence we may assume without loss of generality that θ contains at least one
root of each simple factor of G. Since the restriction pθ : a+ ∩ LieG0 →
aθ ∩ LieG0 is a proper map for each simple factor G0 of G as mentioned
before, it follows that pθ is a proper map. Hence the claim δθΓ < ∞ follows
by Lemma 3.6. □

Remark 3.8. We remark that the θ-discreteness of Γ does not necessarily
imply that the map pθ|L is a proper map. For example, let Γ0 be a Zariski
dense and convex cocompact subgroup of SO◦(k, 1), k ≥ 2, and let σ : Γ0 →
SO◦(k, 1) be a discrete faithful representation such that σ(Γ0) is Zariski
dense but not convex cocompact. Consider Γ = {(g, σ(g)) : g ∈ Γ0} and
G = SO◦(k, 1) × SO◦(k, 1). We may identify a = {(x1, x2) ∈ R2} and
a+ = R≥0×R≥0. Then the limit cone of Γ is a convex cone of a+ containing
the x1-axis; otherwise, σ must be convex cocompact. Hence for θ = {α2}
where α2(x1, x2) = x2, the fiber p−1

θ (0) is the whole x1-axis, and hence
pθ|L is not proper. On the other hand, the discreteness of σ(Γ0) is same as
θ-discreteness of Γ.

Concavity of ψθΓ. The growth indicator ψθΓ is clearly a homogeneous and
upper semi-continuous function [35, Lemma 3.1.7]. It is also a concave
function, but its proof requires the following lemma, which is proved in [35,
Proposition 2.3.1] for θ = Π.

Lemma 3.9. Suppose that Γ is Zariski dense and θ-discrete. Then there
exists a map π : Γ× Γ → Γ satisfying the following:

(1) there exists κ ≥ 0 such that for every γ1, γ2 ∈ Γ,

∥µθ(π(γ1, γ2))− µθ(γ1)− µθ(γ2)∥ < κ; and

(2) for every R ≥ 0, there exists a finite subset H of Γ such that for
γ1, γ

′
1, γ2, γ

′
2 ∈ Γ with ∥µθ(γi)− µθ(γ

′
i)∥ ≤ R for i = 1, 2,

π(γ1, γ2) = π(γ′1, γ
′
2) ⇒ γ′1 ∈ γ1H and γ′2 ∈ Hγ2.

Proof. Since pθ is norm-decreasing, (1) follows from [35, Proposition 2.3.1(1)].
By the proof of [35, Proposition 2.3.1(2)], the claim (2) holds if we set H to
be the subset consisting of all elements γ ∈ Γ such that µθ(γ) < R′ for some
R′ > 0 depending only on R. Since Γ is θ-discrete, this subset H is finite,
as desired. □

Proposition 3.10. If Γ is Zariski dense and θ-discrete, then ψθΓ is concave,

and hence there exists a unique unit vector uθΓ ∈ a+θ such that

ψθΓ(u
θ
Γ) = max

∥u∥=1,u∈a+θ
ψθΓ(u) = δθΓ.



18 DONGRYUL M. KIM, HEE OH, AND YAHUI WANG

Proof. By Lemma 3.9, the counting measure
∑

γ∈ΓDµθ(γ) is of concave

growth (see [35, Section 3.2] for details). It follows from [35, Theorem 3.2.1]
that ψθΓ is concave. By [35, Corollary 3.1.4, Corollary 3.3.5], the second
claim follows. □

Definition 3.11. A linear form ψ ∈ a∗θ is said to be tangent to ψθΓ (at

u ∈ a+θ − {0}) if ψ ≥ ψθΓ on a+θ and ψ(u) = ψθΓ(u).

By the supporting hyperplane theorem, we have the following corollary:

Corollary 3.12. Let Γ < G be Zariski dense and θ-discrete. For any u ∈
intLθ, there exists a linear form ψ ∈ a∗θ tangent to ψθΓ at u.

Positivity of ψθΓ. By Lemma 3.4, we have ψθΓ = −∞ outside Lθ. If Θ ⊃ θ,
then any θ-discrete Γ is Θ-discrete as well. The following lemma shows how
ψθΓ is related to ψΘ

Γ from which Theorem 3.3(3) follows:

Lemma 3.13. For Θ ⊃ θ, let pθ = pθ|aΘ : aΘ → aθ by abuse of notation.
For any Zariski dense θ-discrete Γ < G, we have

ψθΓ ◦ pθ ≥ ψΘ
Γ on aΘ. (3.6)

In particular,

ψθΓ ≥ 0 on Lθ and ψθΓ > 0 on intLθ. (3.7)

Proof. Note that (3.7) follows from (3.4) and (3.6). By homogeneity, it
suffices to prove (3.6) for all v ∈ p−1

θ (u) ∩ aΘ, where u ∈ Lθ is an arbitrary

unit vector. Let v ∈ p−1
θ (u)∩ aΘ. Let C ⊂ aθ be an open cone containing u.

For each ε > 0, set

C(v, ε) :=
{
w ∈ aΘ : pθ(w) ̸= 0 and

∥∥∥ w
∥pθ(w)∥ − v

∥∥∥ < ε
}
. (3.8)

Since ∥pθ(v)∥ = ∥u∥ = 1, C(v, ε) is an open cone containing v. In the
following, let ε > 0 be small enough so that C(v, ε) ⊂ p−1

θ (C).
Then for all s ∈ R, we have∑

γ∈Γ,µΘ(γ)∈C(v,ε)

e−s∥µΘ(γ)∥ ≤
∑

γ∈Γ,µΘ(γ)∈C(v,ε)

e−(s∥v∥−|εs|)∥µθ(γ)∥

≤
∑

γ∈Γ,µθ(γ)∈C

e−(s∥v∥−|εs|)∥µθ(γ)∥.

Hence we have

τΘC(v,ε) ≤ (∥v∥ − ε)−1 τ θC .

Therefore we have

ψΘ
Γ (v) ≤ ∥v∥τΘC(v,ε) ≤ ∥v∥ (∥v∥ − ε)−1 τ θC .

Taking ε→ 0 yields that

ψΘ
Γ (v) ≤ τ θC .
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Since C ⊂ aΘ is an arbitrary open cone in aθ containing u, it follows that

ψΘ
Γ (v) ≤ ψθΓ(u),

and hence (3.6) is proved. Last claim follows the from (3.4) and (3.6) applied
to Θ = Π. □

Comparison between ψθΓ and ψΘ
Γ . Note that for a discrete subgroup

Γ < G, the properness of pθ|Lθ implies the θ-discreteness of Γ as µ(Γ) is
within a bounded distance from L. The following lemma is to appear in [16]
in a more general context.

Lemma 3.14. Let Γ < G be a Zariski dense discrete subgroup. If pθ|L is a
proper map (e.g., G is simple), then for any Θ ⊃ θ and for any u ∈ aθ,

ψθΓ(u) = max
v∈p−1

θ (u)
ψΘ
Γ (v) (3.9)

where pθ = pθ|aΘ by abuse of notation.

Proof. Suppose that pθ|L : L → aθ is a proper map. By Lemma 3.13, it
suffices to consider a unit vector u ∈ Lθ with ψθΓ(u) > 0. Since p−1

θ (u)∩LΘ

is a compact subset and ψΘ
Γ is upper semi-continuous, we have

sup
v∈p−1

θ (u)

ψΘ
Γ (v) = max

v∈p−1
θ (u)∩LΘ

ψΘ
Γ (v).

For all sufficiently small ε > 0 and each v ∈ p−1
θ (u), there exists 0 < εv < ε

such that

∥v∥τΘC(v,εv) < ψΘ
Γ (v) + ε (3.10)

where C(v, εv) is as defined in (3.8). Since p−1
θ (u) ∩ LΘ is compact, there

exist v1, · · · , vn ∈ p−1
θ (u) such that

p−1
θ (u) ∩ LΘ ⊂

n⋃
i=1

C(vi, εvi).

Take an open cone C ⊂ aθ containing u such that

p−1
θ (u) ∩ LΘ ⊂ p−1

θ (C) ∩ LΘ ⊂
n⋃
i=1

C(vi, εvi).

This is indeed possible; if not, there is a sequence of unit vectors uj ∈ aθ
converging to u as j → ∞ such that for each j, there exists wj ∈ p−1

θ (uj)∩LΘ

that does not belong to
⋃n
i=1 C(vi, εvi). Since pθ|LΘ

is proper and the unit
sphere in aθ is compact, we may assume that the sequence wj converges to
some w ∈ LΘ after passing to a subsequence. Since pθ(wj) = uj → u as

j → ∞, we have pθ(w) = u, and hence w ∈ p−1
θ (u) ∩ LΘ. It implies that

wj ∈
⋃n
i=1 C(vi, εvi) for all large j, contradiction.
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Since µΘ(Γ) is within a bounded distance from LΘ (Lemma 3.4), there
are only finitely many elements of µΘ(Γ)∩ p−1

θ (C) outside of
⋃n
i=1 C(vi, εvi).

Hence for each s ≥ 0, we have∑
γ∈Γ,µθ(γ)∈C

e−s∥µθ(γ)∥ ≪
n∑
i=1

∑
γ∈Γ,µΘ(γ)∈C(vi,εvi )

e−s∥µθ(γ)∥

≤
n∑
i=1

∑
γ∈Γ,µΘ(γ)∈C(vi,εvi )

e
−s ∥µΘ(γ)∥

∥vi∥+εvi .

Here and afterwards, the notation f(s) ≪ g(s) means that for some uniform
constant C ≥ 1, f(s) ≤ Cg(s) for all s at hand. Since τ θC ≥ ψθΓ(u) > 0 is
positive, it follows that

τ θC ≤ max
i

(∥vi∥+ εvi)τ
Θ
C(vi,εvi )

.

Therefore, together with 0 < εvi < ε and (3.10), we get

ψθΓ(u) ≤ τ θC ≤ ∥vi∥+ εvi
∥vi∥

(
max
i
ψΘ
Γ (vi) + ε

)
≤ ∥vi∥+ ε

∥vi∥

Ç
max

v∈p−1
θ (u)

ψΘ
Γ (v) + ε

å
.

Since 0 < ε < 1 was arbitrary, this proves the claim by Lemma 3.13. □

Example 3.15. We discuss some explicit upper bounds for ψθΓ when G =
PSLd(R). Identify a+ = {(t1, · · · , td) : t1 ≥ · · · ≥ td, t1 + · · · + td = 0}. Let
αi(t1, ..., td) = ti − ti+1 for i = 1, 2, ..., d− 1. Let

wi =
(
d−i
d , · · · , d−id ,− i

d , · · · ,−
i
d

)
,

where the first i coordinates are d−i
d ’s and the last d − i coordinates are

− i
d ’s, so that aαi = Rwi and αi(wi) = 1. We compute that

pαi(t1, · · · , td) =
d(t1 + · · ·+ ti)

i(d− i)
wi

and hence

p−1
αi (wi) ∩ a+ = {(t1, · · · , td) ∈ a+ : d(t1 + · · ·+ ti) = i(d− i)}.

For any non-lattice discrete subgroup Γ < PSLd(R), we have

ψΓ(t1, · · · , td) ≤
∑
i<j

(ti − tj)−
1

2

⌊d/2⌋∑
i=1

(ti − td+1−i) (3.11)

by ([38], [31], [30, Theorem 7.1]). By Lemma 3.14, for any discrete non-
lattice subgroups, we get

ψαiΓ (wi) ≤ max
∑
i<j

(ti − tj)−
1

2

⌊d/2⌋∑
i=1

(ti − td+1−i) (3.12)

where the maximum is taken over all (t1, · · · , td) ∈ a+ such that d(t1+ · · ·+
ti) = i(d− i).
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For instance, for d = 3, the right hand side is always 3 and hence for each
i = 1, 2, ψαiΓ ≤ 3αi on Rwi.

Hitchin subgroups. Let ι : PSL2(R) → PSLd(R) be the irreducible rep-
resentation, which is unique up to conjugations. A Hitchin subgroup is the
image of a representation π : Σ → PSLd(R) of a non-elementary torsion-
free geometrically finite subgroup Σ < PSL2(R), which is a type-preserving
deformation of ι|Σ. Hitchin subgroups are Π-transverse, as defined in the
introduction, by [7] and hence αi-discrete for each i = 1, · · · , d − 1. For
a Zariski dense Hitchin subgroup Γ, it follows from Lemma 4.5 that if δαi
denotes the abscissa of convergence of s 7→

∑
γ∈Γ e

−sαi(µ(γ)), then

ψαiΓ (wi) ≤ δαi · αi(wi) = δαi .

For Hitchin subgroups, it was proved by Potrie and Sambarino [33] for ∆
cocompact and Canary, Zhang and Zimmer [8] for ∆ geometrically finite
that

δαi ≤ 1

for all i (see also [34]). Hence max1≤i≤d−1 ψ
αi
Γ (wi) ≤ 1. We get a sharper

bound in the following:

Corollary 3.16. Let Γ < PSLd(R) be a Zariski dense Hitchin subgroup.
For each i = 1, · · · , d− 1,

ψαiΓ <
max(i, d− i)

d− 1
αi on aαi − {0}.

Proof. For a Zariski dense Hitchin subgroup Γ < G, it is shown in [25,
Corollary 1.10] that

ψΓ(t1, · · · , td) <
1

d− 1
(t1 − td) for (t1, · · · , td) ∈ a+ − {0}. (3.13)

Indeed, [25, Corollary 1.10] is stated only for Σ cocompact. However in view
of [8] mentioned above, this bound holds for a general Hitchin subgroup.
Hence by Lemma 3.14, we get

ψαiΓ (wi) <
1

d− 1
max (t1 − td) (3.14)

where the maximum is taken over all t1 ≥ · · · ≥ td such that d
∑i

j=1 tj =

i(d − i) and
∑d

j=1 tj = 0. Suppose that this maximum is realized at

(t1, · · · , td). Since t1 − td does not involve any tj , 2 ≤ j ≤ d − 1, we
may assume that t2 = · · · = ti and ti+1 = · · · = td−1, which we denote by

x and y respectively. Since
∑i

j=1 tj = i(d−i)
d and

∑d
j=i+1 tj = − i(d−i)

d , we
then have

t1 =
i(d−i)
d − (i− 1)x and td = − i(d−i)

d − (d− 1− i)y.

Therefore

t1 − td =
2i(d−i)

d − ((i− 1)x− (d− 1− i)y). (3.15)
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It follows from tj ≥ tj+1 for all j that d−i
d ≥ x ≥ y ≥ − i

d . Therefore, for
each fixed x, the maximum in (3.15) is obtained when y = x. Hence we have

ψαiΓ (wi) <
1

d− 1
max

x∈[−i/d,(d−i)/d]

2i(d− i)

d
− (2i− d)x

=
1

d− 1
max(i, d− i).

□

4. On the proper and critical linear forms

Let Γ be a θ-discrete infinite subgroup of G.

Definition 4.1. A linear form ψ ∈ a∗θ is called (Γ, θ)-proper if Im(ψ ◦µθ) ⊂
[−ε,∞) and ψ ◦ µθ : Γ → [−ε,∞) is proper for some ε > 0.

Consider the series Pψ = PΓ,ψ given by

Pψ(s) =
∑
γ∈Γ

e−sψ(µθ(γ)). (4.1)

The abscissa of convergence of Pψ is well-defined for a (Γ, θ)-proper linear
form:

Lemma 4.2. If ψ is (Γ, θ)-proper, the following δψ = δψ(Γ) is well-defined
(possibly +∞):

δψ := sup{s ∈ R : Pψ(s) = ∞} = inf{s ∈ R : Pψ(s) <∞} ∈ [0,∞]. (4.2)

Moreover, if Γ is Zariski dense, then

0 < δψ = lim sup
t→∞

log#{γ ∈ Γ : ψ(µθ(γ)) ≤ t}
t

.

Proof. Since ψ is (Γ, θ)-proper, ψ(µθ(γ)) > 0 for all but finitely many γ ∈ Γ.

Hence we may replace Pψ(s) by the series P+
ψ (s) =

∑
γ∈Γ,ψ(µθ(γ))>0 e

−sψ(µθ(γ))

in proving this claim. Since P+
ψ (s) is a decreasing function of s ∈ R,

I1 := {Pψ(s) = ∞} and I2 := {Pψ(s) < ∞} are disjoint intervals. Since Γ

is infinite, 0 ∈ I1, and hence δψ = I1 ∩ I2 ∈ [0,∞] is well-defined.
Now suppose that Γ is Zariski dense. By Lemma 3.4, intLθ ̸= ∅. To show

δψ > 0, fix u ∈ intLθ. Then ψ(u) > 0 by Lemma 4.3. Since ψθΓ(u) > 0

as well by Theorem 3.3(3), we have s0ψ(u) < ψθΓ(u) for some 0 < s0 < ∞.
By [35, Lemma 3.1.3], we have Pψ(s0) = ∞, and therefore δψ ≥ s0 > 0.
The last claim follows by [35, Lemma 3.1.1] since the counting measure on
ψ(µθ(Γ)) is locally finite and δψ > 0. □

Hence for a (Γ, θ)-proper form ψ ∈ a∗θ, 0 < δψ ≤ ∞ is the abscissa of
convergence of Pψ(s).

Lemma 4.3. We have:

(1) If ψ > 0 on Lθ − {0}, then ψ is (Γ, θ)-proper and δψ <∞.
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(2) If ψ is (Γ, θ)-proper, then ψ ≥ 0 on Lθ and ψ > 0 on intLθ.

Proof. If ψ is positive on Lθ − {0}, then ψ > 0 on some open cone C con-
taining Lθ −{0}. Then for some c > 1, c−1∥u∥ ≤ ψ(u) ≤ c∥u∥ for all u ∈ C.
Since there can be only finitely many points of µθ(Γ) outside C by Lemma
3.4, this implies that ψ is (Γ, θ)-proper. Since δθΓ < ∞ by Proposition 3.7,
we also have δψ <∞.

To prove (2), suppose to the contrary that ψ(u) < 0 for some u ∈ Lθ.
Then there exists an open cone C ⊂ aθ containing u so that ψ < 0 on C−{0}.
In particular, there are infinitely many γi ∈ Γ such that ψ(µθ(γi)) < 0, which
contradicts (Γ, θ)-properness of ψ. Therefore, ψ ≥ 0 on Lθ. Since kerψ is a
hyperplane in aθ, it follows ψ > 0 on intLθ. □

Critical forms. Analogous to the critical exponent of a discrete subgroup
of a rank one Lie group, we define:

Definition 4.4. A linear form ψ ∈ a∗θ is (Γ, θ)-critical if it is tangent to ψ
θ
Γ.

The following lemma can be proved by adapting the proof of [25, Theorem
2.5] replacing ψΓ by ψθΓ.

Lemma 4.5. Suppose that Γ is Zariski dense. If a (Γ, θ)-proper ψ ∈ a∗θ
satisfies δψ <∞, then δψψ is (Γ, θ)-critical; in particular,

ψθΓ ≤ δψψ.

Proof. Suppose that δψ <∞. By Lemma 4.2, δψ > 0. We first claim

ψθΓ(v) ≤ δψψ(v) for all v ∈ intLθ. (4.3)

Fix v ∈ intLθ and ε > 0. Since ψ is (Γ, θ)-proper, ψ(v) > 0 by Lemma 4.3.
We then consider

Cε(v) =
ß
w ∈ aθ : ψ(w) > 0 and

∥∥∥∥ w

ψ(w)
− v

ψ(v)

∥∥∥∥ < ε

™
;

since ψ(v) > 0, this is a well-defined open cone containing v. Therefore by
the definition of ψθΓ, we have

ψθΓ(v) ≤ ∥v∥τ θCε(v). (4.4)

Observe that for any s ≥ 0,∑
γ∈Γ,µθ(γ)∈Cε(v)

e−s∥µθ(γ)∥ ≤
∑

γ∈Γ,µθ(γ)∈Cε(v)

e
−sψ(µθ(γ))

Ä ∥v∥
ψ(v)

−ε
ä

≤
∑
γ∈Γ

e
−sψ(µθ(γ))

Ä ∥v∥
ψ(v)

−ε
ä
.

It follows from the definitions of τ θCε(v) and δψ that

τ θCε(v) ≤
δψ

∥v∥ψ(v)−1 − ε
=

δψψ(v)

∥v∥ − εψ(v)
,
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and hence

ψθΓ(v) ≤ ∥v∥
δψψ(v)

∥v∥ − εψ(v)
.

Since ε > 0 is arbitrary, we get ψθΓ(v) ≤ δψψ(v), proving the claim (4.3).
We now claim that the inequality (4.3) also holds for any v in the bound-

ary ∂Lθ. Choose any v0 ∈ intLθ. From the concavity of ψθΓ (Theorem 3.3),
we have

tψθΓ(v0) + (1− t)ψθΓ(v) ≤ ψθΓ(tv0 + (1− t)v) for all 0 < t < 1.

Since Lθ is convex, tv0 + (1 − t)v ∈ intLθ for all 0 < t < 1. As we have
already shown ψθΓ ≤ δψψ on intLθ, we get

tψθΓ(v0) + (1− t)ψθΓ(v) ≤ δψψ(tv0 + (1− t)v) for all 0 < t < 1.

By sending t→ 0+, we get

ψθΓ(v) ≤ δψ · ψ(v).

Since ψθΓ = −∞ outside Lθ, we have established ψθΓ ≤ δψψ. Suppose

that ψθΓ < δψψ on a − {0}. Then the abscissa of convergence of the series

s 7→
∑

γ∈Γ e
−sδψψ(µθ(γ)) is strictly less than 1 by [35, Lemma 3.1.3]. However

the abscissa of convergence of this series is equal to 1 by the definition of
δψ. Therefore δψψ is tangent to ψθΓ, finishing the proof. □

Corollary 4.6. Suppose that Γ is Zariski dense. A (Γ, θ)-proper linear form
ψ ∈ a∗θ with δψ = 1 is (Γ, θ)-critical. Moreover, if ψ > 0 on Lθ, then ψ is
(Γ, θ)-critical if and only if δψ = 1.

Via the identification a∗θ = {ψ ∈ a∗ : ψ = ψ ◦ pθ}, we can consider a∗θ as a
subspace of a∗. Lemma 3.14 implies the following identity:

Corollary 4.7. Suppose that Γ is Zariski dense. If pθ|L is a proper map,
then

{ψ ∈ a∗θ : ψ is (Γ, θ)-critical} = {ψ ∈ a∗ : ψ = ψ ◦ pθ, ψ is (Γ,Π)-critical}.

Proof. To show the inclusion ⊃, suppose ψ = ψ ◦ pθ and ψ is (Γ,Π)-critical.
Then for any u ∈ aθ and any v′ ∈ p−1

θ (u), ψ(u) = ψ(v′) ≥ ψΓ(v
′) and

hence ψ(u) ≥ ψθΓ(u) by Lemma 3.14. Moreover, if ψ(v) = ψΓ(v), then for

u = pθ(v), ψ(u) ≥ ψθΓ(u) ≥ ψΓ(v) = ψ(v) = ψ(u) and hence ψ(u) = ψθΓ(u),

proving ψ is (Γ, θ)-critical. For the other inclusion ⊂, suppose that ψ ≥ ψθΓ
on a+θ and ψ(u) = ψθΓ(u) for some u ∈ a+θ . Then for any v ∈ a+, ψ(v) =

ψ(pθ(v)) ≥ ψθΓ(pθ(v)) ≥ ψΓ(v) by Lemma 3.13. Let v ∈ p−1
θ (u) be such that

ψθΓ(u) = ψΓ(v) given by Lemma 3.14. Then ψ(v) = ψ(u) = ψθΓ(u) = ψΓ(v);
so ψ is (Γ,Π)-critical. □
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5. Limit set, θ-conical set, and conformal measures

Let Γ < G be a closed subgroup.

Definition 5.1 (θ-limit set). We define the θ-limit set of Γ as follows:

Λθ = Λθ(Γ) := {lim γi ∈ Fθ : γi ∈ Γ}
where lim γi is defined as in Definition 2.2.

This is a Γ-invariant closed subset of Fθ, which may be empty in general.
Set Λ = ΛΠ. Denote by Lebθ the K-invariant probability measure on Fθ.
This definition of Λθ coincides with that of Benoist:

Lemma 5.2 ([3], [36, Corollary 5.2, Lemma 6.3, Theorem 7.2], [29, Lemma
2.13]). If Γ is Zariski dense in G, we have the following:

(1) Λθ = {ξ ∈ Fθ : (γi)∗ Lebθ → Dξ for some infinite sequence γi ∈ Γ}
where Dξ is the Dirac measure at ξ;

(2) Λθ = πθ(Λ);
(3) Λθ is the unique Γ-minimal subset of Fθ.

In the rest of this section, suppose that Γ is discrete.

Definition 5.3 (θ-conical set). We define the θ-conical set of Γ as

Λcon
θ =

®
gPθ ∈ Fθ : lim sup

γ∈Γ
γgMθA

+ ̸= ∅
´
. (5.1)

For θ = Π, Λcon
Π = {gP ∈ F : lim supγ∈Γ γgA

+ ̸= ∅} because MΠ = M
commutes with A. Note that the conical set is not contained in the limit
set Λ in general even for θ = Π. For example, if G = PSL2(R) × PSL2(R)
and Γ = Γ1 × Γ2 is a product of two convex cocompact subgroups, then
Λ = Λ(Γ1)× Λ(Γ2) while Λcon = (Λ(Γ1)× S1) ∪ (S1 × Λ(Γ2)).

θ-shadows. For q ∈ X and R > 0, let B(q,R) = {x ∈ X : d(x, q) ≤ R}.
For p ∈ X, the θ-shadow OθR(p, q) ⊂ Fθ of B(q,R) viewed from p is defined
as

OθR(p, q) = {gPθ ∈ Fθ : g ∈ G, go = p, gA+o ∩B(q,R) ̸= ∅} (5.2)

= {gPθ ∈ Fθ : g ∈ G, go = p, gMθA
+o ∩B(q,R) ̸= ∅}.

Clearly, for OR(p, q) = OΠ
R(p, q), we have

OθR(p, q) := πθ(OR(p, q)).

Lemma 5.4. We have ξ ∈ Λcon
θ if and only if there exist an infinite sequence

γi ∈ Γ and N > 0 such that ξ ∈
⋂
iO

θ
N (o, γio).

Proof. The direction ⇒ is clear. To see the other direction, suppose that
ξ ∈

⋂
iO

θ
N (o, γio) for some N > 0 and an infinite sequence γi ∈ Γ, that is,

there exist sequences ki ∈ K and ai → ∞ in A+ such that ξ = kiPθ and the
sequence γ−1

i kiai is bounded. By passing to a subsequence, we may assume
ki converges to some k ∈ K. Since ξ = kiPθ for all i, we have ξ = kPθ.
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Since kiPθ = kPθ and Mθ = Pθ ∩K, we have ki = kmi for some mi ∈ Mθ.
Since γ−1

i kmiai = γ−1
i kiai is bounded, we have ξ = kPθ ∈ Λcon

θ . □

We remark that we may replace o by any p ∈ X in the above lemma.
For each N > 0, we set

ΛNθ :=

{
ξ ∈ Fθ : there exists γi → ∞ in Γ such that ξ ∈

⋂
i

OθN (o, γio)

}
.

By Lemma 5.4, we have

Λcon
θ =

∞⋃
N=1

ΛNθ . (5.3)

Definition 5.5. For a θ-discrete subgroup Γ, we say that Γ is θ-regular if
for any sequence γi → ∞ in Γ, we have

min
α∈θ

α(µ(γi)) → ∞.

Observe that θ-regularity is same as θ ∪ i(θ)-regularity by (2.1) and that
not every θ-discrete subgroup is θ-regular.

Proposition 5.6. If Γ is θ-regular, then

(1) Λcon
θ ⊂ Λθ;

(2) for any compact subset Q ⊂ G, the union ΓQ∪Λθ is compact where
the topology is given by the convergence in Definition 2.2; that is,
any infinite sequence has a limit.

Proof. To show (1), let ξ ∈ Λcon
θ . Then there exist g ∈ G, a sequence γi ∈ Γ,

mi ∈ Mθ and ai ∈ A+ such that ξ = gξθ and d(gmiaio, γio) is uniformly
bounded. Since µ(γi) − log ai is uniformly bounded by Lemma 2.1, and
minα∈θ α(µ(γi)) → ∞ by the θ-regularity, we have minα∈θ α(log ai) → ∞
as i → ∞. We may assume that mi converges to some m ∈ Mθ by passing
to a subsequence. Therefore as i → ∞, gmiaio → gmξθ = gξθ by Lemma
2.8. This implies that γio → gξθ by Lemma 2.7. Hence ξ ∈ Λθ. For (2),
if γi ∈ Γ is an infinite sequence and qi ∈ Q, then minα∈θ α(µ(γiqi)) → ∞
by the θ-regularity of Γ and Lemma 2.1. Hence the claim is now immediate
from Definition 2.2 and Lemma 2.7. □

Conical convergence. From the viewpoint of Lemma 5.4, we define the
conical convergence as follows.

Definition 5.7. We say that a sequence gi ∈ G converges to ξ ∈ Fθ conically
if gi → ξ in the sense of Definition 2.2 and there exists R > 0 such that
ξ ∈ OθR(o, gio) for all i ≥ 1. Note that if γi ∈ Γ converges to ξ ∈ Fθ
conically, then ξ ∈ Λcon

θ .

The following lemma is stated in [22, Lemma 5.29] in a different language.
We give a more direct proof.
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Lemma 5.8. Let gi ∈ G be a sequence which converges to ξ ∈ Fθ. Then
the following are equivalent:

(1) The convergence gi → ξ is conical.

(2) For any η ∈ Fi(θ) such that (ξ, η) ∈ F (2)
θ , the sequence g−1

i (ξ, η) is

precompact in F (2)
θ .

(3) For some η ∈ Fi(θ) such that (ξ, η) ∈ F (2)
θ , the sequence g−1

i (ξ, η) is

precompact in F (2)
θ .

Proof. The map gLθ → (gPθ, gw0Pi(θ)) is a G-equivariant homeomorphism

from G/Lθ to F (2)
θ . We first prove (1) ⇒ (2). Suppose (1). Then there

exist sequences ki ∈ K and ai → ∞ in A+ such that ξ = kiPθ for all i

and the sequence g−1
i kiai is bounded. If (ξ, η) ∈ F (2)

θ , then ξ = hPθ and
η = hw0Pi(θ) for some h ∈ G. Since hPθ = kiPθ, h = kipimi for some pi ∈ P

and mi ∈ Mθ, by using Pθ = PMθ. In other words, we have k−1
i hm−1

i = pi
and hence pi is a bounded sequence in P since ki and mi are bounded
sequences. In particular, it follows from ai ∈ A+ that the sequence a−1

i piai
is bounded by Lemma 2.3. Therefore the sequence g−1

i hLθ = g−1
i kipiLθ =

(g−1
i kiai)(a

−1
i piai)Lθ is precompact in G/Lθ, which is equivalent to saying

that g−1
i (ξ, η) is precompact, proving (2). The implication (2) ⇒ (3) is clear.

Now (3) ⇒ (1) follows from Lemma 5.9 below applied to the constant
sequence (ξi, ηi) = (ξ, η). □

Lemma 5.9. Let gi ∈ G and ξi ∈ Fθ be sequences both converging to some
ξ ∈ Fθ. Suppose that there exists a sequence ηi ∈ Fi(θ) converging to some

η ∈ Fi(θ) such that (ξ, η) ∈ F (2)
θ and the sequence g−1

i (ξi, ηi) is precompact

in F (2)
θ . Then there exists R > 0 such that

ξi ∈ OθR(o, gio) for all i ≥ 1.

Proof. Under the identification G/Lθ = F (2)
θ given by gLθ = (gPθ, gw0Pi(θ)),

the hypothesis implies that there exists a sequence hi ∈ G with the limit
h ∈ G so that (ξi, ηi) = hiLθ for all i ≥ 1 and (ξ, η) = hLθ. It follows from
the precompactness of g−1

i (ξi, ηi) that there exists a sequence ℓi ∈ Lθ such

that g−1
i hiℓi is a bounded sequence.

Since Lθ = MθAMθ, we can write ℓi = mia
′
im

′
i ∈ MθAMθ, and hence we

have g−1
i himia

′
i is bounded. For each i, let wi ∈ K be a representative of

a Weyl element such that w−1
i a′iwi ∈ A+. After passing to a subsequence,

we may assume that the sequence mi converges to some m ∈ Mθ and wi
is a constant sequence, say w. We claim that w ∈ Mθ. Denoting by ai =
w−1a′iw ∈ A+,

the sequence g−1
i himiwai is bounded. (5.4)

Moreover, since minα∈θ α(µ(gi)) → ∞, we have minα∈θ α(log ai) → ∞ as
i → ∞ by Lemma 2.1. Since himiwai = gi(g

−1
i himiwai), gi → ξ, and
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g−1
i himiwai is a bounded sequence by (5.4), we have as i→ ∞,

himiwai → ξ

by Lemma 2.7. On the other hand, by Lemma 2.8, we have that as i→ ∞,

himiwai → hmwPθ.

Hence we have hmwPθ = ξ = hPθ. Since m ∈Mθ, it follows that

w ∈ K ∩ Pθ =Mθ.

In particular, ξi = himiwPθ for all i.
For each i, write himiw = kibini ∈ KAN in the Iwasawa decomposition.

We then have ξi = himiwPθ = kiPθ. Since the sequence himiw is convergent
and the product map K × A × N → G is a diffeomorphism, the sequences
bi and ni are bounded. Since ai ∈ A+, the sequence a−1

i niai is bounded

by Lemma 2.3, and so is the sequence bia
−1
i niai. On the other hand, (5.4)

implies that

the sequence g−1
i kibiniai = (g−1

i kiai)(bia
−1
i niai) is bounded. (5.5)

Therefore it follows that g−1
i kiai is bounded. This mean that for some R > 0,

ξi = kiPθ ∈ OθR(o, gio) for all i, as desired. □

Conformal measures. The a-valued Busemann map β : F × G × G → a
is defined as follows: for ξ ∈ F and g, h ∈ G,

βξ(g, h) := σ(g−1, ξ)− σ(h−1, ξ)

where σ(g−1, ξ) ∈ a is the unique element such that we have the Iwasawa
decomposition g−1k ∈ K exp(σ(g−1, ξ))N for any k ∈ K with ξ = kP . We
define the aθ-valued Busemann map βθ : Fθ × G × G → aθ as follows: for
(ξ, g, h) ∈ Fθ ×G×G, we set

βθξ (g, h) := pθ(βξ0(g, h)) for ξ0 ∈ π−1
θ (ξ); (5.6)

this is well-defined independent of the choice of ξ0 [36, Lemma 6.1].
The following was shown for θ = Π in [29, Lemma 5.7] which directly

implies the statement for general θ since pθ is norm-decreasing.

Lemma 5.10. There exists κ > 0 such that for any g, h ∈ G and R > 0,
we have

sup
ξ∈OθR(go,ho)

∥βθξ (g, h)− µθ(g
−1h)∥ ≤ κR.

Following the work of Patterson-Sullivan ([32], [42]) in rank one, Quint
[36] has introduced the notion of conformal measures in general.

Definition 5.11 (Conformal measures). For a linear form ψ ∈ a∗θ and a
closed subgroup Γ < G, a Borel probability measure ν on Fθ is called a
(Γ, ψ)-conformal measure if

dγ∗ν

dν
(ξ) = eψ(β

θ
ξ (e,γ)) for all γ ∈ Γ and ξ ∈ Fθ.
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Proposition 5.12. Suppose that Γ is Zariski dense and θ-discrete. For any
linear form ψ ∈ a∗θ which is tangent to ψθΓ at an interior direction of a+θ ,
there exists a (Γ, ψ)-conformal measure supported on Λθ.

Proof. For θ = Π, this was shown by Quint using the concavity of ψΓ [36,
Theorem 8.4]. Now that we established the concavity of the θ-growth indi-
cator ψθΓ (Proposition 3.10), the same proof works for general θ. □

As in the Patterson-Sullivan construction, the conformal measure in the
above proposition can be obtained as a limit of a sequence of certain weighted
counting measures on Γo. The assumption that ψ is tangent to ψθΓ at an
interior direction of a+θ is needed to guarantee that the limiting measure is
supported on the limit set Λθ. For a θ-regular subgroup Γ, the union Γo∪Λθ
is a compact space, and hence the assumption that the tangent direction
belongs to int a+θ is unnecessary. The proof below is an easy adaptation of
the standard construction of Patterson-Sullivan (see also [24, Section 2], [41,
Section 5], [9]).

Proposition 5.13. Suppose that Γ is θ-regular. For any (Γ, θ)-proper ψ ∈
a∗θ such that δψ = 1 and

∑
γ∈Γ e

−ψ(µθ(γ)) = ∞, there exists a (Γ, ψ)-conformal
measure supported on Λθ.

Proof. By Proposition 5.6, Γo∪Λθ is a compact space. Recall that Pψ(s) =∑
γ∈Γ e

−sψ(µθ(γ)). As δψ = 1, Pψ(s) < ∞ for s > 1. and hence we may
consider the probability measure on Γo ∪ Λθ given by

νψ,s :=
1

Pψ(s)
∑
γ∈Γ

e−sψ(µθ(γ))Dγo (5.7)

where Dγo is the point mass at γo.
Since the space of probability measures on a compact metric space a

weak∗ compact space, by passing to a subsequence, as s → 1, νψ,s weakly
converges to a probability measure, say ν̃ψ, on Γo ∪ Λθ. Since Pψ(1) = ∞,
νψ is supported on Λθ. It is standard to check that νψ is a (Γ, ψ)-conformal
measure. □

Although we will not be using this generality, Proposition 5.13 holds
without the hypothesis

∑
γ∈Γ e

−ψ(µθ(γ)) = ∞ (see [9, Proposition 3.2]).

6. Transverse subgroups and multiplicity of θ-shadows

We say that a discrete subgroup Γ < G is θ-antipodal if any two distinct
points ξ ̸= η in Λθ∪i(θ) are in general position, i.e.,

ξ = gPθ∪i(θ) and η = gw0Pθ∪i(θ)

for some g ∈ G. Recall that a discrete subgroup Γ < G is called θ-transverse
if Γ is both θ-regular and θ-antipodal. A θ-transverse subgroup Γ < G is
called non-elementary if #Λθ ≥ 3. Note that for θ1 ⊂ θ2, θ2-transverse
implies θ1-transverse.
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Remark 6.1. We may try to define Γ to be θ-Antipodal if for any (ξ, η) ∈
Λθ × Λi(θ) such that π−1

θ (ξ) ∩ π−1
i(θ)(η) = ∅, (ξ, η) is in general position, i.e.,

ξ = gPθ and η = gw0Pi(θ) for some g ∈ G. While the θ-antipodality implies
the θ-Antipodality, the converse direction is not true in general; for instance,
any lattice of PSL3(R) is {α1}-Antipodal but not {α1, α2}-Antipodal, i.e.,
not {α1}-antipodal, where αi(diag(u1, u2, u3)) = ui − ui+1 for i = 1, 2.

The main aim of this section is to prove the following proposition, which
is the essential reason why the main results of this paper are proved for
θ-transverse subgroups.

Proposition 6.2 (Bounded multiplicity of θ-shadows). Assume that Γ is θ-
transverse. Let ϕ ∈ a∗θ be a (Γ, θ)-proper linear form. Then for any R,D > 0,
there exists q = q(ϕ,R,D) > 0 such that for any T > 0, the collection of
shadows ¶

OθR(o, γo) ⊂ Fθ : T ≤ ϕ(µθ(γ)) ≤ T +D
©

have multiplicity at most q, i.e., for and ξ ∈ Fθ and T > 0, there are at
most q number of shadows from the above collection that contain ξ.

The following lemma is a key ingredient of the proof of Proposition 6.2.

Lemma 6.3. Assume that Γ is θ-transverse. For any compact subset Q
of G, there exists C0 = C0(Q) > 0 such that if γ1, γ2 ∈ Γ are such that
Q ∩ γ1Qa−1 ∩ γ2Qb−1m−1 ̸= ∅ for some a, b ∈ A+ and m ∈Mθ, then

min{∥µθ(γ2)− µθ(γ1)− µθ(γ
−1
1 γ2)∥, ∥µθ(γ1)− µθ(γ2)− µθ(γ

−1
2 γ1)∥} ≤ C0.

(6.1)

Proof. Since ∥pθ(u)∥ ≤ ∥pθ∪i(θ)(u)∥ for all u ∈ a, it suffices to prove the
lemma for θ ∪ i(θ) in place of θ. Therefore we may assume without loss of
generality that i(θ) = θ by replacing θ with θ ∪ i(θ).

We prove by contradiction. Suppose to the contrary that there exist
sequences q0,i, q1,i, q2,i ∈ Q, ai, bi ∈ A+, mi ∈Mθ and γ1,i, γ2,i ∈ Γ such that

q0,i = γ1,i q1,i a
−1
i = γ2,i q2,ib

−1
i m−1

i ; (6.2)

∥µθ(γ2,i)− µθ(γ1,i)− µθ(γ
−1
1,i γ2,i)∥ → ∞; (6.3)

∥µθ(γ1,i)− µθ(γ2,i)− µθ(γ
−1
2,i γ1,i)∥ → ∞. (6.4)

By Lemma 2.1, it follows that all sequences γ1,i, γ2,i, γ
−1
1,i γ2,i and γ

−1
2,i γ1,i

are unbounded. Without loss of generality, we assume that each of these
sequences tends to infinity. By (6.2) and Lemma 2.1, there exists C ′ =
C ′(Q) > 1 such that

sup
i
{∥µθ(γ1,i)− µθ(ai)∥, ∥µθ(γ2,i)− µθ(bi)∥} ≤ C ′ (6.5)

As Γ is θ-regular, as i→ ∞,

min
α∈θ

α(log ai), min
α∈θ

α(log bi) → ∞.
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Note that α(logw−1
0 a−1w0) = α(i(log a)) = i(α)(log a) for all a ∈ A and

all α ∈ Φ. Since θ is symmetric, it follows that

min
α∈θ

α(log(w−1
0 a−1

i w0)), min
α∈θ

α(log(w−1
0 b−1

i w0)) → ∞. (6.6)

Passing to a subsequence, we may assume that q1,i converges to some q1 ∈ Q.
We claim that

q1w0ξθ ∈ Λθ and q1m1wξθ ∈ Λθ (6.7)

for somem1 ∈Mθ and w ∈ NK(A). By Lemma 5.6, we may also assume that
γ−1
1,i q0,io converges to some ξ ∈ Λθ as i → ∞. Since γ−1

1,i q0,io = q1,ia
−1
i o =

q1,iw0(w
−1
0 a−1

i w0)o, it follows from Lemma 2.8 and (6.6) that ξ = q1w0ξθ.
Therefore

q1w0ξθ ∈ Λθ.

Since A = AθBθ, we may write ai = a1,ia2,i ∈ A+
θ B

+
θ and bi = b1,ib2,i ∈

A+
θ B

+
θ . Using Sθ =MθB

+
θ Mθ, write

a−1
2,imib2,i = m1,icim2,i ∈MθB

+
θ Mθ.

Then

γ−1
1,i γ2,i q2,i = q1,i a

−1
i mibi

= q1,i(a
−1
1,i b1,i)(a

−1
2,imib2,i) = q1,im1,i(a

−1
1,i b1,ici)m2,i.

By passing to a subsequence, we have w ∈ NK(A) such that for all i ≥ 1,

di := w−1a−1
1,i b1,iciw ∈ A+. (6.8)

Then we have the following:

γ−1
1,i γ2,iq2,i = q1,i(m1,iw)di(w

−1m2,i) ∈ q1,iKA
+K. (6.9)

Since γ−1
1,i γ2,i → ∞, by the θ-regularity of Γ, we have minα∈θ α(log di) →

∞. We may assume that m1,i → m1 ∈Mθ. By Lemma 5.6 and Lemma 2.8,
we get

lim
i→∞

γ−1
1,i γ2,iq2,i = q1m1wξθ ∈ Λθ

by passing to a subsequence. Hence the claim (6.7) is proved.
By the θ-antipodal property of Γ, two distinct points of Λθ must be in

general position; hence (6.7) implies that we must have either

w0ξθ = m1wξθ or m1wξθ ∈ N+
θ ξθ.

First suppose that (m1w)ξθ ∈ N+
θ ξθ. By Corollary 2.6, this implies that

w ∈ Mθ. As a−1
1,i b1,i ∈ Aθ, using the commutativity of Mθ and Aθ, we get

from (6.8) that di = (a−1
1,i b1,i)(w

−1ciw). Since di ∈ A+, a−1
1,i b1,i ∈ Aθ, and

w−1ciw ∈ Bθ, it follows that a
−1
1,i b1,i ∈ A+

θ . Hence

µθ(di) = log a−1
1,i b1,i = − log a1,i + log b1,i = −µθ(ai) + µθ(bi). (6.10)
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Since ∥µθ(γ−1
1,i γ2,i)−µθ(di)∥ is uniformly bounded by (6.9) and Lemma 2.1,

(6.10) and (6.5) imply that the sequence ∥µθ(γ−1
1,i γ2,i) + µθ(γ1,i)− µθ(γ2,i)∥

is uniformly bounded. This contradicts (6.3).
Now suppose the other case that w0ξθ = m1wξθ. In this case, we have

wξθ = m−1
1 w0ξθ = w0(w

−1
0 m−1

1 w0)ξθ = w0ξθ

since m1 ∈ Mθ and w−1
0 Mθw0 = Mθ by the symmetricity of θ. Hence we

have w ∈ w0(Pθ ∩ K) = w0Mθ = Mθw0, and thus ww−1
0 ∈ Mθ. Since

ww−1
0 ∈Mθ, we may write using (6.8) that

w0d
−1
i w−1

0 = (ww−1
0 )−1a1,ib

−1
1,i c

−1
i (ww−1

0 )

= (a1,ib
−1
1,i )((ww

−1
0 )−1c−1

i (ww−1
0 )) ∈ AθBθ

Since di ∈ A+, we have w0d
−1
i w−1

0 ∈ A+. It follows that a1,ib
−1
1,i ∈ A+

θ .
Hence we have

µθ(d
−1
i ) = pθ(log(w0d

−1
i w−1

0 )) = log a1,i − log b1,i = µθ(ai)− µθ(bi). (6.11)

Similarly, (6.9) implies that the sequence ∥µθ(γ−1
2,i γ1,i) − µθ(d

−1
i )∥ is uni-

formly bounded. Hence it follows from (6.11) and (6.5) that the sequence
∥µθ(γ−1

2,i γ1,i)−µθ(γ1,i)+µθ(γ2,i)∥ is uniformly bounded, contradicting (6.4).
This completes the proof. □

Proof of Proposition 6.2. Suppose that there exists ξ ∈
⋂n
i=1O

θ
R(o, γio)

and T ≤ ϕ(µθ(γi)) ≤ T +D for some distinct γi ∈ Γ, i = 1, · · · , n. Setting
Q = KARK where AR := {a ∈ A : d(o, ao) < R}, let C0 = C0(Q) be as in
Lemma 6.3. Note also that Q = {g ∈ G : d(o, go) < R}. Set

D′ = D′(ϕ,Q,D) := ∥ϕ∥C0 +D

where ∥ϕ∥ is the operator norm of ϕ : aθ → R. Then the following number

q := #{γ ∈ Γ : ϕ(µθ(γ)) ≤ D′}

is finite by the (Γ, θ)-properness of ϕ. We claim that

n ≤ 2q;

this proves the proposition. It suffices to show that

max
i

min{ϕ(µθ(γ−1
1 γi)), ϕ(µθ(γ

−1
i γ1))} ≤ D′, (6.12)

as this implies that

n = #{γ1, · · · , γn} ≤ #{γ1γ, γ1γ−1 : γ ∈ Γ, ϕ(µθ(γ)) ≤ D′} ≤ 2q.

To prove (6.12), for each i = 1, · · · , n, there exist ki ∈ K and ai ∈ A+

such that ξ = kiξθ and d(kiaio, γio) < R. Then ki = k1mi for some mi ∈
K∩Pθ =Mθ. Hence we have d(γ

−1
1 k1a1o, o) < R and d(γ−1

i k1miaio, o) < R,
which implies

k1 ∈ Q ∩ γ1Qa−1
1 ∩ γiQa−1

i m−1
i .
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By Lemma 6.3, we have

∥µθ(γi)−µθ(γ1)−µθ(γ−1
1 γi)∥ ≤ C0 or ∥µθ(γ1)−µθ(γi)−µθ(γ−1

i γ1)∥ ≤ C0.

Suppose first that ∥µθ(γi)− µθ(γ1)− µθ(γ
−1
1 γi)∥ ≤ C0. Now we have

ϕ(µθ(γ
−1
1 γi)) = ϕ(µθ(γ

−1
1 γi)− (µθ(γi)− µθ(γ1))) + ϕ(µθ(γi)− µθ(γ1))

≤ ∥ϕ∥C0 + |ϕ(µθ(γi))− ϕ(µθ(γ1))|
≤ ∥ϕ∥C0 +D = D′

where the last inequality follows from ϕ(µθ(γ1)), ϕ(µθ(γi)) ∈ [T, T + D].
When ∥µθ(γ1)− µθ(γi)− µθ(γ

−1
i γ1)∥ ≤ C0, similarly, we have

ϕ(µθ(γ
−1
i γ1)) ≤ ∥ϕ∥C0 +D = D′.

Therefore (6.12) follows. □

7. Dimensions of conformal measures and growth indicators

For a general Zariski dense discrete subgroup Γ < G, Quint [36, Theorem
8.1] showed that if there exists a (Γ, ψ)-conformal measure on FΠ for ψ ∈ a∗,
then

ψ ≥ ψΓ.

The main aim of this section is to prove the following analogous inequality
for θ-transverse subgroups, using Theorem 7.3 whose key ingredient is the
control on multiplicity of shadows obtained in Proposition 6.2.

Theorem 7.1. Let Γ be a Zariski dense θ-transverse subgroup of G. If there
exists a (Γ, ψ)-conformal measure ν on Fθ for a (Γ, θ)-proper ψ ∈ a∗θ, then

ψ ≥ ψθΓ. (7.1)

Moreover if
∑

γ∈Γ e
−ψ(µθ(γ)) = ∞ in addition, then δψ = 1 and ψ is (Γ, θ)-

critical.

Lemma 7.2 (θ-shadow lemma). Let Γ < G be a discrete subgroup. Let ν
be a (Γ, ψ)-conformal measure on Fθ for ψ ∈ a∗θ. Suppose that supp ν is not

contained in Fθ − ℓN+
θ Pθ for any ℓ ∈ K. Then we have the following:

(1) for some R = R(ν) > 0, we have c := infγ∈Γ ν(O
θ
R(γo, o)) > 0; and

(2) for all r ≥ R and for all γ ∈ Γ,

ce−∥ψ∥κre−ψ(µθ(γ)) ≤ ν(Oθr(o, γo)) ≤ e∥ψ∥κre−ψ(µθ(γ)) (7.2)

where κ > 0 is a constant given in Lemma 5.10.

In particular, if Γ is Zariski dense, (7.2) holds for any (Γ, ψ)-conformal
measure ν.

Moreover, if Γ is a θ-transverse subgroup, then (7.2) holds for any (Γ, ψ)-
conformal measure ν on Fθ such that

(supp ν, η) ∩ F (2)
θ ̸= ∅ for any η ∈ Λi(θ).
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Proof. This lemma was proved in [29, Lemma 7.8] for θ = Π, and a gen-
eral case can be proved verbatim, by replacing P and N by Pθ and Nθ

respectively and noting that the projection pθ : a → aθ is a Lipschitz map.
We provide a proof for completeness. To prove (1), suppose not. Then
there exist Ri → ∞ and γi ∈ Γ such that ν(OθRi(γ

−1
i o, o)) < 1/i for all

i ≥ 1. We write the Cartan decomposition γi = k′iaiℓ
−1
i ∈ KA+K and

after passing to a subsequence, we may assume that k′i → k′ and ℓi → ℓ

as i → ∞. We claim that N+
θ Pθ ⊂ lim supOθRi(a

−1
i o, o). Let h ∈ N+

θ and

write aih = kibini ∈ KAN . Since aiha
−1
i is bounded by Lemma 2.3 and

aiha
−1
i = ki(bia

−1
i )(ainia

−1
i ) ∈ KAN, it follows that both sequences bia

−1
i

and ni are bounded. Hence for all large i ≥ 1, hn−1
i b−1

i aio ∈ B(o,Ri) and

hence hPθ = hn−1
i b−1

i Pθ ∈ OθRi(hn
−1
i b−1

i o, o). Since hn−1
i b−1

i = a−1
i ki, we

have hPθ ∈ OθRi(a
−1
i o, o), proving the claim.

SinceOθRi(γ
−1
i o, o) = ℓiO

θ
Ri
(a−1
i o, o) and ℓi → ℓ, it follows that ν(ℓN+

θ Pθ) =

0. Since ℓN+
θ Pθ is Zariski open in Fθ, it follows that supp ν ∩ ℓN+

θ Pθ = ∅.
This is a contradiction to the hypothesis. Hence this proves (1). To see
(2), let γ ∈ Γ and r ≥ R. By Lemma 5.10, for all ξ ∈ Oθr(γ

−1o, o), we have

∥βθξ (γ−1o, o)−µθ(γ)∥ ≤ κr. Since ν(Oθr(o, γo)) =
∫
Oθr (γ

−1o,o) e
−ψ(βθξ (γ

−1o,o))dν(ξ),

(2) follows from (1).
If Γ is Zariski dense, then Λθ is Zariski dense in Fθ and is contained in

supp ν. Hence any Γ-conformal measure ν satisfies the hypothesis.
For the last claim in the statement, letting Γ be a θ-transverse subgroup

and ν a (Γ, ψ)-conformal measure such that for any η ∈ Λi(θ), (ξ, η) ∈ F (2)
θ

for some ξ ∈ supp ν, it suffices to show that infγ∈Γ ν(O
θ
R(γo, o)) > 0. If

not, there exist Ri → ∞ and γi ∈ Γ such that ν(OθRi(γ
−1
i o, o)) < 1/i for

all i ≥ 1. Write the Cartan decomposition γi = k′iaiℓ
−1
i ∈ KA+K and

assume ℓi → ℓ ∈ K as i → ∞. By the same argument as above, we have
supp ν ∩ ℓN+

θ Pθ = ∅. By (2.4), this implies that every element of supp ν is
not in general position with ℓw0Pi(θ). On the other hand, it follows from

γ−1
i = ℓiw0(w

−1
0 a−1

i w0)w
−1
0 k′−1

i for all i ≥ 1 that ℓw0Pi(θ) = limi γ
−1
i ∈ Λi(θ).

By the hypothesis on supp ν, there exists an element of supp ν in general
position with ℓw0Pi(θ). This contradicts supp ν ∩ ℓN+

θ Pθ = ∅. This finishes
the proof. □

Theorem 7.3. Let Γ be a Zariski dense θ-transverse subgroup of G. If there
exists a (Γ, ψ)-conformal measure ν on Fθ for a (Γ, θ)-proper ψ ∈ a∗θ, then

δψ ≤ 1.

Proof. For each n ∈ Z, we set

Γψ,n := {γ ∈ Γ : n ≤ ψ(µθ(γ)) < n+ 1}.
Since ψ is (Γ, θ)-proper,

⋃
n<0 Γψ,n is a finite subset, and hence can be

ignored in the arguments below. Let ν be a (Γ, ψ)-conformal measure. We
fix a sufficiently large R > 0 satisfying the conclusion of Lemma 7.2 for ν.
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Since ψ is a (Γ, θ)-proper linear form, by Proposition 6.2, we have that for
all n ∈ N,

1 ≫
∑

γ∈Γψ,n

ν(OθR(o, γo)) ≫
∑

γ∈Γψ,n

e−ψ(µθ(γ)) ≥ e−(n+1)#Γψ,n

where the implied constants do not depend on n. It implies

#Γψ,n ≪ en+1 for each n ≥ 0.

Therefore, we have (cf. [35, Lemma 3.1.1])

δψ ≤ lim sup
N→∞

log#{γ ∈ Γ : ψ(µθ(γ)) < N}
N

≤ lim sup
N→∞

1

N
log

∑
0≤n<N

en+1 = 1.
(7.3)

Hence the claim follows. □

Proof of Theorem 7.1. By Lemma 4.5 and Theorem 7.3, we have that
δψ ≤ 1 and δψψ is tangent to ψθΓ, and therefore we have

δψψ ≥ ψθΓ.

Since ψ is (Γ, θ)-proper, ψ ≥ 0 on Lθ by Lemma 4.3 and hence ψ ≥ δψψ on

Lθ. Therefore ψ ≥ ψθΓ on Lθ. Since ψθΓ = −∞ outside of Lθ, ψ ≥ ψθΓ on

aθ. If
∑

γ∈Γ e
−ψ(µθ(γ)) = ∞ in addition, then δψ ≥ 1 and hence δψ = 1. In

particular, ψ = δψψ is tangent to ψθΓ. Therefore this finishes the proof. □

8. Divergence of Poincaré series and conical sets

Let ψ ∈ a∗θ and Γ < G be discrete subgroup. Denote by Mθ
ψ = Mθ

Γ,ψ the

collection of all (Γ, ψ)-conformal (probability) measures on Fθ. Define the
following subset of Mθ

ψ:

NθΓ,ψ = Nθψ :=

®
ν ∈ Mθ

ψ :
either ν(Λθ) = 1 and # supp ν ≥ 2, or

(supp ν|Fθ−Λθ , η) ∩ F (2)
θ ̸= ∅ for all η ∈ Λi(θ)

´
.

The reason for this definition is to guarantee that for Γ θ-transverse, the
shadow lemma (Lemma 7.2) holds for any ν ∈ Nθψ as well as its restriction

ν|Fθ−Λθ (if non-zero).

Lemma 8.1. (1) If Γ is Zariski dense, then

Nθψ = Mθ
ψ.

(2) If Γ is non-elementary θ-transverse, then

Nθψ ⊃ {ν ∈ Mθ
ψ : ν(Λθ) = 1}.
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Proof. Since #Λθ ≥ 3 for a non-elementary θ-transverse subgroup Γ, (2) is
straightforward. For (1), suppose that Γ is a Zariski dense discrete subgroup.
Then for any ν ∈ Mθ

ψ, supp ν is a closed Γ-invariant set, and hence is Zariski

dense in Fθ (Lemma 5.2). Therefore if ν(Λθ) = 1, then ν ∈ Nθψ. Otherwise,

we have ν(Fθ−Λθ) > 0, and supp ν|Fθ−Λθ is a non-empty closed Γ-invariant
set, and thus Zariski dense in Fθ. Given η ∈ Λi(θ), the set {ξ ∈ Fθ : (ξ, η) ∈
F (2)
θ } is a Zariski open subset of Fθ and hence (supp ν|Fθ−Λθ , η)∩F (2)

θ ̸= ∅,
finishing the proof. □

The main goal of this section is to prove the following theorem and discuss
its applications. Note that we do not assume that ψ is (Γ, θ)-proper in the
following theorem.

Theorem 8.2. Let Γ be any θ-transverse subgroup (which may be elemen-
tary). Then the following are equivalent:

(1)
∑

γ∈Γ e
−ψ(µθ(γ)) = ∞ (resp.

∑
γ∈Γ e

−ψ(µθ(γ)) <∞)

(2) ν(Λcon
θ ) = 1 for all ν ∈ Nθψ (resp. ν(Λcon

θ ) = 0 for all ν ∈ Nθψ).

In the rest of this section, suppose that Γ is θ-transverse. We make the
following simple observation:

Lemma 8.3. Suppose that ν(Λcon
θ ) > 0 for all ν ∈ Nθψ. Then

ν(Λcon
θ ) = 1 for all ν ∈ Nθψ.

Proof. Suppose that for some ν ∈ Nθψ, we have 0 < ν(Λcon
θ ) < 1. Then

ν ′ := 1
ν(Fθ−Λcon

θ )ν|Fθ−Λcon
θ

belongs to Mθ
ψ. We now show that ν ′ ∈ Nθψ. There

are two cases:

(1) If ν satisfies that (supp ν|Fθ−Λθ , η) ∩ F (2)
θ ̸= ∅ for all η ∈ Λi(θ), then

the same holds for ν ′, so ν ′ ∈ Nθψ.

(2) Otherwise, ν(Λθ) = 1 and # supp ν ≥ 2. We consider the following
two subcases:

• If Γ is non-elementary, then supp ν ′ = Λθ. Since #Λθ = ∞ in
this case, we have ν ∈ Nθψ.

• If Γ is elementary, then #Λθ ≤ 2. Since ν(Λθ) = 1 and # supp ν ≥
2, we have supp ν = Λθ and #Λθ = 2. Since 0 < ν(Λcon

θ ) < 1,
we must have that #Λcon

θ = 1. Since both Λθ and Λcon
θ are

Γ-invariant, this implies that each point of Λθ is Γ-invariant.
Now for ξ ∈ Λθ − Λcon

θ , let γi ∈ Γ be a sequence that con-

verges to ξ. For η ∈ Λi(θ) such that (ξ, η) ∈ F (2)
θ , we have

γ−1
i (ξ, η) = (ξ, η) ∈ F (2)

θ , and therefore the convergence γi → ξ
is conical by Lemma 5.8. This contradicts ξ /∈ Λcon

θ .

Therefore, in any case, we have ν ′ ∈ Nθψ. On the other hand, ν ′(Λcon
θ ) = 0,

contradicting the hypothesis. This finishes the proof. □

We will use the following:
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Lemma 8.4 (Kochen-Stone Lemma [27]). Let (Z, ν) be a finite measure
space. If {An} is a sequence of measurable subsets of Z such that

∞∑
n=1

ν(An) = ∞ and lim inf
N→∞

∑N
m=1

∑N
n=1 ν(An ∩ Am)Ä∑N
n=1 ν(An)

ä2 <∞, (8.1)

then ν(lim supn An) > 0.

Proof of Theorem 8.2. Suppose that
∑

γ∈Γ e
−ψ(µθ(γ)) = ∞. By Lemma

8.3, it suffices to show that ν(Λcon
θ ) > 0 for all ν ∈ Nθψ. Let ν ∈ Nθψ. Since Γ

is θ-transverse, it follows from the definition of Nθψ that ν satisfies Lemma
7.2.

We fix α ∈ θ. Since Γ is θ-regular, α ∈ θ is (Γ, θ)-proper; in particular,
α(µθ(Γ)) is a discrete closed subset of [0,∞). Therefore we may enumerate
Γ = {γ1, γ2, · · · } so that α(µθ(γn)) ≤ α(µθ(γn+1)) for all n ∈ N. Fix a
sufficiently large R which satisfies the conclusion of Lemma 7.2. Setting
An := OθR(o, γno), we then have

∞∑
n=1

ν(An) ≫
∑
γ∈Γ

e−ψ(µθ(γ)) = ∞

where the implied constant depends only on R. Since lim supn An ⊂ Λcon
θ ,

by Lemma 8.4, it suffices to show that

lim inf
N→∞

∑N
m=1

∑N
n=1 ν(An ∩ Am)Ä∑N
n=1 ν(An)

ä2 <∞. (8.2)

Set Q := KA+
RK where A+

R = {a ∈ A+ : ∥ log a∥ ≤ R} and C0 = C0(Q)
be as in Lemma 6.3. Note that Q = {g ∈ G : d(o, go) ≤ R}. Define

TN := max{n ∈ N : α(µθ(γn)) ≤ α(µθ(γN )) + ∥α∥C0}

for each N ≥ 1. Clearly, N ≤ TN . Unless mentioned otherwise, all implied
constants in this proof are independent of N . Since Γ is θ-regular, α|aθ is
(Γ, θ)-proper. Proposition 6.2 implies that the collection An, N ≤ n ≤ TN ,
has multiplicity at most q = q(α,R, ∥α∥C0), and hence∑

N≤n≤TN

ν(An) ≤ q · ν(Fθ).

Therefore by Lemma 7.2, we have that for all N ≥ 1,∣∣∣∣∣∣
TN∑
n=1

e−ψ(µθ(γn)) −
N∑
n=1

e−ψ(µθ(γn))

∣∣∣∣∣∣≪
TN∑

n=N+1

ν(An)

≪ ν(Fθ) = eψ(µθ(γ1))e−ψ(µθ(γ1)) ≤ eψ(µθ(γ1))
N∑
n=1

e−ψ(µθ(γn))
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with all implied constants independent of N . Therefore we have:

TN∑
n=1

e−ψ(µθ(γn)) ≪
N∑
n=1

e−ψ(µθ(γn)). (8.3)

Fix N ∈ N. If An ∩ Am ̸= ∅ for some n,m ≤ N , then there exist k ∈ K
and mθ ∈Mθ such that d(kA+o, γno) < R and d(kmθA

+o, γmo) < R. Since
K ⊂ Q, it follows that

Q ∩ γnQa−1
n ∩ γmQa−1

m m−1
θ ̸= ∅

for some an, am ∈ A+. Hence, setting

E1 = {(n,m) : n,m ≤ N and ∥µθ(γn)− (µθ(γm) + µθ(γ
−1
m γn))∥ ≤ C0},

E2 = {(n,m) : n,m ≤ N and ∥µθ(γm)− (µθ(γn) + µθ(γ
−1
n γm))∥ ≤ C0},

we get from Lemma 6.3 that∑
n,m≤N

ν(An ∩ Am) ≤
∑

(n,m)∈E1

ν(An) +
∑

(n,m)∈E2

ν(Am). (8.4)

For all (n,m) ∈ E1, we have

α(µθ(γ
−1
m γn)) ≤ α(µθ(γm) + µθ(γ

−1
m γn))

= α(µθ(γm) + µθ(γ
−1
m γn)− µθ(γn)) + α(µθ(γn))

≤ ∥α∥C0 + α(µθ(γn)).

(8.5)

Therefore, by Lemma 7.2,∑
(n,m)∈E1

ν(An) ≪
∑

(n,m)∈E1

e−ψ(µθ(γn))

≪
∑

(n,m)∈E1

e−ψ(µθ(γm))e−ψ(µθ(γ
−1
m γn))

≤
N∑
m=1

TN∑
j=1

e−ψ(µθ(γm))e−ψ(µθ(γj));

(8.6)

the last inequality follows because, for each fixed 1 ≤ m ≤ N , the corre-
spondence n ↔ γ−1

m γn is one-to-one and when (n,m) ∈ E1, γj = γ−1
m γn for

some j ≤ Tn ≤ TN by (8.5). Similarly, we have

∑
(n,m)∈E2

ν(Am) ≪
N∑
n=1

TN∑
j=1

e−ψ(µθ(γn))e−ψ(µθ(γj)).
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By (8.4), we have∑
n,m≤N

ν(An ∩ Am) ≪
N∑
n=1

TN∑
j=1

e−ψ(µθ(γn))e−ψ(µθ(γj))

=

(
N∑
n=1

e−ψ(µθ(γn))

)(
TN∑
n=1

e−ψ(µθ(γn))

)

≪

(
N∑
n=1

e−ψ(µθ(γn))

)2

≪

(
N∑
n=1

ν(An)

)2

where we have applied (8.3) for the second last inequality and Lemma 7.2
for the last inequality. Hence (8.2) is verified, completing the proof of the
first statement.

We now suppose that
∑

γ∈Γ e
−ψ(µθ(γ)) < ∞. Consider the following in-

creasing sequence

ΛNθ =

ß
ξ ∈ Fθ :

∃ infinite sequence γn ∈ Γ s.t.
ξ ∈

⋂
n≥1O

θ
N (o, γno)

™
, N ≥ 1.

Since Λcon
θ =

⋃
N ΛNθ , it suffices to show ν(ΛNθ ) = 0 for all sufficiently large

N ≥ 1. Since

ΛNθ ⊂
⋃

γ∈Γ,∥µθ(γ)∥>t

OθN (o, γo)

for any t > 0, we get from Lemma 7.2 that for all t > 0,

ν(ΛNθ ) ≪
∑

γ∈Γ,∥µθ(γ)∥>t

e−ψ(µθ(γ))

where the implied constant depends only on N . Since
∑

γ∈Γ e
−ψ(µθ(γ)) <

∞ implies that limt→∞
∑

γ∈Γ,∥µθ(γ)∥>t e
−ψ(µθ(γ)) = 0, we have ν(ΛNθ ) = 0,

finishing the proof. □

Comparing with ψΓ. Quint showed that for a Zariski dense discrete sub-
group Γ < G, the existence of a (Γ, ψ)-conformal measure on Fθ for ψ ∈ a∗θ
implies the inequality

ψ ◦ pθ + 2ρΠ−θ ≥ ψΓ on a, (8.7)

where 2ρΠ−θ is the sum of all positive roots which can be written as Z-linear
combinations of elements of Π− θ (counted with multiplicity) [36, Theorem
8.1]. For θ-transverse subgroups, Theorem 1.4 and (1.2) imply that the term
2ρΠ−θ turns out to be redundant:

Corollary 8.5. Let Γ < G be a Zariski dense θ-transverse subgroup and
ψ ∈ a∗θ be (Γ, θ)-proper. If there exists a (Γ, ψ)-conformal measure ν on Fθ,
then

ψ ◦ pθ ≥ ψΓ on a. (8.8)

Moreover, if ν(Λcon
θ ) > 0, then ψ ◦ pθ is tangent to ψΓ.
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Proof. The first statement follows from Theorem 7.1 and Lemma 3.13. For
the second claim, if ν(Λcon

θ ) > 0, then we have
∑

γ∈Γ e
−(ψ◦pθ)(µ(γ)) = ∞ by

Theorem 8.2. If ψ ◦ pθ were strictly bigger than ψΓ, then by [35, Lemma

3.1.3] we would have
∑

γ∈Γ e
−(ψ◦pθ)(µ(γ)) < ∞. Therefore ψ ◦ pθ must be

tangent to ψΓ. □

9. Properly discontinuous actions of Γ

Recall F (2)
θ = {(ξ, η) ∈ Fθ × Fi(θ) : ξ, η are in general position} and con-

sider the action of G on the space F (2)
θ × aθ defined as

g.(ξ, η, u) = (gξ, gη, u+ βθξ (g
−1, e)) (9.1)

for all g ∈ G and (ξ, η, u) ∈ F (2)
θ × aθ. A discrete subgroup Γ < G preserves

the subspace Λ
(2)
θ × aθ where

Λ
(2)
θ = (Λθ × Λi(θ)) ∩ F (2)

θ .

When θ = Π, the Hopf parametrization of G/M gives a G-equivariant

homeomorphism between F (2) × a and G/M , and hence any discrete sub-

group Γ < G acts properly discontinuously on F (2)×a and hence the quotient

space Γ\Λ(2)
Π × a is a locally compact Hausdorff space. For a general θ, this

is not the case. The aim of this section is to establish the following two
theorems on properly discontinuous actions of θ-transverse subgroups.

Theorem 9.1. If Γ is a non-elementary θ-transverse subgroup, the Γ-action

on Λ
(2)
θ × aθ is properly discontinuous and hence

Ωθ := Γ\Λ(2)
θ × aθ

is a locally compact Hausdorff space.

For a (Γ, θ)-proper form φ ∈ a∗θ, consider the Γ-action

γ.(ξ, η, s) = (γξ, γη, s+ φ(βθξ (γ
−1, e))) (9.2)

for all γ ∈ Γ and (ξ, η, s) ∈ Λ
(2)
θ × R.

Theorem 9.2. Let Γ be a non-elementary θ-transverse subgroup of G and

φ ∈ a∗θ a (Γ, θ)-proper form. Then the action Γ on Λ
(2)
θ × R given by (9.2)

is properly discontinuous and hence

Ωφ := Γ\Λ(2)
θ × R

is a locally compact Hausdorff space. Moreover, Ωφ is compact if and only
if Γ is θ-Anosov.

Definition 9.3. Let Z be a compact metrizable space with at least 3 points.
An action of a countable group Γ on Z by homeomorphisms is called a
convergence group action if for any sequence of distinct elements γn ∈ Γ,
there exist a subsequence γnk and a, b ∈ Z such that as k → ∞, γnk(z)
converges to a for all z ∈ Z − {b}, uniformly on compact subsets.
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We will use the following property of a θ-transverse subgroup:

Proposition 9.4. [22, Theorem 4.16] For a θ-transverse subgroup Γ, the
action of Γ on Λθ is a convergence group action.

It is also proved in [22] that Λθ is same as the limit set as the convergence
group action; this also follows from Lemma 2.5. In particular, if Γ is non-
elementary, then the Γ-action on Λθ is minimal.

The following observation is useful to transfer statements from θ symmet-
ric to general θ.

Lemma 9.5. Suppose that Γ is θ-antipodal. For any θ1 ⊂ θ2 ⊂ θ ∪ i(θ), the
projection map p : Λθ2 → Λθ1 given by gPθ2 → gPθ1 is a Γ-equivariant home-
omorphism. In particular, for any (Γ, ψ)-conformal measure ν supported on
Λθ1 for ψ ∈ a∗θ1 ⊂ a∗θ2, the pull back p∗ν is a (Γ, ψ)-conformal measure on
Λθ2.

Proof. It suffices to show that p is injective when θ2 = θ∪ i(θ). Suppose that
ξ ̸= η ∈ Λθ∪i(θ). By the θ-antipodality of Γ, ξ = gPθ∪i(θ) and η = gw0Pθ∪i(θ)
for some g ∈ G. Then p(ξ) = gPθ1 and p(η) = gw0Pθ1 , and hence p(ξ) ̸=
p(η), showing that p is injective. □

The following observation will be useful:

Lemma 9.6. Let Γ be a non-elementary θ-transverse subgroup and γi ∈ Γ

an infinite sequence. Let (ξi, ηi) ∈ Λ
(2)
θ be a convergent sequence in Λ

(2)
θ .

If the sequence γi(ξi, ηi) converges in Λ
(2)
θ , then there exists R > 0 so that

either
ξi ∈ OθR(o, γ

−1
i o) for all i ≥ 1; or

ηi ∈ O
i(θ)
R (o, γ−1

i o) for all i ≥ 1.

In particular, if the sequence γi(ξ, η) ∈ Λ
(2)
θ converges in Λ

(2)
θ for some

(ξ, η) ∈ Λ
(2)
θ , then γ−1

i converges conically either to ξ or η.

Proof. Set (ξ, η) = limi(ξi, ηi) ∈ Λ
(2)
θ and (ξ0, η0) = limi γi(ξi, ηi) ∈ Λ

(2)
θ .

Since the projections Λθ∪i(θ) → Λθ and Λθ∪i(θ) → Λi(θ) are Γ-equivariant
homeomorphisms by Lemma 9.5, we also let ξ′, ξ′0, ξ

′
i ∈ Λθ∪i(θ) be the preim-

ages of ξ, ξ0, and ξi for all i ≥ 1 under the projection Λθ∪i(θ) → Λθ respec-
tively, and similarly η′, η′0, η

′
i ∈ Λθ∪i(θ) the preimages of η, η0, and ηi. Note

that ξ′ ̸= η′, ξ′0 ̸= η′0, and ξ
′
i ̸= η′i for all i ≥ 1 and ξ′i → ξ′, η′i → η′, γiξ

′
i → ξ′0,

and γiη
′
i → η′0 as i→ ∞.

Since the action of Γ on Λθ∪i(θ) is a convergence group action by Propo-
sition 9.4, there exist a, b ∈ Λθ∪i(θ) such that

γi|Λθ∪i(θ)−{b} → a (9.3)

uniformly on compact subsets, after passing to a subsequence. That is, for
any compact subsets Ca ⊂ Λθ∪i(θ) − {a} and Cb ⊂ Λθ∪i(θ) − {b},

#{γi : γiCb ∩ Ca ̸= ∅} <∞,
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or equivalently #{γ−1
i : γ−1

i Ca ∩ Cb ̸= ∅} < ∞. Therefore we have, as
i→ ∞,

γ−1
i |Λθ∪i(θ)−{a} → b (9.4)

uniformly on compact subsets.
We claim that

(a, b) = (η′0, ξ
′) or (a, b) = (ξ′0, η

′). (9.5)

Suppose ξ′ ̸= b. Excluding finitely many elements from {ξ′i : i ≥ 1}, we may
assume that {ξ′i : i ≥ 1} ∪ {ξ′} is a compact subset of Λθ∪i(θ) − {b}. Hence
(9.3) implies that ξ′0 = limi γiξ

′
i = a. If η′ were not equal to b, then we may

also assume that {η′i : i ≥ 1} ∪ {η′} is a compact subset of Λθ∪i(θ) −{b} and
hence (9.3) implies η′0 = limi γiη

′
i = a. Since ξ′0 ̸= η′0, this is a contradiction.

This implies η′ = b. Now suppose that ξ′ = b. Since η′ ̸= ξ′ = b, we have
η′0 = limi γiη

′
i = a by the above argument. This proves the claim.

Now (9.4) and (9.5) imply that

γ−1
i |Λθ∪i(θ)−{η′0} → ξ′ or γ−1

i |Λθ∪i(θ)−{ξ′0} → η′ (9.6)

uniformly on compact subsets.
Since Γ is θ ∪ i(θ)-regular, we may assume that by passing to a subse-

quence, the sequence γ−1
i converges to some point, say, z = limi γ

−1
i , in

Λθ∪i(θ) in the sense of Definition 2.2. We claim that z is either ξ′ or η′.

Write γ−1
i = kibiℓ

−1
i ∈ KA+K using the Cartan decomposition. By passing

to a subsequence, we may assume that ki → k0 ∈ K and ℓi → ℓ0 ∈ K.
Choose x ∈ Λθ∪i(θ)−{η′0, ξ′0, } in general position with ℓ0w0Pθ∪i(θ) = limi γi,
which is possible by the θ-antipodality and non-elementary hypothesis of Γ.
Since Γ is θ∪i(θ)-regular, by Lemma 2.1, we have minα∈θ∪i(θ) α(log bi) → ∞.
Hence, by Lemma 2.5, we have

γ−1
i x→ z = k0Pθ∪i(θ).

Therefore, it follows from (9.6) that z = ξ′ or η′.
If limi γ

−1
i = ξ′, then by Lemma 5.9, there exists R1 > 0 such that

ξ′i ∈ O
θ∪i(θ)
R1

(o, γ−1
i o) for all i ≥ 1. Otherwise, if limi γ

−1
i = η′, then we

apply Lemma 5.9 to the sequence (η′i, ξ
′
i) to obtain R2 > 0 such that η′i ∈

O
θ∪i(θ)
R2

(o, γ−1
i o) for all i ≥ 1. Setting R := max(R1, R2) and taking the

projections Λθ∪i(θ) → Λθ and Λθ∪i(θ) → Λi(θ), we have either

ξi ∈ OθR(o, γ
−1
i o) for all i ≥ 1; or

ηi ∈ O
i(θ)
R (o, γ−1

i o) for all i ≥ 1,

completing the proof. □

Proposition 9.7. Let Γ be a non-elementary θ-transverse subgroup and
φ ∈ a∗θ a (Γ, θ)-proper form. Let γi ∈ Γ be an infinite sequence and

(ξi, ηi) ∈ Λ
(2)
θ a convergent sequence in Λ

(2)
θ . If the sequence γi(ξi, ηi) ∈ Λ

(2)
θ
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converges in Λ
(2)
θ , then the sequence φ(βθξi(γ

−1
i , e)) is unbounded. In partic-

ular, βθξi(γ
−1
i , e) is unbounded.

Proof. By Lemma 9.6, there exists R > 0 so that either

ξi ∈ OθR(o, γ
−1
i o) for all i ≥ 1; or

ηi ∈ O
i(θ)
R (o, γ−1

i o) for all i ≥ 1.

We consider these two cases separately.

Case A. Suppose that ξi ∈ OθR(o, γ
−1
i o) for all i ≥ 1. By Lemma 5.10, we

have

sup
i

∥βθξi(e, γ
−1
i )− µθ(γ

−1
i )∥ <∞

and hence

sup
i

|φ(βθξi(e, γ
−1
i )− µθ(γ

−1
i ))| <∞.

The θ-regularity of Γ implies µθ(γ
−1
i ) → ∞ as i → ∞. Since φ is (Γ, θ)-

proper, we have φ(µθ(γ
−1
i )) → ∞. Therefore

φ(βθξi(γ
−1
i , e)) = −φ(βθξi(e, γ

−1
i )) → −∞,

as desired.

Case B. Now suppose that ηi ∈ O
i(θ)
R (o, γ−1

i o) for all i ≥ 1. Then there
exist a sequence ki ∈ K and a sequence ai → ∞ in A+ such that ηi = kiPi(θ)

for all i ≥ 1 and the sequence γikiai is bounded. By the hypothesis that the

sequence (ξi, ηi) converges in Λ
(2)
θ , there exists a bounded sequence hi ∈ G

such that (ξi, ηi) = hiLθ, which means that ξi = hiPθ and ηi = hiw0Pi(θ).
Since ηi = hiw0Pi(θ) = kiPi(θ) for each i, we have hiw0m

′
ipi = ki for some

m′
i ∈ Mi(θ) and pi ∈ P , using Pi(θ) = Mi(θ)P . Since the sequences hi, ki,

and m′
i are bounded, the sequence pi ∈ P is bounded as well. This implies

that the sequence a−1
i piai is bounded since ai ∈ A+ by Lemma 2.3. Hence

it follows from the boundedness of the sequence γikiai = γihiw0m
′
ipiai =

γihiw0m
′
iai(a

−1
i piai) that

the sequence gi := γihiw0m
′
iai is bounded.

For each i, set mi = w0m
′
iw

−1
0 ∈Mθ. Then

ηi = hiw0Pi(θ) = hiw0m
′
iPi(θ) = himiw0Pi(θ), ξi = hiPθ = himiPθ

and

gi = γihiw0m
′
iai = γihimiw0ai.

Using ξi = himiPθ, we have

βθξi(γ
−1
i , e) = βθγiξi(e, γi) = βθγiξi(e, gi) + βθγiξi(gi, γi)

= βθγiξi(e, gi) + βθξi(himiw0ai, e)

= βθγiξi(e, gi) + βθPθ(w0ai, e) + βθPθ(e,m
−1
i h−1

i ).
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Since gi and m
−1
i h−1

i are bounded sequences, the sequences βθγiξi(e, gi) and

βθPθ(e,m
−1
i h−1

i ) are bounded by [29, Lemma 5.1].
Hence it suffices to show that as i→ ∞,

φ(βθPθ(w0ai, e)) → ∞. (9.7)

Note that βθPθ(w0ai, e) = pθ(βP (w0ai, e)) and

βP (w0ai, e) = βP (w0aiw
−1
0 , e) = i(log ai).

Since the sequences gi = γihimiw0ai and himi are bounded and γ−1
i gi =

himiw0ai, we have ∥µ(γ−1
i ) − log ai∥ = ∥µ(γi) − i(log ai)∥ is uniformly

bounded by Lemma 2.1 and the identity (2.1). Therefore

sup
i

|φ(µθ(γi)− (pθ ◦ i)(log ai))| <∞.

It follows from the θ-regularity of Γ and the (Γ, θ)-properness of φ that
φ(µθ(γi)) → ∞ as i → ∞, and hence φ((pθ ◦ i)(log ai)) → ∞, implying
(9.7). Therefore, we have φ(βθξi(γ

−1
i , e)) → ∞. This finishes the proof. □

Recall the definition of a θ-Anosov subgroup given in the introduction.
Anosov subgroups are word hyperbolic. The notion of a θ-conical set in
[22] is equal to the one we use here for θ-Anosov subgroups, by the Morse
property of θ-Anosov subgroups obtained in [22].

Theorem 9.8. [22, Theorem 1.1] For a θ-transverse subgroup Γ, Γ is θ-
Anosov if and only if Λθ = Λcon

θ .

Proof of Theorems 9.1 and 9.2. Suppose to the contrary that the Γ-

action on Λ
(2)
θ ×aθ is not properly discontinuous. Then there exists a compact

subset Q ⊂ Λ
(2)
θ ×aθ such that γiQ∩Q ̸= ∅ for an infinite sequence γi ∈ Γ. In

particular, there exists a sequence (ξi, ηi, ui) ∈ Q such that γi(ξi, ηi, ui) ∈ Q
for all i ≥ 1. By passing to a subsequence, we may assume that the sequences

(ξi, ηi, ui) and γi(ξi, ηi, ui) converge in Q ⊂ Λ
(2)
θ × aθ. On the other hand,

γi(ξi, ηi, ui) = (γiξi, γiηi, ui + βθξi(γ
−1
i , e)) for all i ≥ 1

which cannot converge by Proposition 9.7, yielding a contradiction. Hence
Theorem 9.1 follows.

The first part of Theorem 9.2 follows from Proposition 9.7 as well. Now
suppose that Ωφ is compact. Fix a sequence si → +∞ and let ξ ∈ Λθ.

Choose any η ∈ Λi(θ) so that (ξ, η) ∈ Λ
(2)
θ . Then there exists a sequence γi ∈

Γ such that the sequence γi(ξ, η, si) = (γiξ, γiη, si+φ(β
θ
ξ (γ

−1
i , e))) converges

by passing to a subsequence. Hence the sequence γi(ξ, η) is convergent in

Λ
(2)
θ and φ(βθξ (γ

−1
i , e)) → −∞ as i→ ∞. By Lemma 9.6, the sequence γ−1

i

converges to ξ or η conically as i→ ∞. If γ−1
i → η conically, then as in the

Case B of the proof of Proposition 9.7, we must have φ(βθξ (γ
−1
i , e)) → +∞,

which is impossible. Therefore, γ−1
i → ξ conically as i → ∞, and hence
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ξ ∈ Λcon
θ . Since ξ is arbitrary, we have Λθ = Λcon

θ . By Theorem 9.8, Γ is
θ-Anosov.

Suppose that Γ is Anosov. By [10, Theorem 10.1], we have φ > 0 on
Lθ−{0}. Hence it is a consequence of the Hölder reparametrization theorem
for Anosov subgroups ([5, Proposition 4.1], [11, Theorem 4.15]) that Ωφ is
compact (see also [11, Theorem 3.5]). This finishes the proof. □

10. Bowen-Margulis-Sullivan measures on Ωθ and Ωφ

Let Γ < G be a non-elementary θ-transverse subgroup and ψ ∈ a∗θ. As ψ
can be considered as a linear form on a which is pθ-invariant and hence ψ ◦ i
is a linear form on a which is pi(θ)-invariant, we have ψ ◦ i ∈ a∗i(θ). For a pair

of a (Γ, ψ)-conformal measure ν on Λθ and a (Γ, ψ ◦ i)-conformal measure νi

on Λi(θ), we define a Radon measure dm̃ν,νi on Λ
(2)
θ × aθ as follows:

dm̃ν,νi(ξ, η, u) = eψ
Ä
βθξ (e,g)+i(β

i(θ)
η (e,g))

ä
dν(ξ)dνi(η)du (10.1)

where g ∈ G is chosen so that (ξ, η) = (gPθ, gw0Pi(θ)) and du is the Lebesgue
measure on aθ. This definition is independent of the choice of g by Lemma
10.1 below. The measure dm̃ν,νi is left Γ-invariant and right Aθ-invariant.
We denote by

mν,νi (10.2)

the Aθ-invariant Borel measure on Ωθ induced by m̃ν,νi , which we call the
Bowen-Margulis-Sullivan measure associated to the pair (ν, νi).

Lemma 10.1. If g, g′ ∈ G satisfy (ξ, η) = (gPθ, gw0Pi(θ)) = (g′Pθ, g
′w0Pi(θ)),

then
βθξ (e, g) + i(βi(θ)η (e, g)) = βθξ (e, g

′) + i(βi(θ)η (e, g′)).

Proof. The hypothesis on g and g′ means that g′ = gh for some h ∈ Lθ.
Since

βθξ (e, g
′) + i(βi(θ)η (e, g′))

= (βθξ (e, g) + i(βi(θ)η (e, g))) + (βθPθ(e, h) + i(β
i(θ)
w0Pi(θ)

(e, h)))

it suffices to prove that

βθPθ(e, h) + i(β
i(θ)
w0Pi(θ)

(e, h)) = 0.

Write h = as where a ∈ Aθ and s ∈ Sθ. Since pθ(log(A ∩ Sθ)) = 0 and

βPθ(e, s) + i(βw0Pi(θ)
(e, s)) ∈ log(A ∩ Sθ),

we have

βθPθ(e, h) + i(β
i(θ)
w0Pi(θ)

(e, h)) = βθPθ(e, a) + i(β
i(θ)
w0Pi(θ)

(e, a)).

On the other hand, by the definition of the Busemann map, βP (e, a) = log a
and βw0P (e, a) = βP (e, w0aw

−1
0 ) = Adw0(log a) = − i(log a). Hence

βP (e, a) + i(βw0P (e, a)) = log a− i2(log a) = 0,
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finishing the proof. □

For a (Γ, θ)-proper form φ, consider the Γ-equivariant projection Λ
(2)
θ ×

aθ → Λ
(2)
θ ×R given by (ξ, η, u) → (ξ, η, φ(u)). By Theorem 9.2, this induces

an affine bundle with fiber kerφ:

Ωθ → Ωφ; (10.3)

it is a standard fact that such a bundle is indeed a trivial vector bundle and
hence we have a homeomorphism

Ωθ ≃ Ωφ × kerφ ≃ Ωφ × R#θ−1. (10.4)

We denote by the push-forward of the measure mν,νi on Ωφ by mφ
ν,νi which

is an R-invariant Radon measure on Ωφ. Then

mν,νi = mφ
ν,νi

⊗ Lebkerφ. (10.5)

By the following proposition, the measures mν,νi and mφ
ν,νi are non-zero.

Proposition 10.2. Let Γ < G be a discrete subgroup and let λ and λi
be probability measures on Fθ and Fi(θ) respectively. Suppose one of the
following:

(1) Γ is Zariski dense and λ is Γ-quasi-invariant.
(2) Γ is non-elementary θ-transverse, λ is Γ-quasi-invariant, and λ and

λi are supported on Λθ and Λi(θ) respectively.

Then

(λ× λi)(F (2)
θ ) > 0. (10.6)

Proof. Suppose (λ× λi)(F (2)
θ ) = 0. Then by Fubini’s theorem,

λ
Ä
{ξ ∈ Fθ : (ξ, η) ∈ F (2)

θ }
ä
= 0 for λi-a.e. η ∈ Fi(θ). (10.7)

We now deduce a contradiction in each case. In the case of (1), let η ∈
Fi(θ). Since supp ν ⊂ Fθ must be Zariski dense in this case by Lemma 5.2

and {ξ ∈ Fθ : (ξ, η) ∈ F (2)
θ } is a non-empty Zariski open subset, we have

λ
Ä
{ξ ∈ Fθ : (ξ, η) ∈ F (2)

θ }
ä
> 0, contradicting (10.7).

In the case (2), let η ∈ Λi(θ). Since Γ is θ-transverse, there exists ξ0 ∈ Λθ

such that Λθ−{ξ0} ⊂ {ξ ∈ Fθ : (ξ, η) ∈ F (2)
θ }. Hence it suffices to note that

λ(Λθ − {ξ0}) > 0. If not, λ is supported on {ξ0}, which must be fixed by Γ
due to the quasi-invariance of λ.

Since the Γ-action on Λθ is minimal (Proposition 9.4), Λθ = {ξ0}, contra-
dicting the non-elementary hypothesis on Γ. □

11. Conservativity and ergodicity of the aθ-action

In this section, we expand the dichotomies in Theorem 8.2 to a criterion
on conservativity and ergodicity of aθ-action on the quotient space Ωθ =

Γ\Λ(2)
θ × aθ, or equivalently a criterion on conservativity and ergodicity of
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R-action on the quotient space Ωφ = Γ\Λ(2)
θ ×R, when Γ is a non-elementary

θ-transverse subgroup and φ is a (Γ, θ)-proper linear form. First of all, this
makes sense thanks to Theorems 9.1 and 9.2.

We recall the notion of complete conservativity and ergodicity. Let H be
a locally compact unimodular group. We denote by dh the Haar measure on
H. Consider the dynamical system (H,Ω, λ) where Ω is a separable, locally
compact and σ-compact topological space on which H acts continuously
and λ is a Radon measure which is quasi-invariant by H. A Borel subset
B ⊂ Ω is called wandering if

∫
H 1B(h.w)dh < ∞ for µ-almost all w ∈ B.

The Hopf decomposition theorem says that Ω can be written as the disjoint
union ΩC ∪ ΩD of H-invariant subsets where ΩD is a countable union of
wandering subsets which is maximal in the sense that ΩC does not contain
any wandering subset of positive measure. If λ(ΩD) = 0, the system is
called completely conservative. If λ(ΩC) = 0, the system is called completely
dissipative. The dynamical system (H,Ω, λ) is ergodic if any H-invariant
λ-measurable subset is either null or co-null. An ergodic system (H,Ω, λ)
is either completely conservative or completely dissipative. If (H,Ω, λ) is
ergodic, H is countable and λ is atomless, then it is completely conservative
[20, Theorem 14]. The following is standard [30, Lemma 6.1]:

Lemma 11.1. Suppose that λ is H-invariant. Then (H,Ω, λ) is completely
conservative if and only if for λ-a.e. x ∈ Ω, there exists a compact subset
Bx ⊂ Ω such that

∫
h∈H 1Bx(h.x) dh = ∞.

The following theorem implies Theorem 1.9 in the introduction. For a
non-elementary θ-transverse subgroup Γ < G and ψ ∈ a∗θ, we denote by

Mθ
ψ ⊂ Mθ

ψ

the space of all (Γ, ψ)-conformal measures supported on Λθ.

Theorem 11.2. Let Γ < G be a non-elementary θ-transverse subgroup. Let
ψ ∈ a∗θ be (Γ, θ)-proper such that Mθ

ψ ̸= ∅. Then the following are equivalent
to each other.

(1)
∑

γ∈Γ e
−ψ(µθ(γ)) = ∞ (resp.

∑
γ∈Γ e

−ψ(µθ(γ)) <∞);

(2) For any ν ∈ Mθ
ψ, ν(Λ

con
θ ) > 0 (resp. ν(Λcon

θ ) = 0);

(3) For any ν ∈ Mθ
ψ, ν(Λ

con
θ ) = 1 (resp. ν(Λcon

θ ) = 0);

(4) For any (ν, νi) ∈ Mθ
ψ ×Mi(θ)

ψ◦i , the Γ-action on (Λ
(2)
θ , ν × νi) is com-

pletely conservative and ergodic (resp. completely dissipative and
non-ergodic);

(5) For any (ν, νi) ∈ Mθ
ψ × Mi(θ)

ψ◦i , the aθ-action on (Ωθ,mν,νi) is com-

pletely conservative and ergodic (resp. completely dissipative and
non-ergodic);

(6) For any (ν, νi) ∈ Mθ
ψ × Mi(θ)

ψ◦i and any (Γ, θ)-proper φ ∈ a∗θ, the

R-action on (Ωφ,m
φ
ν,νi) is completely conservative and ergodic (resp.

completely dissipative and non-ergodic).
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In the proof of Theorem 11.2, we will use the following observation.

Lemma 11.3. Let Γ < G be a non-elementary θ-transverse subgroup. Let λ
and λi be Γ-quasi-invariant probability measures on Λθ and Λi(θ) respectively.

If the Γ-action on (Λ
(2)
θ , λ× λi) is ergodic, then λ× λi has no atom in Λ

(2)
θ .

Proof. By Proposition 10.2, we have (λ×λi)(Λ(2)
θ ) > 0. Suppose that λ×λi

has an atom, say (ξ0, η0) ∈ Λ
(2)
θ . By the ergodicity hypothesis, λ × λi

is supported on a single Γ-orbit Γ(ξ0, η0) ⊂ Λ
(2)
θ . Since λ(ξ0) > 0 and

λi(η0) > 0, we have

(Γξ0 × Γη0) ∩ Λ
(2)
θ ⊂ Γ(ξ0, η0).

Since Γ is θ-antipodal,

Γξ0 ⊂ Γη0ξ0 ∪ {η′0}
where Γη0 is the stabilizer of η0 in Γ and η′0 is the image of η0 under the Γ-
equivariant homeomorphism Λi(θ) → Λθ obtained in Lemma 9.5. In addition,
the Γ-equivariance of Λi(θ) → Λθ implies that Γη0 = Γη′0 and hence

Γξ0 ⊂ Γη′0ξ0 ∪ {η′0}. (11.1)

Since the Γ-action on Λθ is a convergence group action (Proposition 9.4),
Λθ is perfect and equal to the set of all accumulation points of Γξ0. On the
other hand, Γη′0 is an elementary subgroup and hence Γη′0ξ0 has at most two

accumulation points in Λθ ([45], [4]). Therefore, we obtain a contradiction.
□

Proof of Theorem 11.2. Note that a∗θ can be regarded as a subspace of
a∗θ∪i(θ) and that ψ ∈ a∗θ is (Γ, θ)-proper if and only if ψ ◦ i is (Γ, i(θ))-proper.
By Lemma 9.5, we have Γ-equivariant homeomorphisms Λθ → Λθ∪i(θ) →
Λi(θ) and hence we can push-forward measures in Mθ

ψ to Mi(θ)
ψ◦i . In par-

ticular, Mi(θ)
ψ◦i ̸= ∅. Note that since Γ is non-elementary θ-transverse, the

equivalence (1) ⇔ (2) ⇔ (3) follows from Lemma 8.1 and Theorem 8.2.

The divergent case. We will show (3) ⇒ (5) ⇒ (4), (3) ⇒ (6) ⇒ (4), and
(4) ⇒ (1), which will then finish the proof of this case.

In order to show (3) ⇒ (5), assume (3). Consider a pair (ν, νi) ∈ Mθ
ψ ×

Mi(θ)
ψ◦i . Then for ν-a.e. ξ ∈ Λθ, ξ belongs to Λcon

θ , that is, there exist g ∈ G

and sequences γi ∈ Γ, mi ∈Mθ and ai ∈ A+ such that ξ = gPθ, the sequence
γigmiai is bounded, and the sequence γi is infinite. By the θ-regularity of Γ
and Lemma 2.1, we have minα∈θ α(log ai) → ∞ as i→ ∞. For any η ∈ Λi(θ)

such that (ξ, η) ∈ Λ
(2)
θ and any u ∈ aθ, there exists n ∈ Nθ and a ∈ Aθ such

that gnaSθ ∈ G/Sθ represents (ξ, η, u) ∈ Λ
(2)
θ × aθ ⊂ G/Sθ. Since ai ∈ A+,

the sequence

γignamiai = (γigmiai)(a
−1
i m−1

i nmiaia) is bounded.
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This implies that writing ui = pθ(log ai) ∈ a+θ ,

γi(ξ, η, u+ ui) ∈ Λ
(2)
θ × aθ is precompact.

Moreover, since α(log ai) → ∞ for all α ∈ θ, we also have ui → ∞ in aθ.
Projecting to Ωθ, this implies that there exists a compact subset Q ⊂ Ωθ so
that ∫

v∈aθ
1Q(Γ(ξ, η, u+ v))dv = ∞.

Since this holds for ν-a.e. ξ ∈ Λθ, any η ∈ Λi(θ) with (ξ, η) ∈ Λ
(2)
θ , and any

u ∈ aθ, the aθ-action on (Ωθ,mν,νi) is completely conservative by Lemma
11.1. By [26, Lemma 8.7], the complete conservativity implies the ergodicity,
showing (5).

To see the implication (5) ⇒ (4), note that for (ν, νi) ∈ Mθ
ψ ×Mi(θ)

ψ◦i , the

ergodicity of the aθ-action on (Ωθ,mν,νi) is equivalent to the ergodicity of

the Γ-action on (Λ
(2)
θ , ν × νi) by the definition of mν,νi . Hence, if (5) holds,

then ν × νi has no atom in Λ
(2)
θ by Lemma 11.3. Consider the measure λ on

Λ
(2)
θ defined by

dλ(ξ, η) := eψ
Ä
βθξ (e,g)+i(β

i(θ)
η (e,g))

ä
dν(ξ)dνi(η)

where g ∈ G is chosen so that (ξ, η) = (gPθ, gw0Pi(θ)) as in (10.1). Then
λ is Γ-invaraint, Γ-ergodic, and atomless. Since Γ is countable, this implies

that the Γ-action on (Λ
(2)
θ , λ) is completely conservative [20, Theorem 14].

Therefore, (4) follows. This establishes (3) ⇒ (5) ⇒ (4). The implications
(3) ⇒ (6) ⇒ (4) can be proved by a similar argument.

To show the implication (4) ⇒ (1), fixing a pair (ν, νi) ∈ Mθ
ψ ×Mi(θ)

ψ◦i , we

will show that the complete conservativity of the Γ-action on (Λ
(2)
θ , ν × νi)

implies (1). Since (Γ,Λ
(2)
θ , ν × νi) is completely conservative, it follows from

Lemma 11.1 that for ν × νi-a.e. (ξ, η) ∈ Λ
(2)
θ , there exists a compact subset

B(ξ,η) ⊂ Λ
(2)
θ and a sequence γi ∈ Γ such that γi(ξ, η) ∈ B(ξ,η) for all i. In

particular, after passing to a subsequence, we have that the sequence γi(ξ, η)

is convergent in Λ
(2)
θ . By Lemma 9.6, we have γ−1

i → ξ or γ−1
i → η conically.

In particular, either ξ ∈ Λcon
θ or η ∈ Λcon

i(θ), and therefore

max{ν(Λcon
θ ), νi(Λ

con
i(θ))} > 0.

In either case, it follows from Theorem 8.2 that∑
γ∈Γ

e−ψ(µθ(γ)) =
∑
γ∈Γ

e−(ψ◦i)(µi(θ)(γ)) = ∞.

Now (1) follows.
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The convergent case. From the divergent case, we have the following
equivalences for the convergent case:

(4)

(1) (2) (3) (5)

(6)

We first observe (4) ⇒ (5) and (4) ⇒ (6). As mentioned in the proof of
the divergent case, the ergodicity in (4), (5), and (6) are all equivalent to

each other. Moreover, if B ⊂ Λ
(2)
θ is a wandering set for the Γ-action on

(Λ
(2)
θ , ν × νi) where (ν, νi) ∈ Mθ

ψ ×Mi(θ)
ψ◦i , then for any non-empty compact

subset V ⊂ aθ, the set Γ(B × V ) ⊂ Ωθ is a wandering set for the aθ-action

on (Ωθ,mν,νi). Since aθ is σ-compact, this implies that if (Λ
(2)
θ , ν × νi) is a

countable union of wandering subsets, then so is (Ωθ,mν,νi), up to measure
zero. Therefore, the complete dissipativity in (4) implies the one in (5), and
hence (4) ⇒ (5) follows. The implication (4) ⇒ (6) can be shown similarly.

We finish the proof by showing (1) ⇒ (4). Assume (1) and fix (ν, νi) ∈
Mθ

ψ ×Mi(θ)
ψ◦i . We first show that the Γ-action on (Λ

(2)
θ , ν × νi) is completely

dissipative. We write the Hopf decomposition Λ
(2)
θ = ΩC ∪ΩD and suppose

to the contrary that (ν × νi)(ΩC) > 0. By applying Lemma 11.1 to the

restriction (ν × νi)|ΩC , we deduce that there exists a Borel subset Ω ⊂ Λ
(2)
θ

with (ν × νi)(Ω) > 0 such that for any (ξ, η) ∈ Ω, there exist a compact
subset B(ξ,η) ⊂ Ω and a sequence γi ∈ Γ such that γi(ξ, η) ∈ B(ξ,η) for all i.
Hence after passing to a subsequence, the sequence γi(ξ, η) is convergent in

Ω ⊂ Λ
(2)
θ , and therefore it follows from Lemma 9.6 that γ−1

i → ξ or γ−1
i → η

conically. Since (ν × νi)(Ω) > 0, it implies

max{ν(Λcon
θ ), νi(Λ

con
i(θ))} > 0.

In either case, it follows from Theorem 8.2 that∑
γ∈Γ

e−ψ(µθ(γ)) =
∑
γ∈Γ

e−(ψ◦i)(µi(θ)(γ)) = ∞,

which contradicts (1). Therefore, (ν × νi)(ΩC) = 0 and hence the Γ-action

on (Λ
(2)
θ , ν × νi) is completely dissipative.

Now it remains to show that the Γ-action on (Λ
(2)
θ , ν × νi) is non-ergodic.

Suppose not. Then the Γ-action on (Λ
(2)
θ , ν×νi) is ergodic, and hence ν×νi

has no atom in Λ
(2)
θ by Lemma 11.3. As before, since Γ is countable, this

must imply that the Γ-action on (Λ
(2)
θ , ν×νi) is completely conservative [20,

Theorem 14]. This is a contradiction, and (4) follows. □
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Proof of Theorem 1.4. Theorem 7.1 implies Theorem 1.4(1). Theorem
1.4(2) follows from Theorem 8.2 and the following corollary. □

Corollary 11.4. Let Γ be a Zariski dense θ-transverse subgroup. If ψ ∈ a∗θ
is (Γ, θ)-proper with Mθ

ψ ̸= ∅ and
∑

γ∈Γ e
−ψ(µθ(γ)) = ∞, then #Mθ

ψ = 1.

Proof. By Theorem 7.1 and the hypothesis on ψ, we have δψ = 1. By
Proposition 5.13, there exists a (Γ, ψ)-conformal measure on Fθ∪i(θ), and is
supported on Λθ∪i(θ). Moreover it is unique by [9, Theorem 1.4]. It then
follows from Lemma 9.5 that there exists a unique (Γ, ψ)-conformal measure
on Fθ as well. □

12. Lebesgue measures of conical sets and disjoint dimensions

In this section, we discuss some of consequences of Theorem 8.2.

Lebesgue measure of conical sets.

Theorem 12.1. If Γ < G is a Zariski dense θ-transverse subgroup, then

Λθ = Fθ or Lebθ(Λ
con
θ ) = 0.

Moreover, in the former case, θ is the simple root of a rank one factor of G.

We need the following proposition for the second claim of the above the-
orem.

Proposition 12.2. Suppose that Γ is Zariski dense and θ-antipodal and
that Λθ = Fθ. Then θ consists of the simple root of a rank one factor of G.

Proof. We write G as the almost direct product of simple real algebraic
groups G = G1 · · ·Gm. Let n be an index such that θ contains a simple
root of Gn. Denoting by πn : G → Gn the canonical projection, πn(Pθ) is

a proper parabolic subgroup of Gn and the limit set of πn(Γ) in Gn/πn(Pθ)
is equal to all of Gn/πn(Pθ), as the limit set of a Zariski dense subgroup
is the unique minimal set (Lemma 5.2). Suppose that the rank of Gn is at
least 2. Fix kPθ∪i(θ) ∈ Λθ∪i(θ) for some k ∈ K. Let w be a Weyl element

given by Lemma 12.3 below such that w /∈ w0N
+
θ Pθ ∪ Pθ. Noting that

w0N
+
θ∪i(θ)Pθ∪i(θ)Mθ ⊂ w0P

+
θ Pθ = w0N

+
θ Pθ, we have

w /∈ w0N
+
θ∪i(θ)Pθ∪i(θ)Mθ ∪ Pθ∪i(θ)Mθ. (12.1)

Note again that both Λθ and ΛΠ are unique Γ-minimal subsets of Fθ and
F , and hence the canonical projection F → Fθ maps ΛΠ onto Λθ. Since
F = K/M and kwMθ ∈ Fθ = K/Mθ = Λθ, we may choose m ∈ Mθ such
that kwmP ∈ ΛΠ, and hence kwmPθ∪i(θ) ∈ Λθ∪i(θ). Then by (12.1),

wm /∈ w0N
+
θ∪i(θ)Pθ∪i(θ) ∪ Pθ∪i(θ).

The condition that wm /∈ Pθ∪i(θ) implies that kwmPθ∪i(θ) ∩ kPθ∪i(θ) = ∅.
Also, by Corollary 2.6, the condition that wm /∈ w0N

+
θ∪i(θ)Pθ∪i(θ) implies

that (kwmPθ∪i(θ), kPθ∪i(θ)) /∈ G.(Pθ∪i(θ), w0Pθ∪i(θ)), that is, kwmPθ∪i(θ) is
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not in general position with Pθ∪i(θ). This yields a contradiction to the θ∪i(θ)-
antipodality of Γ. Therefore for any n such that θ contains a simple root of
Gn, the rank of Gn must be one. If there are n ̸= n′ with this property, the
map γ → (πn(γ), πn′(γ)) must be a Zariski dense subgroup of GnGn′ with
full limit set Gn/πn(Pθ)×Gn′/πn′(Pθ). However this yields a contradiction
to the θ-antipodal property, because the product of two rank one geometric
boundaries does not have the antipodal property. Therefore θ must be a
singleton, proving the claim. □

We now prove the following lemma which was used in the above proof.

Lemma 12.3. If G has a connected normal subgroup Gn of rank at least 2
and θ ⊂ Π contains a simple root of Gn, then we can find a representative
of a Weyl element w ∈ NK(A) such that w /∈ w0N

+
θ Pθ ∪ Pθ.

Proof. By replacing θ with the intersection of θ and the set of simple roots of
Gn, we may assume without loss of generality that G = Gn. Since the rank
of G is at least 2, we can find a representative w ∈ NK(A) of a Weyl element
such that Adw(a

+
θ ) is equal to neither a+θ nor −a+i(θ). If w were contained

in Pθ ∩ K = Mθ, w would commute with aθ and hence Adw(a
+
θ ) = a+θ .

Therefore w /∈ Pθ. On the other hand, if w ∈ w0N
+
θ Pθ, then w

−1
0 w ∈Mθ by

Corollary 2.6, and hence Adw(a
+
θ ) = Adw0(a

+
θ ) = −a+i(θ), which contradicts

our choice of w. Hence w /∈ w0N
+
θ Pθ. □

Proof of Theorem 12.1. Note that Lebθ is a (Γ, 2ρ◦pθ)-conformal measure
where ρ is the half sum of all positive roots of (g, a+) [36, Lemma 6.3]. If
Λθ ̸= Fθ, Lebθ(Λcon

θ ) ≤ Lebθ(Λθ) < 1 as Fθ−Λθ is a non-empty open subset.
Therefore Lebθ(Λ

con
θ ) = 0 by Theorem 8.2. The second claim follows from

Proposition 12.2 above. □

Disjoint dimensions and entropy drop. Recall from the introduction
that

Dθ
Γ = {ψ ∈ a∗θ : (Γ, θ)-proper, δψ = 1,Pψ(1) = ∞}.

Lemma 12.4. For a Zariski dense θ-transverse Γ, we have

Dθ
Γ = {ψ ∈ a∗θ : (Γ, θ)-proper, ∃ a (Γ, ψ)-conformal measure,Pψ(1) = ∞} .

Proof. The inclusion⊂ follows from Proposition 5.13. If there exists a (Γ, ψ)-
conformal measure on Fθ for (Γ, θ)-proper ψ, then δψ ≤ 1 by Theorem 7.3.
If δψ < 1, Pψ(1) <∞. Hence this implies the inclusion ⊃. □

Note that any subgroup of a θ-transverse subgroup of G is again a θ-
transverse subgroup.

Theorem 12.5 (Disjoint dimensions). Let Γ < G be a non-elementary θ-
transverse subgroup. For any subgroup Γ0 < Γ with Λθ(Γ0) ̸= Λθ(Γ), we
have

Dθ
Γ ∩ Dθ

Γ0
= ∅.
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Proof. Let ψ ∈ Dθ
Γ. By Proposition 5.13, there exists a (Γ, ψ)-conformal

measure ν on Λθ(Γ). By Theorem 8.2, ν(Λcon
θ (Γ)) = 1.

Since Λθ(Γ0) ̸= Λθ(Γ), Λθ(Γ) − Λθ(Γ0) is a non-empty open subset of
Λθ(Γ). Hence, it follows from the Γ-minimality on Λθ(Γ) and the com-
pactness of Λθ(Γ) that Λθ(Γ) is covered by translates of Λθ(Γ) − Λθ(Γ0)
under finitely many elements of Γ. Since ν is Γ-quasi-invariant, this implies
ν(Λθ(Γ) − Λθ(Γ0)) > 0, and hence, ν(Λcon

θ (Γ0)) < 1. Moreover, by the θ-

antipodality of Γ, it also follows from ν(Λθ(Γ)−Λθ(Γ0)) > 0 that ν ∈ NθΓ0,ψ

in Theorem 8.2. Again by Theorem 8.2,
∑

γ∈Γ0
e−ψ(µθ(γ)) < ∞. Hence

ψ /∈ Dθ
Γ0
, finishing the proof. □

This turns out to be equivalent to the entropy drop phenomenon which
is proved by Canary-Zhang-Zimmer [9, Theorem 4.1] for θ = i(θ):

Corollary 12.6 (Entropy drop). Let Γ < G be a non-elementary θ-transverse
subgroup. Let Γ0 < Γ be a subgroup such that Λθ(Γ0) ̸= Λθ(Γ). If ψ ∈ a∗θ
with δψ(Γ) <∞ and

∑
γ∈Γ0

e−δψ(Γ0)ψ(µθ(γ)) = ∞, then

δψ(Γ0) < δψ(Γ).

Proof. Suppose that δψ(Γ) < ∞; this implies that ψ is (Γ, θ)-proper. Let

Γ0 < Γ be a subgroup such that
∑

γ∈Γ0
e−δψ(Γ0)ψ(µθ(γ)) = ∞ and δψ(Γ0) =

δψ(Γ). If we set ϕ = δψ(Γ) · ψ = δψ(Γ0) · ψ, then δϕ(Γ) = δϕ(Γ0) = 1.

Since ∞ =
∑

γ∈Γ0
e−ϕ(µθ(γ)) ≤

∑
γ∈Γ e

−ϕ(µθ(γ)), we have ϕ ∈ Dθ
Γ ∩ Dθ

Γ0
. By

Theorem 12.5, this implies that Λθ(Γ0) = Λθ(Γ), proving the corollary. □

13. Conformal measures for θ-Anosov subgroups

Note that Γ is θ-Anosov if and only if Γ is θ ∪ i(θ)-Anosov by (2.1).

Proposition 13.1 ([18], [22, Theorem 1.1]). If Γ is θ-Anosov, then

(1) Γ is θ-regular;
(2) Λθ = Λcon

θ ;

(3) Lθ − {0} ⊂ int a+θ ;
(4) θ-antipodal.

In particular, a θ-Anosov subgroup is θ-transverse.
Sambarino [41, Theorem A] showed that if Γ is θ-Anosov, then the set

{ψ ∈ a∗θ : δψ = 1} is analytic and is equal to the boundary of a strictly
convex subset {ψ ∈ a∗θ : 0 < δψ < 1}. By the duality lemma ([37, Section
4], [40, Lemma 4.8]), we then deduce the following property of the θ-growth
indicator:

Theorem 13.2. If Γ is Zariski dense θ-Anosov, then ψθΓ is strictly concave,
differentiable on intLθ, and vertically tangent.

The vertical tangency means that if ψθΓ(u) = ψ(u) for some (Γ, θ)-critical
form ψ and u ̸= 0, then u ∈ intLθ. Recall

T θ
Γ := {ψ ∈ a∗θ : ψ is (Γ, θ)-critical}.
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Corollary 13.3. Let Γ < G be a Zariski dense θ-Anosov subgroup. For any
subgroup Γ0 < Γ,

T θ
Γ ∩ T θ

Γ0
= ∅ ⇐⇒ ψθΓ0

< ψθΓ on intLθ(Γ).

Proof. Suppose that ψ ∈ T θ
Γ ∩ T θ

Γ0
. Then there exists u ∈ Lθ(Γ0) such that

ψθΓ0
(u) = ψ(u).

Since ψθΓ0
≤ ψθΓ ≤ ψ, it follows that ψ is tangent to ψθΓ at u as well. By

the vertical tangency of ψθΓ (Theorem 13.2), u ∈ intLθ(Γ). Therefore, the
implication (⇐) follows.

Conversely, suppose that ψθΓ0
(u) = ψθΓ(u) for some u ∈ intLθ(Γ). Then by

the concavity of ψθΓ (Theorem 13.2), there exists ψ ∈ T θ
Γ such that ψ(u) =

ψθΓ(u). Since ψθΓ0
≤ ψθΓ ≤ ψ and ψθΓ0

(u) = ψθΓ(u), we have ψ ∈ T θ
Γ ∩ T θ

Γ0
.

This shows the implication (⇒). □

Lemma 13.4. If Γ is Zariski dense θ-Anosov, then

T θ
Γ = {ψ ∈ a∗θ : (Γ, θ)-proper, δψ = 1} = Dθ

Γ.

Proof. The second identity is proved in [41, Section 5.9]. It suffices to prove
the inclusion ⊂ in the first equality due to Corollary 4.6. Suppose that
ψ ∈ a∗θ is tangent to ψθΓ. Since ψθΓ is vertically tangent (Theorem 13.2),

ψ > ψθΓ on ∂Lθ. It follows that ψ > 0 on Lθ. Hence by the second claim in
Corollary 4.6, δψ = 1. □

Lemma 13.5. If Γ is a non-elementary θ-Anosov subgroup and there exists
a (Γ, ψ)-conformal measure on Fθ for ψ ∈ a∗θ, then ψ is (Γ, θ)-proper.

Proof. If
∑

γ∈Γ e
−ψ(µθ(γ)) < ∞, then it implies that #{γ ∈ Γ : ψ(µθ(γ)) <

T} is finite for any T > 0. Therefore ψ is (Γ, θ)-proper. If
∑

γ∈Γ e
−ψ(µθ(γ)) =

∞, then ν(Λθ) = 1 by Theorem 8.2. This implies that lim sup 1
T log#{γ ∈

Γ : ψ(µθ(γ)) < T} < ∞ by [41, Theorem A]. Therefore, ψ is (Γ, θ)-proper
in either case. □

Proof of Theorem 1.11. Let Γ be Zariski dense θ-Anosov. Note that a
θ-Anosov group is θ-transverse. Hence (1) follows from Theorem 7.1 since
ψ is (Γ, θ)-proper by Lemma 13.5.

Since Λθ = Λcon
θ (Proposition 13.1), (a) ⇔ (b) in (2) follows from Theorem

8.2. The equivalence (b) ⇔ (c) follows from Lemma 13.4 and Sambarino’s
parametrization of the space of all conformal measures on Λθ as {δψ = 1} [41,
Theorem A], together with (1) shown above. For (3), let ψ be a (Γ, θ)-critical
form. By Lemma 13.4 and Proposition 5.13, there exists a (Γ, ψ)-conformal
measure νψ on Λθ, which is the unique (Γ, ψ)-conformal measure on Λθ by

[41, Theorem A] (see also Corollary 11.4). Since
∑

γ∈Γ e
−ψ(µθ(γ)) = ∞,

by Theorem 8.2, any (Γ, ψ)-conformal measure on Fθ is supported on Λθ.
Moreover, by Theorem 11.2, the aθ-action on (Ωθ,mνψ ,νψ◦i) is completely
conservative and ergodic. This finishes the proof. □
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Proof of Corollary 1.12. Since a θ-Anosov subgroup is θ-transverse and
Λθ = Λcon

θ (Theorem 9.8), we deduce from Theorem 12.1 that either Λθ = Fθ
or Lebθ(Λθ) = 0. In the former case, θ is the simple root of a rank one
factor G0 of G with Fθ = Λθ by Proposition 12.2, the projection of Γ to G0

is a convex cocompact subgroup with full limit set, and hence a cocompact
lattice of G0. □

Proof of Corollary 1.13. Consider the map T θ
Γ → {u ∈ intLθ : ∥u∥ = 1}

given by ψ 7→ uψ, where uψ satisfies ψ(uψ) = ψθΓ(uψ). By Theorem 13.2,

ψθΓ is strictly concave and vertically tangent, and hence such a map is well-

defined and also surjective. Moreover, since ψθΓ is differentiable on intLθ
(Theorem 13.2), this map is injective as well, and therefore bijective. This
gives the one-to-one correspondence between (1) and (2).

By Lemma 13.4 and [41, Theorem A], for each ψ ∈ T θ
Γ , there exists a

unique (Γ, ψ)-conformal measure νψ supported on Λθ, and vice versa. Hence
the map ψ 7→ νψ is the one-to-one correspondence between (1) and (3).

Finally, by Theorem 1.11, the sets (3) and (4) are in fact identical, which
finishes the proof. □

Proof of Corollary 1.14. By Theorem 12.5 and Lemma 13.4, it remains
to prove the second part. Since Γ0 < Γ, we have ψθΓ0

≤ ψθΓ. Suppose that

ψθΓ0
(u) = ψθΓ(u) for some u in the interior of Lθ(Γ). Then there exists a

tangent form ψ to ψθΓ at u by Corollary 3.12. Since ψθΓ0
≤ ψθΓ and ψθΓ0

(u) =

ψθΓ(u), ψ is also tangent to ψθΓ0
at u. Hence ψ ∈ T θ

Γ ∩T θ
Γ0
, contradicting the

first part. □
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