PROPERLY DISCONTINUOUS ACTIONS, GROWTH
INDICATORS, AND CONFORMAL MEASURES FOR
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ABSTRACT. Let GG be a connected semisimple real algebraic group. The
class of transverse subgroups of G includes all discrete subgroups of
rank one Lie groups and any subgroups of Anosov or relative Anosov
subgroups. Given a transverse subgroup I', we show that the I'-action
on the Weyl chamber flow space determined by its limit set is properly
discontinuous. This allows us to consider the quotient space and de-
fine Bowen-Margulis-Sullivan measures. We then establish the ergodic
dichotomy for the Weyl chamber flow, in the original spirit of Hopf-
Tsuji-Sullivan. We also introduce the notion of growth indicators and
discuss their properties and roles in the study of conformal measures,
extending the work of Quint. We discuss several applications as well.

CONTENTS

(I.__Introductionl

[2. Convergence in G U Fy.|

B G Lnd, ]

[4. On the proper and critical linear forms|

[5.  Limit set, #-conical set, and conformal measures|

|6.  "Transverse subgroups and multiplicity of #-shadows|

[7. Dimensions of conformal measures and growth indicators|
[8.  Divergence ot Poincaré series and conical sets|

9. Properly discontinuous actions of 1

[10.  Bowen-Margulis-Sullivan measures on {2y and (2|

[IT.” Conservativity and ergodicity of the ay-action|

[12.  Lebesgue measures of conical sets and disjoint dimensions
[13. Contormal measures for 6-Anosov subgroups|

[Declarations]
[References|

Oh is partially supported by the NSF grant No. DMS-2450703.
1

10
14
22
25
29
33
35
40
45
46
o1
53
55
55



2 DONGRYUL M. KIM, HEE OH, AND YAHUI WANG

1. INTRODUCTION

Patterson-Sullivan theory on conformal measures of a discrete subgroup
of a rank one simple real algebraic group G has played a pivotal role in the
study of dynamics on rank one homogeneous spaces. One of the basic results
due to Sullivan in 1979 is the relation between the support of a conformal
measure and its dimension, which we recall for G = SO°(n, 1), the identity
component of the special orthogonal group SO(n,1). The group SO°(n,1)
is the group of orientation-preserving isometries of the real hyperbolic space
(H™,d). The geometric boundary of H" can be identified with the sphere
S"=1. For a discrete subgroup I' < G, denote by A®" C S"! the conical
set of I', which consists of the endpoints of all geodesic rays in H" which
accumulate modulo I'. Let dr denote the critical exponent of I', which is the
abscissa of convergence of the Poincaré series s — Evel“ e—sd(00) o e H".

For a given I'-conformal measure v, we denote by m,, the Bowen-Margulis-
Sullivan measure on the unit tangent bundle T!(I'\H"), which is a locally
finite measure invariant under the geodesic flow. The following theorem is
often referred to as the Hopf-Tsuji-Sullivan dichotomy (see [43], [19], [42],
[1], [39, Theorem 1.7]).

Theorem 1.1 (Sullivan, [42], Corollaries 4, 20, Theorem 21], see also [1],
[12], [39]). LetT < SO°(n,1), n > 2, be a non-elementary discrete subgroup.
Suppose that there exists a T'-conformal measure v on S"! of dimension
s> 0.
(1) We have
S Z (511
(2) The following are equivalent:
(&) > er e5U00) — o0 (resp. > er e54070) < o0);
(b) v(A®") =1 (resp. v(A®°") =0);
(¢) the geodesic flow on (TH(T\H"),m,) is completely conservative
and ergodic.
(resp. the geodesic flow on (TH(T\H"), m,) is completely dissi-
pative and non-ergodic.)
In the former case, s = dr and v is the unique I'-conformal measure
of dimension op.

The main aim of this paper is to establish an analogous result for a class
of discrete subgroups of a general connected semisimple real algebraic group
G, called #-transverse subgroups. The class of #-transverse subgroups in-
cludes all discrete subgroups of rank one Lie groups, #-Anosov subgroups
and their relative versions. This class is regarded as a generalization of all
rank one discrete subgroups while Anosov subgroups are regarded as higher
rank analogues of convex cocompact subgroups.

We need to introduce some notations to state our results precisely. Let
P < G be a minimal parabolic subgroup with a fixed Langlands decom-
position P = M AN where A is a maximal real split torus of G, M is the
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maximal compact subgroup of P commuting with A and N is the unipo-
tent radical of P. Let g and a respectively denote the Lie algebra of G and
A. Fix a positive closed Weyl chamber a™ < a so that log N consists of
positive root subspaces and set AT = expa®. We fix a maximal compact
subgroup K < G such that the Cartan decomposition G = KATK holds.
We denote by 1 : G — a® the Cartan projection defined by the condition
g € Kexpu(g)K for g € G. Let II denote the set of all simple roots for
(g,a™). As usual, the Weyl group is the quotient of the normalizer of A
in K by the centralizer of A in K. Let i : a — a denote the opposition
involution, that is, i(u) = —Ady,(u) for all u € a where wy is the longest
Weyl element. It induces an involution on IT which we denote by the same
notation i. Throughout the introduction, we fix a non-empty subset

0 C II.

Let ag = (\pem_p kera and let py : a — ag be the unique projection, in-
variant under all Weyl elements fixing ag pointwise. Let Py be the standard
parabolic subgroup corresponding to # (our convention is that P = Ppy) and
consider the #-boundary:

Fo =G/ Py.

We say that § € Fy and n € Fj) are in general position if the pair (£,7)
belongs to the unique open G-orbit in Fy x Fjg) under the diagonal action
of G.

Let I' < G be a discrete subgroup. The following properties of I' are
natural to consider in studying analogues of Theorem for I'-conformal
measures on the f-boundary Fy. Let Ay = Ag(T") denote the O-limit set of
I' in Fp (Definition [5.1).

Definition 1.2. A discrete subgroup I is said to be @-transverse if

o I'is -regular, i.e., liminf er a(p(y)) = oo for all a € 6; and
e ['is 0-antipodal, i.e., if any two distinct &, € Agyig) are in general
position.

A O-transverse subgroup I is called non-elementary if #A9 > 3.

Note that the #-transverse property is hereditary: a subgroup of a 8-
transverse subgroup is also #-transverse.

We assume that I' is f-transverse in the rest of the introduction. We
define the f-growth indicator ¢% : ag — [—00,00] as follows: fixing any
norm || - || on ag, if u € ag is non-zero,

vp(u) = [lul| inf 7¢ (1.1)

03 i ' —sllre (Ml
where 75 is the abscissa of convergence of the series Zyer, po(y)eC €

and C C ay ranges over all open cones containing u. Set 1%(0) = 0. This
definition is independent of the choice of a norm on ag. For 6 = II, 1/)?
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coincides with Quint’s growth indicator ¢r [35]. For a general 6 C II, we
have:

U o pg > Yr. (1.2)
(Lemma see also Lemma for a precise relation for G simple). We
show that @ZJ < 00, and ¢1Q is a homogeneous, upper semi-continuous and
concave function. It also follows from that

{f >0} =Ly and ¥¥ >0 onintLy (1.3)

where Lg = Ly(I") is the 6-limit cone of I' (Theorem .
Denote by a; = Hom(ag, R) the space of all linear forms on ag. For ¢ € aj,
a Borel probability measure v on Fy is called a (T, 1)-conformal measure if
drysv
dv
where v,v(D) = v(y~!1D) for any Borel subset D C Fy and Bg denotes the
ag-valued Busemann map defined in . We find it convenient to call the
linear form v the dimension of v.
For a collection {E,, : n € N} of subsets of a given metric space X, its
topological limsup is the set of accumulation points of all sequences {x,, €

E, :n € N}, and is denoted by limsup,, £,. We define the #-conical set of
I' as

(&) = e PEEN) for all veTl and € € Fy

A" = {ng e Fy: limsup'nggA+ % (/)} ) (1.4)
~ver

where My = K N Py (see Lemma for an equivalent definition). If I' is
f-regular, then A°" C Ay (Proposition .

Definition 1.3. We say ¢ € aj is (I', #)-proper if ) o pg : I' = [—€,00) is a
proper map for some € > 0.

For example, a linear form ¢ € aj which is positive on Ly — {0} is (T', 6)-
proper. For a (I, §)-proper form 1, the critical exponent 0 < dy, = 0y (I") <
io of the 1)-Poincaré series Py (s) = > . cr e=s¥(re(") is well-defined and we

ave

. 1
51/, = limsup —#log{y € T : ¥ (up(vy)) < t}
t—o00 t
(see Lemma 4.2)).

A linear form 1 € aj is said to be (I, #)-critical if ¢ is tangent to the -
growth indicator ¢19w ie., 1 > wle and (u) = wg(u) for some u € a(j —{0}.

Main theorems. Our main theorems extend Theorem to higher rank.

Theorem 1.4. LetI" < G be a Zariski dense O-transverse subgroup. Suppose
that there exists a (I',v)-conformal measure v on Fy for ¢ € aj.

(1) If ¢ is (T, )-proper, then

> b (15)
(2) The following are equivalent:
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(a) Z'yel“ e~ Yo (7)) = o (resp. Z'yEF e Ye() < 0);

(b) v(A") =1 (resp. v(A§") =0).

In the former case, any (T, 0)-proper 1 is necessarily (T, 0)-critical
and v is the unique (T',1)-conformal measure on Fy.

When 6 = II, Theorem (1) for a Zariski dense discrete subgroup was
proved by Quint. For a general 6, only a weaker bound as (8.7)) was known
by [36, Theorem 8.1]. It implies:

Theorem 1.5. LetT' < G be a Zariski dense 0-transverse subgroup. If there
exists a (I',9)-conformal measure on Fy for a (T',0)-proper ¢ € aj, then

5y < 1.

Remark 1.6. (1) Canary-Zhang-Zimmer [9, Theorem 1.4] proved the equiv-
alence of (a) and (b) in Theorem [1.4)2) for § symmetric, that is,
6 = i(), and for conformal measures supported on Ayg. We mention
that transverse subgroups are sometimes called RA-subgroups (cf.
[14]).

(2) For 6 symmetric and conformal measures supported on Ag, Theorem
[L.5|was shown in [9, Theorem 1.4]. For some special class of - Anosov
subgroups and for conformal measures supported on Ay, Theorem [1.5
was also proved in [34, Theorem C] and [41], Theorem A].

As in the original Hopf-Tsuji-Sullivan dichotomy (Theorem, Theorem
can be extended to the dichotomy on the ergodicity of the Weyl chamber

flow. Recalling the Hopf parametrization F\(]-}(IQ) x a) ~ T'\G/M, a natural
space to consider is the quotient space F\(]:e(Z) X ag) where ]-'9(2) ={(&,n) €

Fo x Fig) : & n are in general position} and T' acts on .7-"652) x ag from the
left by

V(& mu) = (v&,mu+ BL(v L e)) (1.6)

for all v € T" and (&,m,u) € .7:(;2) x ag. However the I'-action on }"(52) X ag is

not properly discontinuous in general; so the quotient space F\(fg(Q) X ap)

is not locally compact.
On the other hand, the restriction of the I'-action on the subspace Aéz) X ag

turns out to be properly discontinuous where A((f) = .7:(52) N (Ag x Ajg))
(Theorem [9.1)):

Theorem 1.7 (Properly discontinuous action). LetT' < G be a non-elementary

0-transverse subgroup. Then the I'-action on A§2) x ag given by (1.6) is prop-
erly discontinuous, and hence the quotient space

Q@ = F\AéQ) X Qg

is a locally compact Hausdorff space on which ag acts by translations from
the right.
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Indeed, we prove a stronger property of the action: for a (I',#)-proper
¢ € aj, we have a projection A((f) X ag — Aéz) x R given by (§,n,u) —

(&,m,¢(u)). The action (|1.6)) descends to the action
V(& m,8) = (V€. s+ o(BE(v 7 e))) (1.7)

for all v € T" and (&,7,s) € A((f) x R. We show that the action (1.7)) is
properly discontinuous, and prove the following (Theorem [9.2)):

Theorem 1.8. Let I' < G be a non-elementary 0-transverse subgroup. For
any (I',0)-proper ¢ € aj, Qy, = F\A§2) x R is a locally compact Hausdorff
space. Moreover, Q is compact if and only if I' is 6-Anosov.

Furthermore, we have a trivial ker p-bundle €2y — €2, so that (g is home-

omorphic to £, x ker ¢ ((10.4]).

For 1 € ay, we denote by MZ the space of all (T', ¢)-conformal measures
supported on Ag. For a pair (v,v;) € M% X Mié?v we denote by m,,,,
the associated Bowen-Margulis-Sullivan measure on €y (see for its
definition).

We expand Theorem[1.4]to the dichotomy on conservativity and ergodicity
of the ag-action on the space (9, m,,,). See Theorem for a more

elaborate statement.

Theorem 1.9. Let I' < G be a non-elementary 0-transverse subgroup. Let
Y € ay be (I', 0)-proper such that Mi # (. In each of the following comple-
mentary cases, the claims (1) — (4) are equivalent to each other.
The first case:
(1) Z'VEF e ¥o(M) = oo
(2) For anyv e MY, v(AS") = 1;
(3) For any (v,1) € ./\/lf; X M;()zg, the T'-action on (Aéz), v X 1) i com-
pletely conservative and ergodic;
(4) For any (v,1) € Mz) X Miézg, the ag-action on (g, my,,,) is com-
pletely conservative and ergodic.

The second case:

(1) Zvel" e ¥e(M) < o0;

(2) For any v € M,ZJ, v(A") =0;

(3) For any (v,11) € Mz X MLEZ%, the T'-action on (A((f), v X 1) is com-
pletely dissipative and non-ergodic;

(4) For any (v,1) € ./\/lfL X Miz()zz, the ag-action on (Qg, m,, ) is com-
pletely dissipative and non-ergodic.

When 6 is symmetric, the equivalences (1)-(3) in both cases were proved
in [9, Theorem 1.4] by a different approach.
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Disjoint dimensions phenomenon. Let
DY = {4 € ay : (T, 0)-proper, 6,,(T') = 1 and Py (1) = oo} .
This is in fact same as
{1 € a5 : (T, 0)-proper, 3 a (I', ¢)-conformal measure, Py (1) = oo}

when T is a f-transverse subgroup (see Lemma .

Inspired by the entropy drop phenomenon proved by Canary-Zhang-Zimmer
[0, Theorem 4.1] for § = i(#), we deduce from Theorem the following
disjointness of dimensions (Theorem , which turns out to be equivalent
to the entropy drop phenomenon (Corollary :

Corollary 1.10 (Disjoint dimensions). Let I' < G be a non-elementary 0-
transverse subgroup. For any subgroup T'o < T' with Ag(T'o) # Ap(T), we
have

DY NDY, = 0.

In the rank one case, this corollary says that if A(T'g) # A(I') and I’y < T’
are of divergence type, that is, their Poincaré series diverge at the critical
exponents, then ér, < ér. We refer to [9] for a more detailed background
on this phenomenon.

f-Anosov subgroups. A finitely generated subgroup I' < G is a 6-Anosov
subgroup if there exists C' > 0 such that for all v € I,

mina(u(y)) > Cly| = C7! (1.8)

where |y| denotes the word length of v with respect to a fixed finite gen-
erating set of T' ([28], [17], [21], [22], [23]). All #-Anosov subgroups are
f-transverse and Ag = Ag®" ([18], [22]). We deduce the following from The-
orem [L.4}

Theorem 1.11. Let I' < G be a Zariski dense 0-Anosov subgroup. Suppose
that there exists a (I',1))-conformal measure v on Fy for ¢ € a. We have:

(1) The linear form v is (T',0)-proper and ¥ > ¢¥.

(2) The following are equivalent to each other:

(a) Y er e V(M) =00 (resp. > er e V(M) < 0);
(b) v(Ag) =1 (resp. v(Ag) =0);
(c) v is (I, 0)-critical (resp. ¥ is not (I, 0)-critical).

(3) For each (T, 0)-critical ¢ € ay, there exists a unique (I',v)-conformal
measure, say, vy, on Fg, which is necessarily supported on Ag. More-
over the ag-action on (g, mywywoi) is completely conservative and
ergodic.

The equivalence (a) < (b) in (2) answers a question asked by Sambarino
[41, Remark 5.10].
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Analogue of Ahlfors measure conjecture for §-Anosov groups. We
denote by Leby the Lebesgue measure on Fy, which is the unique K-invariant
probability measure on Fy. The following corollary is motivated by the
Ahlfors measure conjecture [2].

Corollary 1.12. IfT" < G is Zariski dense 0-Anosov, then
either Ag = Fy or Lebg(Ag) = 0.

Moreover, in the former case, 0 is the simple root of a rank one factor, say
Gy, of G and I' projects to a cocompact lattice of Gy.

See Theorem for a more general version stated for a #-transverse
subgroup.

Critical forms and conformal measures. We set

T = {4y € a}: ¢ is (T, H)-critical}.
Note that D{Z C 7}9 (Corollary . For 6-Anosov subgroups, we further
have 7/ = D{i, which is again same as the set of all ¢» € aj for which there
exists a (T',1)-conformal measure supported on Ay (Lemma [13.4). A T-
conformal measure is said to be of critical dimension if the associated linear

form belongs to 7Y. Using Sambarino’s parametrization of the space of all
conformal measures on Ag as {6y = 1} {1, Theorem A], we deduce:

Corollary 1.13. For any Zariski dense 6-Anosov subgroup I' < G, we have
a one-to-one correspondence among

(1) the set T of all (T, 0)-critical forms on ap;

(2) the set of all unit vectors in int Ly;

(3) the set of all T'-conformal measures supported on Ag;

(4) the set of all T'-conformal measures on Fy of critical dimensions.

More precisely, for any 1 € T, there exists a unique unit vector Uy € a;
such that 1 (uy) = Y9 (uy); moreover uy, € int Ly. There also exists a unique
(I, 9)-conformal measure vy, on Fy, which is necessarily supported on Ag.
Moreover every I'-conformal measure supported on Ag arises in this way.

Corollary 1.14 (Disjoint critical dimensions). Let ' < G be a Zariski dense
0-Anosov subgroup. For any subgroup T'o < T' such that Ag(To) # Ag(T), we
have

T ﬁ7}90 =0 and wleo <% on int Ly(T).

Indeed, the above two conclusions are equivalent to each other by the
vertical tangency and concavity of 1/112 (see Corollary for the proof).

Remark 1.15. Related dichotomy properties for conformal measures were
studied in [14], [6], [30], [15], [41], [9], etc. In particular, when T' is II-
Anosov, Theorem Corollaries and were proved by Lee-Oh
[30, Theorems 1.3, 1.4]. The papers [14], [41], and [9] study conformal
measures supported on the limit set Ag and the papers [6] and [15] study the
role of directional conical sets in the ergodic behavior of conformal measures.
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Our focus on this paper is to address general conformal measures without
restriction on their supports following [30] and to study the relationship
between the dimensions of conformal measures and #-growth indicators so
as to establish an analogue of Sullivan’s theorem (Theorem and the
analogue of the Ahlfors measure conjecture. We also emphasize that the
f-growth indicator is first introduced in our paper. Notably, Theorem

provides a new locally compact Hausdorftf space 2y := F\AéQ) X ag which
is a non-wandering set for the Weyl chamber flow Ay. This allows us to
define Bowen-Margulis-Sullivan measures as in the rank one setting. Hence
the dynamical properties of the Weyl chamber flow can be studied also in
higher rank, fully recovering the original work of Hopf-Tsuji-Sullivan.

Finally, we mention that there is a plethora of examples of f-transverse
subgroups which are not #-Anosov. First of all, any subgroup of #-Anosov
subgroups are f-transverse. For instance, a co-abelian subgroup of a 6-
Anosov subgroup of infinite index is #-transverse but not #-Anosov. The
images of cusped Hitchin representations of geometrically finite Fuchsian
groups by [7] are also f-transverse but not -Anosov. Another important
examples are self-joinings of geometrically finite subgroups of rank one Lie
groups, that is, I' = (Hf:1 pi)(A) = {(pi(g))i : g € A} where A is a geo-
metrically finite subgroup of a rank one simple real algebraic group Gg and
pi + A — G is a type-preserving isomorphism onto its image p;(A) which
is a geometrically finite subgroup of a rank one simple real algebraic group
G; for each 1 < ¢ < k. It follows from [44], Theorem 3.3] and [13, Theorem
A.4] (see also [46, Theorem 0.1]) that there exists a p;-equivariant home-
omorphism between the limit set of A and the limit set of p;(A) for each
1 < ¢ < k. This implies that I' is II-transverse.

Organization.

e In section 2] we introduce the notion of convergence of elements of
G to those of Fy and present some basic lemmas which will be used
in the proof of our main theorems.

e In section |3| we define the #-growth indicator wle for a @-discrete
subgroup I' < G. Properties of the #-growth indicator and its rela-
tionship with Quint’s growth indicator [35] are also discussed.

e In section 4 we introduce (T',0)-proper linear forms and (T, 0)-
critical linear forms and discuss properties of their critical exponents.

e In section o] we define the #-limit set and the #-conical set of I". For
f-regular subgroups, we show that the 6-conical set is a subset of
the #-limit set and construct conformal measures supported on the
f-limit set for each ¢ € DIQ.

e In section [0 we prove that for 6-transverse subgroups, #-shadows
with bounded width have bounded multiplicity, which is one of the
key technical ingredients of our main results.
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e In section [/} we show that if " is a f-transverse subgroup, the di-
mension of a ['-conformal measure is at least @bl@ (Theorem (7.1)).

e In section[8] we prove the zero-one law for the v-size of the conical set
depending on whether or not the associated Poincaré series converges
at its dimension (Theorem [8.2)).

e In section [0 we prove that a 6-transverse subgroup I' acts prop-

erly discontinuously on Aéz) x ay and define Bowen-Margulis-Sullivan

measures on the space {0y = I‘\A((f) x ag. For any (I, §)-proper form

i, we also show that the ¢-twisted I'-action on AéQ) x R is properly
discontinuous and gives rise to a trivial vector bundle {2y — Q, =
MAY x R.

e In section |10} we give the definition of Bowen-Margulis-Sullivan mea-
sures.

e In section we expand the equivalence between dichotomies to
conservativity and ergodicity of the ag-action on €y, proving Theo-
rem|[I.9] We also explain how to deduce Theorem [I.4]from Theorems
[[1l and B2

e In section we discuss several consequences of Theorem in-
cluding disjoint dimension phenomenon.

e Finally, in section we discuss how our theorems are applied for
#-Anosov groups. We also prove Corollary

Acknowledgement. We would like to thank Jean-Frangois Quint for useful
conversations about Lemma [3.14

2. CONVERGENCE IN G U Fy.

In the whole paper, let G be a connected semisimple real algebraic group.
Let P < G be a minimal parabolic subgroup with a fixed Langlands decom-
position P = M AN where A is a maximal real split torus of G, M is the
maximal compact subgroup of P commuting with A and N is the unipotent
radical of P. Let g and a respectively denote the Lie algebras of G and A.
Fix a positive closed Weyl chamber a™ < a so that log N consists of positive
root subspaces and set AT = expa’. We fix a maximal compact subgroup
K < @ such that the Cartan decomposition G = K AT K holds. We denote
by

p:G—at
the Cartan projection defined by the condition g € K exp u(g)K for g € G.
Let X = G/K be the associated Riemannian symmetric space, and set
o = [K] € X. Fix a K-invariant norm || - || on g induced from the Killing
form on g and let d denote the Riemannian metric on X induced by || - ||.

Lemma 2.1. [3| Lemma 4.6] For any compact subset Q C G, there exists
C = C(Q) > 0 such that for all g € G,

sup |lu(qrggqe) — p(g)l| < C.
q1,92€Q
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Let ® = ®(g, a) denote the set of all roots, @+ C ® the set of all positive
roots, and II C ®* the set of all simple roots. We denote by Ng(A) and
Ck(A) the normalizer and centralizer of A in K respectively. Consider the
Weyl group W = Nk (A)/Ck(A). Fix an element

wy € N K(A)
representing the longest Weyl element so that Ad,, at = —a® and w; 1=
wp. Hence the map
i=—Ady,:a—a

defines an involution of a preserving a™; this is called the opposition invo-
lution. It induces a map ® — @ preserving II, for which we use the same
notation i, such that i(a) o Ady, = —a for all @ € ®. We have

p(g™h) =i(u(g)) forallged. (2.1)

In the rest of the paper, we fix a non-empty subset § C II. Let Py
denote a standard parabolic subgroup of G corresponding to #; that is, Py is
generated by M A and all root subgroups U,, o € &+ U[Il — 6] where [[I— 6]
denotes the set of all roots in ® which are Z-linear combinations of II — 6.
Hence Py = P. The subgroup Py is equal to its own normalizer; for g € G,
gPyg~! = Py if and only if g € Py. Let

ay = ﬂ ker a, a(j =anat,
acll—-0
Ap =expag, and AJ =expay.
Let
Po :a— ay
denote the projection invariant under w € W fixing ay pointwise.

Let Ly denote the centralizer of Ay; it is a Levi subgroup of Py and
Py = LgNy where Ny = R, (Py) is the unipotent radical of Py. We set
My = KN Py C Ly. We may then write Ly = ApSy where Sy is an almost
direct product of a connected semisimple real algebraic subgroup and a
compact subgroup. Then By = Sp N A is a maximal R-split torus of Sy and
IT — @ is the set of simple roots for (Lie Sy, Lie By). Letting

By = {b€ By :a(logh) >0 for all a € II — 0},
we have the Cartan decomposition of Sp:
Sp = M(;B;Mg.

Any u € a can be written as u = u; + uo for unique u1 € ay and us €
Lie By, and we have pg(u) = up. In particular, we have

A=AyBy and A'Y C AJB/.
We denote by aj = Hom(ap,R) the dual space of ag. It can be identified

with the subspace of a* which is pp-invariant: aj = {1y € a* : p opy = ¥};
so for 61 C 02, we have ay C ag,.



12 DONGRYUL M. KIM, HEE OH, AND YAHUI WANG

The /-boundary Fy and convergence to Fy. We set
Fo=G/Py and F=G/P.

Let
mg . F — Fo
denote the canonical projection map given by gP — gPy, g € G. We set
o = [Py] € Fo. (2.2)

By the Iwasawa decomposition G = KP = KAN, the subgroup K acts
transitively on Fy, and hence
Fo ~ K/My.

We consider the following notion of convergence of a sequence in G to an
element of Fy.

Definition 2.2. For a sequence g; € G and £ € Fy, we write lim; ,o, ¢; =
lim g;o = £ and say g; (or g;o € X) converges to & if

® minaeg o(p(gi)) — oo; and

o lim; ,o kg, §p = £ in Fy for some kg, € K such that g; € kg, ATK.

Points in general position. Let P;r be the standard parabolic subgroup
of G opposite to Py such that Py N P = Lyg. Set PT := Pg. We have
Pé'r = woPi(g)wo_l and hence

Fio) = G/F,; .

In particular, if 6 is symmetric in the sense that 6 = i(6), then Fy = G/F,’.
Let N9+ denote the unipotent radical of Pj . The set N9+ Py is a Zariski open
and dense subset of G. In particular, N; &o ﬁhNe+ &y # () for any h € G. The
G-orbit of (Py, P;) is the unique open G-orbit in G/Py x G/P," under the
diagonal G-action. Since P = M AN and Pt = MAN*, a € A" centralizes
M A, and its conjugation action on N (resp. N*) contracts (resp. expands),
the following is immediate:

Lemma 2.3. Let Q C P and QT C PT be bounded subsets. For any se-
quence a; € AT, both sequences a;lQai and aiQJrai_l are uniformly bounded.

Definition 2.4. Two elements { € Fp and n € Fjp) are said to be in
general position if (§,1) € G.(Pp, woPp)) = G.(Pg,P;'), ie., &€ = gPy and
n = gwoP;g) for some g € G.

We set
]-"éQ) ={(&,m) € Fo x Fy(p) : &, n are in general position}, (2.3)
which is the unique open G-orbit in Fy x Fjg). It follows from the identity
Pf = NS (Pyn P;) that

(gPs, Py) € FS? ifand only if g€ N Py, (2.4)
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Basic lemmas. We generalize [29, Lemmas 2.9-11] from 6 = II to a general
0 as follows. For subsets S; C G, we often write g = g1g293 € 515253 to
mean that g; € S; for each i, in addition to g = g1g293.

Lemma 2.5. Consider a sequence g; = kziaihi_l where k; € K, a; € AT, and
h; € G. Suppose that k; — ko € K, hy — hy € G, and min,cg a(loga;) —
00, as i — o0o. Then for any & € hoN;.fg (i.e., & is in general position with
hoP,"), we have

lim g;§ = ko&p-

1—00

Proof. Since h;lf converges to the element h le e N9+ &p by the hypothesis
and N;fe C JFp is open, we have hi_lé € N(jfg for all large . Hence we can
write h; 1§ = n;&y withn; € N; uniformly bounded. Since min,cg a(loga;) —
oo and n; € N; is uniformly bounded, we have amia;l — e as i — o0.
Therefore the sequence a;h; Le = amiai_lﬁg converges to £y. Hence we have

lim g;& = lim k;(azh; '€) = ko
71— 00 71— 00
0

Corollary 2.6. If w € Nk (A) is such that mw € N;PQ for some m € My,
then w € My. In particular, if wPy and P9+ are in general position, then
w € My.

Proof. Choose any sequence a; € A; such that min,ep a(log a;) — oo. Since
mwéy € N9+ &y, we deduce from Lemma that a;mwé&y converges to &y as
i — o0o. On the other hand, since w € Nk(A), A C Py and m € My, we
have a;mwéy = mw(w ta;w)é&) = mwéy for all i. Hence mwéy = &. Since
m € My, this implies w&y = & and hence w € Py N K = Mj. O

It turns out that the convergence of g; — £ is equivalent to g;p — & for
any p € X. More generally, we have

Lemma 2.7. If a sequence g; € G converges to £ € Fp and p; € X is a
bounded sequence, then

lim g;p; = &.
71— 00

Proof. Let g; € G be such that gio = p;; then ¢, is bounded. Since
lim g; = &, we may write g; = kiai€;1 with k;,¢; € K and a; € AT where
mingeg a(loga;) — oo, and ki — € as i — oo. Write gig) = klal(¢))~! €
KATK. Since g} is bounded, lim;_,o min,ep a(loga)) = oo, by Lemma
Let ¢ € K be a limit of the sequence ¢; := k; 1k:§. By passing to a
subsequence, we may assume that ¢; — ¢. Since d(o,p;) = d(g;0, gip;) =
d(o, a;lqia;o), the sequence h;l = a;lqiag is bounded. Passing to a sub-
sequence, we may assume that h; converges to some hg € G. Choose any

nE N;“fg N honfg. By Lemma we have

lim aihi_ln =& and lim qia;n = q&y.
11— 00 71— 00
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Since aih;l = g;a}, it follows that ¢&y = &p; so ¢ € K N Py. Hence § =
lim k;&p = lim k[&y. It follows that lim g;p; = &. O

Lemma 2.8. If a sequence g; € G converges to g and a sequence a; € AT
satisfies mingeg a(loga;) — oo as i — oo, then for any p € X, we have

lim g;a;p = g&e.
1—00

Proof. By Lemma it suffices to consider the case when p = 0. Write
gia; = kibifi_l with k;,¢; € K and b; € AT. Since the sequence g; is
bounded, lim;_, mingep a(logb;) = oo by Lemma Let kg be a limit of
the sequence k;; without loss of generality, we may assume that k; converges
to kg as © = oo. Then lim; o g;a;0 = ko&y. We may also assume that ¢;
converges to some ¢y € K. Choose & € EON;&; N N9+§9. Then by Lemma
as i — 00, gia;é — ko&p and a;€ — &y. Since g; converges to g, this
implies that ko&y = g&€». This finishes the proof. ([

3. GROWTH INDICATORS

Let I' < G be a discrete subgroup. We set
po=popop:G—af. (3.1)

Definition 3.1. We say that I' is #-discrete if the restriction pg|p : I' — a;
is proper.

The #-discreteness of I" implies that ug(I") is a closed discrete subset of
a;. Indeed, T is O-discrete if and only if the counting measure on pug(T)

weighted with multiplicity is a Radon measure on a;r.

Definition 3.2 (#-growth indicator). For a @-discrete subgroup I' < G, we
define the f-growth indicator Q/JIQ :ag — [—o00,00] as follows: if u € ag is
non-zero,
Yp(u) = ||u| inf ¢ (3:2)
ueC

where C C ag ranges over all open cones containing u, and wg(O) = 0. Here
—o0o < 7 < oo denotes the abscissa of convergence of the series Pd(s) =

S et pumec €O, that is,
2 supfs € B ) = o) = s € B RAGe) < o).

This definition is independent of the choice of a norm on ay. For § =11,
we set
Y = Yr.
The main goal of this section is to establish the following properties of Qﬁl@
for a general § C II: for 6 = II, this theorem is due to Quint [35, Theorem
1.1.1].

Theorem 3.3. Let I' < G be a Zariski dense 0-discrete subgroup.
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(1) @ZJIQ < 00.
(2) %Q s a homogeneous, upper semi-continuous and concave function.
(3) Lo = {¥% > 0}, vl = —oc0 outside Ly and % > 0 on int Ly.

Here, Ly C ag denotes the #-limit cone of I'; which is the asymptotic cone
of pg(T'):

Lo = {lim tﬁig(%) Y€ It — 0}. (3.3)

We set £ = L7, which is the usual limit cone. By [3 Sections 1.2, 4.6], if I"

is Zariski dense, then £ is a convex cone with non-empty interior and p(I")
is within a bounded distance from £. We have

L={yYr >0}, and r >0onintL (3.4)

and ¢r = —oo outside £ [35, Theorem 1.1.1]. Noting that Ly = pg(L), we
get:

Lemma 3.4. LetT' be a Zariski dense 0-discrete subgroup. The 0-limit cone
Ly is a convex cone in ag with non-empty interior and pg(I') is within a

bounded distance from Ly.

Y% < 0o and #-critical exponent. In this subsection, we show Theorem
ﬁ(l), that is, for a Zariski dense 6-discrete I' < G, 1/11‘2 does not take +oo-
value. This will be achieved by proving 51‘2 < oo (Proposition where

—oogélqgoo

denotes the abscissa of convergence of the series s — > e~ sllmoMII. For
§ = II, we have 0 < ép = 61+ < oo [35, Theorem 4.2.2]. Since ||ug(g)| <
[u(g)|l for all g € G and hence >° e~ sl < > er e~ sl for all
s > 0, we have

0 < op < 0% (3.5)

Lemma 3.5. If I" is Zariski dense and 0-discrete, then

R
&f. = lim sup s log{y € I': [luo()l < ¢} € (0, 00].

t—o00

Proof. For x € ag, we denote by D, the Dirac mass at x. Since nyel“ D,y

is a Radon measure on aj and 6% > 0 by (3.5), it follows from [35, Lemma
3.1.1]. O

For a general discrete subgroup I' < G, (51(2 may be infinite (e.g., I' =
I'y x I'y where I'; is an infinite discrete subgroup of G; for both ¢ = 1,2 and
6 consists of simple roots of G1). Since Tg < (516: for all cones C in ay, we have

sup - Pp(u) < 6.
u6a9,||U||:1

Hence Theorem (1) follows once we show the that §% < oo for any 6-
discrete subgroup I' < G as in Proposition [3.7]
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FIGURE 1. G =PSL3(R) and 0 = {ay }.

Lemma 3.6. If pg|,+ is a proper map (e.g., G is simple), then
6 < oo

for any discrete subgroup I' < G. In particular, if G is simple, any discrete
subgroup I' < G 1is O-discrete.

Proof. First, observe that if G is simple, then the angle between any two
walls of a™ is strictly smaller than 7/2 and hence pgl,+ is a proper map (see
Figure . Now, if pg|.+ is a proper map, then for some constant C' > 1, we
have
-1
C™ M lull < llpo(w) < Cllull
for all u € a™. Hence dr < oo implies that
& < 0.
O

It follows from the definition of 51€ that the finiteness of 51€ implies the
f-discreteness of I'. Indeed, the converse holds as well from which Theorem

3.3|(1) follows.
Proposition 3.7. We have
I' is O-discrete if and only if 5? < 0.

Proof. Tt suffices to show that the 6-discreteness of I' implies 51(2 < 0o. Write
G = G1G9 as an almost direct product of semisimple real algebraic groups
where (51 is the smallest group such that 6 is contained in the set of simple
roots for (g1,a; = a™ Ng1). Then py(I') C af C af. Since the kernel of
Polu(ry contains p(I'N ({e} x Gz)), the properness hypothesis implies that
I'N ({e} x G2) is finite. By passing to a subgroup of finite index, we may
assume that I' N ({e} x G2) is trivial. The properness of py|r also implies
that the projection of I' to (G is a discrete subgroup, which we denote by I';.
Since there exists a unique element, say, o(v1) € Gz such that (y1,0(y1)) € T’
for each v; € I'1, we get a faithful representation o : I'y — G, and I is of the
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form {(y1,0(v1)) : v € T'1}. Since py(y) = po(11) for v = (y1,0(m)) € T,
we have

of = of .
Hence we may assume without loss of generality that 6 contains at least one
root of each simple factor of G. Since the restriction py : at N LieGy —
ag N Lie Gy is a proper map for each simple factor Gg of G as mentioned

before, it follows that py is a proper map. Hence the claim 5161 < oo follows
by Lemma [3.6 O

Remark 3.8. We remark that the #-discreteness of I' does not necessarily
imply that the map py| is a proper map. For example, let T'y be a Zariski
dense and convex cocompact subgroup of SO°(k, 1), k > 2, and let o : Ty —
SO°(k,1) be a discrete faithful representation such that o(T'g) is Zariski
dense but not convex cocompact. Consider I' = {(g,0(g)) : g € T'v} and
G = SO°(k,1) x SO°(k,1). We may identify a = {(z1,72) € R?} and
at = R>g x R>p. Then the limit cone of I is a convex cone of a™ containing
the xj-axis; otherwise, 0 must be convex cocompact. Hence for § = {as}
where as(z1,22) = x9, the fiber p,*(0) is the whole z;-axis, and hence
polz is not proper. On the other hand, the discreteness of o(I'y) is same as
f-discreteness of I'.

Concavity of 1/11‘2. The growth indicator wl(i is clearly a homogeneous and
upper semi-continuous function [35, Lemma 3.1.7]. It is also a concave
function, but its proof requires the following lemma, which is proved in [35,
Proposition 2.3.1] for § = II.

Lemma 3.9. Suppose that U' is Zariski dense and 0-discrete. Then there
exists a map w: ' x I' = I satisfying the following:
(1) there exists k > 0 such that for every v1,7v2 € T,

o (m(v1,72)) — po(m1) — po(2)ll < &5 and

(2) for every R > 0, there exists a finite subset H of I' such that for
VY1 2,78 € T with [[g(vi) — pe(vj)| < R fori=1,2,
m(y1,72) = 7(1,7%2) = % € H and v € Hop.
Proof. Since py is norm-decreasing, (1) follows from [35, Proposition 2.3.1(1)].
By the proof of [35, Proposition 2.3.1(2)], the claim (2) holds if we set H to
be the subset consisting of all elements v € T" such that py(y) < R’ for some

R’ > 0 depending only on R. Since I' is 6-discrete, this subset H is finite,
as desired. O

Proposition 3.10. If I is Zariski dense and 0-discrete, then zpfl 18 concave,
and hence there exists a unique unit vector u% € a; such that

Yh(uf) =  max  ¢f(u) =P
[ul|=1,u€ay
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Proof. By Lemma the counting measure ZveF D, () is of concave
growth (see [35, Section 3.2] for details). It follows from [35, Theorem 3.2.1]
that ¢? is concave. By [35, Corollary 3.1.4, Corollary 3.3.5], the second
claim follows. O

Definition 3.11. A linear form ¢ € aj is said to be tangent to 1/11@ (at
u € ay —{0})if ¥ > % on a and (u) = ¥ (u).

By the supporting hyperplane theorem, we have the following corollary:

Corollary 3.12. Let I' < G be Zariski dense and 0-discrete. For any u €
int Ly, there exists a linear form 1 € aj tangent to wIQ at u.

Positivity of wl(i. By Lemma we have wle = —oo outside Ly. If © D 6,
then any #-discrete I' is ©-discrete as well. The following lemma shows how
¥? is related to € from which Theorem [3.3(3) follows:

Lemma 3.13. For © D 0, let pg = pylag : 30 — ap by abuse of notation.
For any Zariski dense 0-discrete I' < G, we have

Y opg > Yr  onae. (3.6)
In particular,

V2 >00nLy and % >0 onint L. (3.7)

Proof. Note that (3.7) follows from (3.4) and (3.6). By homogeneity, it
suffices to prove (3.6) for all v € pgl(u) N ag, where u € Ly is an arbitrary

unit vector. Let v € p, ' (u) Nag. Let C C ay be an open cone containing w.
For each € > 0, set

C(v,e) := {w € ag : pp(w) # 0 and HHP;(UW - ’UH < 6}. (3.8)

Since ||pgp(v)|| = ||u]] = 1, C(v,e) is an open cone containing v. In the
following, let € > 0 be small enough so that C(v,) C p, ' (C).
Then for all s € R, we have

Z e sllre Ml < Z e~ (llvll=lesDlle (V]

Y€l 1o (v)€C(v,e) Y€l pe(v)€C(v,e)
< Z e~ Gllvll=lesDlle (NI
YET g (v)EC
Hence we have
ey < (vl =)' 2.
Therefore we have
G (0) < ol < Il (o]l — )™ 72,
Taking ¢ — 0 yields that

PR (v) < 7.
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Since C C ag is an arbitrary open cone in ay containing u, it follows that
[S) [
Yr (v) < Yp(u),

and hence ([3.6) is proved. Last claim follows the from (3.4) and (3.6 applied
to © = 1II. O

Comparison between wfe and w? . Note that for a discrete subgroup
I' < G, the properness of py|r, implies the §-discreteness of I' as p(I") is
within a bounded distance from £. The following lemma is to appear in [16]
in a more general context.

Lemma 3.14. Let T’ < G be a Zariski dense discrete subgroup. If pg|r is a
proper map (e.g., G is simple), then for any © D 6 and for any u € ay,

W) = max () (3.9)

vEp, (u)
where pg = pylag by abuse of notation.

Proof. Suppose that pg|s : £ — ap is a proper map. By Lemma it
suffices to consider a unit vector u € Ly with ¥%(u) > 0. Since pe_l(u) NLe
is a compact subset and 1/1? is upper semi-continuous, we have

sup YF(v) =  max  YR(v).
vep,  (u) vep, (WNLe

For all sufficiently small e > 0 and each v € p, ' (u), there exists 0 < e, < ¢
such that

[l Tue,) < ¥E (V) +e (3.10)

where C(v,e,) is as defined in (3.8]). Since pg_l(u) N Lg is compact, there
exist v1,- -+, v, € p, ' (u) such that

py () N Lo C (JC(vien,).
i=1

Take an open cone C C ag containing u such that

n
pp ()N Lo Cpl(C)N Lo C U C(vi, ;).

i=1
This is indeed possible; if not, there is a sequence of unit vectors u; € ag
converging to u as j — oo such that for each j, there exists w; € pgl (uj)NLe
that does not belong to |/ C(v;,&y,). Since pg|r, is proper and the unit
sphere in ap is compact, we may assume that the sequence w; converges to
some w € Lg after passing to a subsequence. Since py(w;) = u; — u as
j — oo, we have pg(w) = u, and hence w € p,'(u) N L. It implies that
wj € Ui, C(vs, e,) for all large j, contradiction.
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Since pg(T') is within a bounded distance from Lo (Lemma [3.4), there
are only finitely many elements of ug(I") Np, ' (C) outside of |, C(v;, &y,).
Hence for each s > 0, we have

Z e—SH#G(V)H < i Z e—s||,u9('y)||

YET g (v)€C i=1 v€l,ue (v)EC(vi,ev;)

ke

n
< E : e Tvillteo; |

i=1 vel',ue (7)€C(vi,ev;)

Here and afterwards, the notation f(s) < g(s) means that for some uniform
constant C' > 1, f(s) < Cg(s) for all s at hand. Since 7§ > ¥(u) > 0 is
positive, it follows that

P S
o < InZaX(HUzH + evi)TC(’Ui,Evi)'

Therefore, together with 0 < &,, < € and (3.10)), we get

b <ot < LR (o) ) < P2 (e v 4.
o] i [vill - \vep, ()
Since 0 < € < 1 was arbitrary, this proves the claim by Lemma |3.13 [l

Example 3.15. We discuss some explicit upper bounds for ¢1€ when G =

PSLd(R). Identify at = {(tl, s ,td) > 2>ttty = 0}. Let

Oéi(tl, ...,td) = ti — ti+1 fOl” 1= 1, 2, ,d — 1. Let
dei dei

wi = (G5 )

where the first ¢ coordinates are %’s and the last d — ¢ coordinates are

_%’S’ so that a,, = Rw; and a;(w;) = 1. We compute that

d(ts + -+ t;)
i (t1, 0 tg) = ——F———w;
Pa; (1 a) i(d—1) v
and hence
pa_il(wi)ﬂaJr ={(t1, - ,tg) €at :d(ty +---+t;) =i(d —i)}.

For any non-lattice discrete subgroup I' < PSL4(R), we have

Ld/2]
1
Ur(ty, - tg) < g(ti —t) -5 z; (i — tap1—:) (3.11)
1<J 1=

by ([38], [31], [30, Theorem 7.1]). By Lemma for any discrete non-
lattice subgroups, we get

ld/2]
. 1
P (w;) < maXZ(ti —t) -5 Z (ti — tap1—i) (3.12)
1<J i=1
where the maximum is taken over all (¢1,--- ,t4) € at such that d(ty +---+

t) = i(d — ).
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For instance, for d = 3, the right hand side is always 3 and hence for each
i=1,2, Yp" < 3a; on Ruw;.

Hitchin subgroups. Let ¢ : PSLa(R) — PSL;4(R) be the irreducible rep-
resentation, which is unique up to conjugations. A Hitchin subgroup is the
image of a representation 7 : ¥ — PSL4(R) of a non-elementary torsion-
free geometrically finite subgroup ¥ < PSLg(R), which is a type-preserving
deformation of ¢|y;. Hitchin subgroups are II-transverse, as defined in the
introduction, by [7] and hence «;-discrete for each ¢ = 1,--- ,d — 1. For
a Zariski dense Hitchin subgroup I', it follows from Lemma that if d,,
denotes the abscissa of convergence of s — ZA/EF e—5%i () then

0 (wi) < bq; - ai(w;) = dq,.

For Hitchin subgroups, it was proved by Potrie and Sambarino [33] for A
cocompact and Canary, Zhang and Zimmer [§] for A geometrically finite
that

do; <1
for all i (see also [34]). Hence maxi<ij<q—1 ¢¥p'(w;) < 1. We get a sharper
bound in the following:

Corollary 3.16. Let I' < PSLy4(R) be a Zariski dense Hitchin subgroup.
For eachi=1,---,d—1,
o, max(i,d—1)
L
r d—1
Proof. For a Zariski dense Hitchin subgroup I' < @G, it is shown in [25]
Corollary 1.10] that

a; onaq, — {0}

wr(tl, cee ,td) < ﬁ(tl — td) for (tl, v ,td) cat — {0} (3.13)

Indeed, [25, Corollary 1.10] is stated only for ¥ cocompact. However in view
of [8] mentioned above, this bound holds for a general Hitchin subgroup.
Hence by Lemma we get

. 1

?1 (wl) < ﬁ max (tl — td) (314)
where the maximum is taken over all ¢1 > --- > ¢4 such that dZ§':1 t; =
i(d — i) and Z;l:l t; = 0. Suppose that this maximum is realized at
(t1,--- ,tq). Since t; — tg does not involve any t;, 2 < j < d — 1, we
may assume that to = --- =t; and t;41 = -+ = t4_1, which we denote by
x and y respectively. Since E;Zl tj = @ and E?:Hl tj = —l(ddﬂ), we
then have

=" (1) and tg=—UED _(d—1— i)y

Therefore

t—tg =2 (=) — (d—1—i)y). (3.15)
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It follows from t; > t;11 for all j that % > >y > —;ii. Therefore, for
each fixed x, the maximum in (3.15) is obtained when y = z. Hence we have

1 2i(d — i)

() < ——— —(2i—d
rlw) < gy mex g ode
= ﬁmax(i,d —1).

4. ON THE PROPER AND CRITICAL LINEAR FORMS
Let ' be a #-discrete infinite subgroup of G.

Definition 4.1. A linear form v € aj is called (I', #)-proper if Im(t) o py) C
[—e,00) and ¢ oy : T’ — [—¢, 00) is proper for some & > 0.

Consider the series Py, = Pr 4 given by
Py(s) = Ze—swue(v)). (4.1)
vyel

The abscissa of convergence of Py, is well-defined for a (I", #)-proper linear
form:

Lemma 4.2. If 4 is (I, 0)-proper, the following dy, = 04 (L") is well-defined
(possibly +00):

0y :=sup{s € R: Py(s) = oo} =inf{s € R: Py(s) < oo} € [0,00]. (4.2)
Moreover, if I' is Zariski dense, then

0 < 5y = limsup log #{y € I': Y(ue(v)) <t}

t—o00 t

Proof. Since 1 is (I, §)-proper, ¥(pg(7y)) > 0 for all but finitely many v € T
Hence we may replace Py (s) by the series PJ(S) = D el w(us(1))>0 e~ 5¥(ko(v)
in proving this claim. Since PJ (s) is a decreasing function of s € R,
I := {Py(s) = oo} and I := {Py(s) < oo} are disjoint intervals. Since T’
is infinite, 0 € I, and hence dy, = I N 15 € [0,00] is well-defined.

Now suppose that I' is Zariski dense. By Lemma int Lg # (. To show
oy > 0, fix v € int Lg. Then (u) > 0 by Lemm Since Y2 (u) > 0
as well by Theorem (3), we have soi(u) < ¥ (u) for some 0 < sp < o0.
By [35 Lemma 3.1.3], we have Py(sg) = oo, and therefore 6, > s9 > 0.
The last claim follows by [35, Lemma 3.1.1] since the counting measure on
P (pp(T)) is locally finite and d, > 0. O

Hence for a (I, §)-proper form ¢ € a3, 0 < é; < oo is the abscissa of
convergence of Py (s).
Lemma 4.3. We have:
(1) If ¢ > 0 on Lg — {0}, then v is (I, 0)-proper and §y, < co.
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(2) If ¢ is (T, 0)-proper, then 1» > 0 on Ly and ¥ > 0 on int Ly.

Proof. If 4 is positive on Ly — {0}, then ¥ > 0 on some open cone C con-
taining Ly — {0}. Then for some ¢ > 1, ¢ |lul| < 9 (u) < c||lu| for all u € C.
Since there can be only finitely many points of ug(I") outside C by Lemma
this implies that v is (T',#)-proper. Since 62 < oo by Proposition
we also have 6, < oo.

To prove (2), suppose to the contrary that ¥ (u) < 0 for some u € Ly.
Then there exists an open cone C C ay containing u so that ¢ < 0 on C—{0}.
In particular, there are infinitely many ~; € I" such that ¥ (ug(y;)) < 0, which
contradicts (I, #)-properness of 1. Therefore, 1 > 0 on Ly. Since ker) is a
hyperplane in ay, it follows ¥ > 0 on int Ly. (|

Critical forms. Analogous to the critical exponent of a discrete subgroup
of a rank one Lie group, we define:

Definition 4.4. A linear form v € aj is (I, #)-critical if it is tangent to Y.

The following lemma can be proved by adapting the proof of [25, Theorem
2.5] replacing ¢r by ¥2.

Lemma 4.5. Suppose that I' is Zariski dense. If a (I',0)-proper ¢ € aj
satisfies 0y < 0o, then oyt is (T, §)-critical; in particular,

Ur < .
Proof. Suppose that ¢, < co. By Lemma 4.2} 5, > 0. We first claim
P(v) < yb(v)  for all v € int Lg. (4.3)

Fix v € int Ly and € > 0. Since 9 is (T, 0)-proper, ¥(v) > 0 by Lemma
w v

We then consider
b(w) (o) ‘ <

since 1(v) > 0, this is a well-defined open cone containing v. Therefore by
the definition of wfe, we have

VP () < [[0lI7E, - (4.4)
Observe that for any s > 0,

Ce(v) = {w € ag:Y(w) >0 and

llvll

S et <Y 5o ) (555 —2)

€L, po(7)EC: (v) €L po (1) ECe (v)
<y oo (<)

yel

It follows from the definitions of ng ) and ¢, that

TC.(v) S lo[v()t=e vl —ep(v)’
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and hence
Sypp(v)

o] = e(v)’

Since £ > 0 is arbitrary, we get 1% (v) < dyp1p(v), proving the claim .
We now claim that the inequality also holds for any v in the bound-

ary 0Ly. Choose any vg € int Ly. From the concavity of @bfl (Theorem ,
we have

Ph(v) < o]

t% (vo) + (1 — )pd(v) < YL(tvg + (1 —t)v) for all 0 <t < 1.

Since Ly is convex, tvg + (1 — t)v € int Ly for all 0 < ¢ < 1. As we have
already shown 1/112 < 0% on int Ly, we get

tf(vo) + (1 — )2 (v) < Syab(tug + (1 —t)v) forall 0 <t < 1.
By sending t — 0T, we get
PP(v) < by - (o).

Since Q,Z)le = —oo outside Ly, we have established ¢1€ < 0y%. Suppose
that zpl‘i < 0yt on a — {0}. Then the abscissa of convergence of the series
S er e—s0u¥(e(7) is strictly less than 1 by [35, Lemma 3.1.3]. However
the abscissa of convergence of this series is equal to 1 by the definition of
dy. Therefore d,1) is tangent to 1/11@, finishing the proof. O

Corollary 4.6. Suppose that T is Zariski dense. A (T, 0)-proper linear form
Y € ay with 6y = 1 is (I, 0)-critical. Moreover, if ¥ > 0 on Ly, then 1 is
(T, 0)-critical if and only if 6, = 1.

Via the identification aj = {1 € a* : ¢ = ¥ opy}, we can consider aj as a
subspace of a*. Lemma implies the following identity:

Corollary 4.7. Suppose that " is Zariski dense. If pg|s is a proper map,
then

{ € ay:is (T,0)-critical} = {1p € a* : ¢ =1 o pg, 1 is (T, II)-critical}.

Proof. To show the inclusion D, suppose 1) = 9 o pg and 1) is (', IT)-critical.
Then for any u € ap and any v' € p,'(u), ¥(u) = ¥(@') > ¢r(v') and
hence ¥(u) > ¥2(u) by Lemma Moreover, if ¥(v) = 9¢r(v), then for
u = po(u), $(u) > PA(u) > Yr(v) = $(v) = (u) and hence H(u) = Y(u),
proving v is (T, §)-critical. For the other inclusion C, suppose that ¢ > ¥
on a; and ¢(u) = ¢%(u) for some u € af. Then for any v € a't, 1(v) =
Y(po(v)) > ¥ (pe(v)) > ¥r(v) by Lemma :3.13 Let v € p, *(u) be such that
¥(u) = ¢r(v) given by Lemma Then ¢ (v) = () = Yf(u) = ¢r(v);
so ¢ is (I", II)-critical. O
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5. LIMIT SET, #-CONICAL SET, AND CONFORMAL MEASURES
Let I' < G be a closed subgroup.

Definition 5.1 (6-limit set). We define the #-limit set of I' as follows:
Ag = ANp(T) :={lim~; € Fp: v, €T}
where lim 7; is defined as in Definition [2.2
This is a [-invariant closed subset of Fy, which may be empty in general.

Set A = Ap. Denote by Leby the K-invariant probability measure on Fy.
This definition of Ay coincides with that of Benoist:

Lemma 5.2 (3], [36, Corollary 5.2, Lemma 6.3, Theorem 7.2], [29, Lemma
2.13]). If T is Zariski dense in G, we have the following:
(1) Ag ={£ € Fo: (7i)« Lebg — D¢ for some infinite sequence v; € I'}
where Dg is the Dirac measure at &;
(2) Ag = mo(A);
(3) Ag is the unique I'-minimal subset of Fy.

In the rest of this section, suppose that I' is discrete.

Definition 5.3 (#-conical set). We define the #-conical set of I as

A" = {ng eFp: limslllpfnggAJr # @} ) (5.1)
vE

For 6 =TI, A" = {gP € F : limsup,cpvgA™ # 0} because My = M
commutes with A. Note that the conical set is not contained in the limit
set A in general even for § = II. For example, if G = PSLa(R) x PSL2(R)
and I' = I'y x I'y is a product of two convex cocompact subgroups, then
A = A(T'1) x A(T'3) while A" = (A(T';) x SY) U (S' x A(I')).
f-shadows. For ¢ € X and R > 0, let B(¢q,R) = {z € X : d(x,q) < R}.
For p € X, the #-shadow O%(p, q) C Fy of B(q, R) viewed from p is defined
as

Ok(p.q) ={gPs € Fo: g€ G, go=p, gAToN B(q,R) #0}  (5.2)
={9Py € Fy: g€ G, go=p, gMyA 0N B(q, R) # 0}.
Clearly, for Og(p, q) = O%(p,q), we have
O%(p, q) == ma(Or(p. q))-

Lemma 5.4. We have £ € AF°" if and only if there exist an infinite sequence
v €I and N > 0 such that £ € (); O?V(o, 7;0).

Proof. The direction = is clear. To see the other direction, suppose that
¢ € N; 0%(0,7i0) for some N > 0 and an infinite sequence 7; € T', that is,
there exist sequences k; € K and a; — oo in AT such that & = k; Py and the
sequence 7y, 'kia; is bounded. By passing to a subsequence, we may assume
k; converges to some k € K. Since & = k; Py for all i, we have £ = kF.
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Since k; Py = kPy and My = Py N K, we have k; = km; for some m; € Mpy.
Since ;" Yem;a; = v Yka; is bounded, we have § = kPp € AZ°". O

We remark that we may replace o by any p € X in the above lemma.
For each N > 0, we set

AY = {5 € Fy : there exists 7; — oo in I' such that & € ﬂO?V(O,%o)} .

1

By Lemma [5.4) we have
AP =AY (5.3)
N=1

Definition 5.5. For a #-discrete subgroup I', we say that I" is 0-regular if
for any sequence ; — oo in I', we have

i ;)) — oo.
min a(u(7;)) = oo

Observe that -regularity is same as 6 Ui(f)-regularity by (2.1) and that
not every 6-discrete subgroup is #-regular.

Proposition 5.6. If ' is 0-reqular, then
(1) A" C Ag;
(2) for any compact subset Q C G, the union TQ U Ay is compact where
the topology is given by the convergence in Definition [2.5; that is,
any infinite sequence has a limit.

Proof. To show (1), let £ € A°". Then there exist g € G, a sequence 7; € I,
m; € My and a; € AT such that £ = g& and d(gm;a,o,v;0) is uniformly
bounded. Since u(y;) — loga; is uniformly bounded by Lemma and
mingeg a(pu(y;)) — oo by the #-regularity, we have mingecg a(loga;) — oo
as 1 — oco. We may assume that m; converges to some m € My by passing
to a subsequence. Therefore as ¢ — 0o, gm;a;0 — gmé&y = g&p by Lemma
This implies that v;0 — g€ by Lemma Hence &£ € Ay. For (2),
if 4; € T' is an infinite sequence and ¢; € @, then mingep a(p(viq;)) — 00
by the #-regularity of I' and Lemma Hence the claim is now immediate
from Definition 2.2] and Lemma O

Conical convergence. From the viewpoint of Lemma [5.4] we define the
conical convergence as follows.

Definition 5.7. We say that a sequence g; € G converges to £ € Fy conically
if g; — £ in the sense of Definition and there exists R > 0 such that
¢ € 0%(o,g;0) for all i > 1. Note that if 7; € T' converges to £ € Fp
conically, then £ € Ag®".

The following lemma is stated in [22, Lemma 5.29] in a different language.
We give a more direct proof.
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Lemma 5.8. Let g; € G be a sequence which converges to & € Fy. Then
the following are equivalent:
(1) The convergence g; — & 1is conical.
(2) For any n € Fyp) such that (§,1) € ]:9(2), the sequence g;l(f,n) 18
precompact in .7-"(52).
(3) For some n € Fyg) such that (§,n) € ]-'9(2), the sequence 9;1(5,17) 18
precompact in ]:9(2).

Proof. The map gLy — (9P, gwoP,g)) is a G-equivariant homeomorphism
from G/Lgy to .7-"(52). We first prove (1) = (2). Suppose (1). Then there
exist sequences k; € K and a; — oo in A" such that & = k; Py for all i
and the sequence gi_lkiai is bounded. If (&,n) € .7-"9(2), then £ = hPy and
n = hwo Py for some h € G. Since hPy = k; Py, h = k;p;m; for some p; € P
and m; € My, by using Py = PMy. In other words, we have l<:;1hm;1 =p;
and hence p; is a bounded sequence in P since k; and m; are bounded
sequences. In particular, it follows from a; € AT that the sequence ai_lpz-ai
is bounded by Lemma Therefore the sequence g, hiy = 9; YeipiLg =
(97 lk‘iai)(a;lpiai)Lg is precompact in G/Lg, which is equivalent to saying
that g; ' (¢,7) is precompact, proving (2). The implication (2) = (3) is clear.

Now (3) = (1) follows from Lemma below applied to the constant
sequence (&,m;) = (&,1). O

Lemma 5.9. Let g; € G and & € Fy be sequences both converging to some
§ € Fp. Suppose thal there exisls a sequence n; € Fig) converging to some

n € Fig) such that (§,1m) € .7-"9(2) and the sequence g;l(ﬁi,m) s precompact
mn .7-"9(2). Then there exists R > 0 such that

& € O%(0,g;0) for all i > 1.

Proof. Under the identification G/Lg = .7-"0(2) given by gLg = (9P, gwoPy(g)),
the hypothesis implies that there exists a sequence h; € G with the limit
h € G so that (&,m;) = hiLg for all i > 1 and (§,n) = hLy. It follows from
the precompactness of g;” 1(&,m;) that there exists a sequence £; € Lg such
that g, Lhi¢; is a bounded sequence.

Since Ly = MyADMy, we can write {; = m;a,m) € MyAMjy, and hence we
have g, lhimiafi is bounded. For each i, let w; € K be a representative of
a Weyl element such that w; 1a;wi € AT. After passing to a subsequence,
we may assume that the sequence m; converges to some m € My and w;
is a constant sequence, say w. We claim that w € My. Denoting by a; =
wlalw € AT,

the sequence g, Lh;miwa; is bounded. (5.4)

Moreover, since mingecg o(p(g;)) — 00, we have min,ecg a(loga;) — oo as
i — oo by Lemma Since h;m;wa; = gi(gflhimiwai), gi — &, and
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9; Lhymiwa; is a bounded sequence by , we have as i — oo,
him;wa; — &
by Lemma [2.7) On the other hand, by Lemma [2.8] we have that as i — oo,
h;miwa; — hmwPy.
Hence we have hmwPy = £ = hPy. Since m € My, it follows that
we KN Py=My.

In particular, & = h;m;wPy for all .

For each i, write h;m;w = k;b;n; € KAN in the Iwasawa decomposition.
We then have & = h;m;wPy = k; Py. Since the sequence h;m;w is convergent
and the product map K x A x N — G is a diffeomorphism, the sequences
b; and n; are bounded. Since a; € A", the sequence a;lniai is bounded
by Lemma and so is the sequence biai_lmai. On the other hand,
implies that

the sequence gi_lkibmiai = (gi_lkiai)(biai_lniai) is bounded. (5.5)

Therefore it follows that g, 'k;a; is bounded. This mean that for some R > 0,
& =kiPy e O%(o, g;o0) for all i, as desired. O

Conformal measures. The a-valued Busemann map §: F X G x G — a
is defined as follows: for £ € F and g,h € G,

65(97 h) = 0(9717 g) - O—(h717 g)
where o(g~!,¢) € a is the unique element such that we have the Iwasawa
decomposition g7k € Kexp(o(g~!,€&))N for any k € K with & = kP. We

define the ap-valued Busemann map (% : Fy x G x G — ap as follows: for
(&,9,h) € Fp x G x G, we set

Be(g.h) = po(Bey (9. ) for & € my ' (€); (5.6)

this is well-defined independent of the choice of & [36, Lemma 6.1].
The following was shown for § = II in [29, Lemma 5.7] which directly
implies the statement for general 6 since py is norm-decreasing.

Lemma 5.10. There exists £ > 0 such that for any g,h € G and R > 0,
we have

sup (1829, h) — polg~ h)|| < KR.
§€O%(go,ho)

Following the work of Patterson-Sullivan ([32], [42]) in rank one, Quint
[36] has introduced the notion of conformal measures in general.

Definition 5.11 (Conformal measures). For a linear form 1 € aj; and a
closed subgroup I' < G, a Borel probability measure v on Fy is called a
(T, ¢)-conformal measure if

dry.v

- (€) = 61/’('859(6’7)) for all v € I and & € Fy.
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Proposition 5.12. Suppose that I is Zariski dense and 0-discrete. For any
linear form v € aj which is tangent to ¢1€ at an interior direction of a;,
there exists a (I, 1)-conformal measure supported on Ag.

Proof. For § =TI, this was shown by Quint using the concavity of ¢r [36),
Theorem 8.4]. Now that we established the concavity of the #-growth indi-
cator 1/11(2 (Proposition , the same proof works for general 6. O

As in the Patterson-Sullivan construction, the conformal measure in the
above proposition can be obtained as a limit of a sequence of certain weighted
counting measures on I'o. The assumption that v is tangent to %Q at an
interior direction of a; is needed to guarantee that the limiting measure is
supported on the limit set Ag. For a #-regular subgroup I', the union I'oU Ay
is a compact space, and hence the assumption that the tangent direction
belongs to int a; is unnecessary. The proof below is an easy adaptation of
the standard construction of Patterson-Sullivan (see also [24], Section 2], [41],
Section 5], [9]).

Proposition 5.13. Suppose that T' is O-regular. For any (I',0)-proper ¢ €
ap such that by =1 and }_ e Vo) = oo, there exists a (T',v)-conformal
measure supported on Ag.

Proof. By Proposition I'oU Ay is a compact space. Recall that Py (s) =
> ver e~ Vo) As §;, = 1, Py(s) < oo for s > 1. and hence we may
consider the probability measure on I'o U Ay given by

1
— —s9(po (7))
Vs i= g e D, 5.7
U Py(s) = K (5:7)

where D,, is the point mass at ~o.

Since the space of probability measures on a compact metric space a
weak™ compact space, by passing to a subsequence, as s — 1, vy, ; weakly
converges to a probability measure, say 7y, on I'o U Ag. Since Py (1) = oo,
vy is supported on Ag. It is standard to check that vy is a (I', 1)-conformal
measure. U

Although we will not be using this generality, Proposition holds
without the hypothesis 3 e Y1) = 0o (see [9, Proposition 3.2]).

6. TRANSVERSE SUBGROUPS AND MULTIPLICITY OF #-SHADOWS

We say that a discrete subgroup I' < G is 8-antipodal if any two distinct
points § # n in Agjg) are in general position, i.e.,

§ = 9buip) and 1= gwoLyu;()
for some g € G. Recall that a discrete subgroup I' < G is called #-transverse
if I' is both #-regular and f-antipodal. A 6-transverse subgroup I' < G is
called non-elementary if #Ag > 3. Note that for 6; C 65, fo-transverse
implies #;-transverse.
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Remark 6.1. We may try to define I" to be #-Antipodal if for any (£,7n) €
Ay x Ay such that ng(g) N 771@1) (n) =0, (&,n) is in general position, i.e.,
§ = gPy and n = gwoP;g) for some g € G. While the #-antipodality implies
the #-Antipodality, the converse direction is not true in general; for instance,
any lattice of PSL3(R) is {o; }-Antipodal but not {a, e }-Antipodal, i.e.,
not {ay }-antipodal, where «;(diag(u1, ug,ug)) = u; — uj+q for i = 1,2.

The main aim of this section is to prove the following proposition, which
is the essential reason why the main results of this paper are proved for
f-transverse subgroups.

Proposition 6.2 (Bounded multiplicity of §-shadows). Assume that T" is 0-
transverse. Let ¢ € ajy be a (I',0)-proper linear form. Then for any R, D > 0,
there ezists ¢ = q(¢, R, D) > 0 such that for any T > 0, the collection of
shadows

{O%(0,70) € Fo: T < élup(v)) < T + D}

have multiplicity at most q, i.e., for and & € Fy and T > 0, there are at
most q number of shadows from the above collection that contain .

The following lemma is a key ingredient of the proof of Proposition [6.2

Lemma 6.3. Assume that I' is O-transverse. For any compact subset Q
of G, there exists Cy = Cp(Q) > 0 such that if y1,72 € I' are such that
QNyQa ' NyQbtm™ £ 0 for some a,b € AT and m € My, then

min{||ug(y2) — to(v1) — to(v1 Y211, lo (1) = po(v2) — po(vz )11} S(éf({.)

Proof. Since |lps(u)|| < |lpouiey(u)|| for all u € a, it suffices to prove the
lemma for 6 Ui(f) in place of §. Therefore we may assume without loss of
generality that i(f) = 6 by replacing 6 with 6 Ui(6).

We prove by contradiction. Suppose to the contrary that there exist
sequences 4o, q1,i, 42,i € @, ai,bi € AT, m; € My and 71 4,72, € I' such that

Qi = M Q105 " = Y2, b tmy (6.2)
116 (Y2,6) — po(71.6) — po(vi; v24) | = 00 (6.3)
6 (v1.4) — 1o (v2.i) — mo (v Y.0) |l = oo. (6.4)

By Lemma it follows that all sequences 71 ;, V2., M, Z.lf)/M and v, Z»lfyu
are unbounded. ithout loss of generality, we assume that each of these

sequences tends to infinity. By (6.2) and Lemma there exists C' =
C’(Q) > 1 such that

SII%P{HMe(%,z') — po(aa)|l; [0 (v2:) — po(bo) I} < €' (6.5)

As T' is O-regular, as i — oo,

min a(log a;), min a(logb;) — oo.
ach ach
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Note that a(logwyta™ wy) = a(i(loga)) = i(a)(loga) for all @ € A and
all o € ®. Since 0 is symmetric, it follows that

min a(log(wy *a; wp)), min a(log(wy 'b; twg)) — oo. (6.6)
ach act

Passing to a subsequence, we may assume that ¢; ; converges to some q; € Q.
We claim that

qrwoéy € Ng and grmiwéy € Ay (6.7)

for some m; € My andw € Ng(A). By Lemma we may also assume that
7i3q07i0 converges to some & € Ag as i — oo. Since ’yl_’l-lqojio = qlﬂ-ai_lo =

quiwo(wofla;lwg)o, it follows from Lemma and that & = qrwp&y.
Therefore

qrwoée € Ng.
Since A = ApBp, we may write a; = a1 a2, € A;rB(;F and b; = by ;by; €
AJB;. Using Sy = M@B;_Mg, write
—1
a272- mibgﬂ' =Mm1,;C;M2; € MQB;_MQ.

Then

ViV, Q24 = quia; 'mibi
= Q1,i(ai%bl,i)(a2_,}mib2,i) = QLiml,i(al_ﬂ‘lbl,ici)mZ,i'
By passing to a subsequence, we have w € Nk (A) such that for all ¢ > 1,
d; == wilai%bl,iciw €A, (6.8)
Then we have the following:
71_7372,2‘(12,1‘ = q1.i(myw)d;(w tmay;) € 1 KATK. (6.9)

Since fyl_ﬂ-lfyg’i — 00, by the f-regularity of I', we have min,ep a(logd;) —
0o. We may assume that my; — mq1 € My. By Lemma and Lemma
we get

Jim iN2id24 = Qmiwéy € Ag
by passing to a subsequence. Hence the claim is proved.

By the f-antipodal property of I', two distinct points of Ay must be in
general position; hence (6.7)) implies that we must have either

wolp = miwéy or mywéy € Ny &.

First suppose that (mjw)& € N; &9. By Corollary this implies that
w € My. As aiilbu € Ay, using the commutativity of My and Ay, we get
from that d; = (aiz-lb17i)(w_1ciw). Since d; € AT, ai}bl,i € Ag, and
wle;w € By, it follows that ai}bl,i € Ag'. Hence

wo(d;) = log al_ﬂ-lbl’i = —logai; +logbi; = —pg(a;) + pe(b;). (6.10)
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Since [|ug(vy, 192.) — pe(d;)|| is uniformly bounded by and Lemma
(6.10) and (6.5) imply that the sequence [|ug(v;; v2.1) + po(v14) — to(v24)ll
is uniformly bounded. This contradicts ([6.3)).
Now suppose the other case that wy&y = miwéy. In this case, we have
wép = my wolp = wo(wy My wo)ép = wolp

since m; € My and wy " Mywo = My by the symmetricity of #. Hence we
have w € wo(Py N K) = woMy = Mpwy, and thus wwa1 € Mpy. Since
wwo_1 € My, we may write using that

wod; Mwy ! = (wwy ) ayby ey (wwg )

= (al,ibi%)((wwal)_lcfl(wwal)) € AypBy
Since d; € A, we have wod; 'wy' € A*. Tt follows that alﬂ-biz1 € Ay
Hence we have
po(d; ) = po(log(wod; 'wy ) = logar; — logby; = pg(a;) — pg(bi). (6.11)

Similarly, (6.9) implies that the sequence ||ug(v,. 1y14) — pe(d )| is uni-
formly bounded. Hence it follows from (6.11)) and (6.5) that the sequence

126 (7, 1914) — o(71.1) + po(y2,1) || is uniformly bounded, contradicting (6.4)).
This completes the proof. O

Proof of Proposition Suppose that there exists ¢ € I, 0%(o, vi0)

and T < ¢(ug(y:)) < T + D for some distinct v; € T', i = 1,- -+ ,n. Setting

Q = KARK where Ar := {a € A : d(0,a0) < R}, let Cy = Cp(Q) be as in

Lemma [6.3] Note also that Q@ = {g € G : d(0, go) < R}. Set
D'=D'(¢,Q,D) :=¢|Co+ D

where ||¢|| is the operator norm of ¢ : a9 — R. Then the following number

q:=#{v €T : d(uo(7)) < D'}
is finite by the (T", §)-properness of ¢. We claim that
n < 2g;
this proves the proposition. It suffices to show that
max min{¢(uo (71 %)), $(uo (v "))} < D, (6.12)
as this implies that

n=#{v, - mt <#Fmr.nr v e d(pe(v)) < D'} < 2.

To prove (6.12), for each i = 1,--- ,n, there exist k; € K and a; € AT
such that £ = k;&p and d(k;a;0,7v,0) < R. Then k; = kym; for some m; €
KNPy = My. Hence we have d(’yl_lklalo, 0) < Rand d(’yi_lklmiaio, 0) < R,
which implies

kre@n 'leafl N 'yiQalflm;l.
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By Lemma [6.3] we have

o () =ro(v1) —po(ri ")l < Co or lug(v1)—pe(vi)—he(v; 1)l < Co.
Suppose first that ||ug(y:) — pe(71) — e(y7 )| < Co. Now we have

Spo(v1 1)) = Do (v 7) — (o (v) — (1)) + e (i) — po(11))
< [|9l1Co + [¢(ro (i) — d(po(71))]
<||¢l|Co+ D =D’
where the last inequality follows from ¢(ug(71)), d(re(v:)) € [T,T + DJ.
When [|ug(11) = po(7i) — po(7; 1)l < Co, similarly, we have
o(ne(7; ') < [6lCo+ D = D"
Therefore follows. (]

7. DIMENSIONS OF CONFORMAL MEASURES AND GROWTH INDICATORS

For a general Zariski dense discrete subgroup I' < G, Quint [36, Theorem
8.1] showed that if there exists a (I', ¢))-conformal measure on Fiy for ¢ € a*,
then

P > Yr.

The main aim of this section is to prove the following analogous inequality
for f-transverse subgroups, using Theorem [7.3] whose key ingredient is the
control on multiplicity of shadows obtained in Proposition [6.2]

Theorem 7.1. Let I" be a Zariski dense 0-transverse subgroup of G. If there
ezists a (I',1)-conformal measure v on Fy for a (I',0)-proper i) € aj, then

¥ > Y. (7.1)

Moreover if 3~ cp- e V() = 0o in addition, then 65 =1 and 1 is (T, 0)-
critical.

Lemma 7.2 (6-shadow lemma). Let I' < G be a discrete subgroup. Let v
be a (I',y)-conformal measure on Fy for 1 € aj. Suppose that supp v is not
contained in Fg — EN;PQ for any £ € K. Then we have the following:
(1) for some R = R(v) > 0, we have ¢ := inf,er v(0%(v0,0)) > 0; and
(2) for allr > R and for all v €T,

ce1lmre=v(e™) < 1, (00 (0, 70)) < ell¥linrg=¥ (ke () (7.2)

where k> 0 is a constant given in Lemma[5.10
In particular, if T is Zariski dense, (7.2]) holds for any (T',)-conformal

measure v.
Moreover, if T is a O-transverse subgroup, then (7.2)) holds for any (T, )-
conformal measure v on Fy such that

(suppv,n) N ]:9(2) #0  for any n € Ayg).
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Proof. This lemma was proved in [29, Lemma 7.8] for § = II, and a gen-
eral case can be proved verbatim, by replacing P and N by Py and Ny
respectively and noting that the projection py : @ — ay is a Lipschitz map.
We provide a proof for completeness. To prove (1), suppose not. Then
there exist R; — oo and ; € T' such that I/(O%i (v; to,0)) < 1/i for all
¢ > 1. We write the Cartan decomposition v; = kgaifi_l € KATK and
after passing to a subsequence, we may assume that k; — £’ and ¢; — ¢
as i — co. We claim that N;”Py C limsup O%i(ai_lo, 0). Let h € N, and
write a;h = k;bin; € KAN. Since a;ha; 1'is bounded by Lemma and
aiha;l = ki(bia;l)(amia;l) € KAN, it follows that both sequences bm;l
and n; are bounded. Hence for all large ¢ > 1, hni_lbl-_laio € B(o, R;) and
hence hPy = hni_lbi_ng € O%i(hni_lbi_lo, 0). Since hni_lbi_1 = ai_lki, we
have hPy € O%i (a; to,0), proving the claim.

Since O, (7, '0,0) = £;0% (a; '0,0) and {; — £, it follows that v(¢N, Py) =
0. Since N, Py is Zariski open in Fy, it follows that supp v N ¢N, Py = 0.
This is a contradiction to the hypothesis. Hence this proves (1). To see
(2),let vy €I'and r > R. By Lemma for all £ € O%(y 1o, 0), we have
182(v~"0,0)—ps(7)]| < rir. Since v(04(0,70)) = fpp(-100y ¢ "% D du(e),
(2) follows from (1).

If I is Zariski dense, then Ay is Zariski dense in Fy and is contained in
supp v. Hence any I'-conformal measure v satisfies the hypothesis.

For the last claim in the statement, letting I" be a #-transverse subgroup
and v a (I',9)-conformal measure such that for any 1 € Ajg), (§,71) € ]-'f)
for some £ € suppv, it suffices to show that inf,cp Z/(O%(’}/O, 0)) > 0. If
not, there exist R; — oo and 7; € T' such that V(O%i (v; to,0)) < 1/i for
all # > 1. Write the Cartan decomposition v; = kgaiﬁi_l € KATK and
assume ¢; — £ € K as i — oo. By the same argument as above, we have
suppv N €N9+ Py =10. By , this implies that every element of supp v is
not in general position with fwoP;4). On the other hand, it follows from
fyl-_l = Eiwg(wo_lai_lwg)wg_lkg_l for all i > 1 that fwo Py = lim; ’yi_l € Aip).-
By the hypothesis on supp v, there exists an element of supp v in general
position with fwgPg). This contradicts supp v N EN; Py = (). This finishes
the proof. O

Theorem 7.3. Let I" be a Zariski dense 0-transverse subgroup of G. If there
exists a (I',v)-conformal measure v on Fy for a (I',0)-proper ¢ € aj, then
oy < 1.

Proof. For each n € Z, we set

Dy = {7 €T :n < b(uo(7) < m+1}.

Since 1 is (I, §)-proper, (J,.oI'yn is a finite subset, and hence can be
ignored in the arguments below. Let v be a (I, ¢)-conformal measure. We
fix a sufficiently large R > 0 satisfying the conclusion of Lemma [7.2] for v.
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Since v is a (I, #)-proper linear form, by Proposition we have that for
all n € N,

1> Z ) > Z e ¥ko(7) > 6*(n+1)#r‘w7n

Y€y n Y€y
where the implied constants do not depend on n. It implies
#Tyn < " for each n > 0.
Therefore, we have (cf. [35, Lemma 3.1.1])
log#{y € T : ¥(ne(7)) < N}

dy < limsup
- N
N
o 5 (7.3)
< limsup — log e"m =1.
N—oo N 0<n<N
Hence the claim follows. O

Proof of Theorem By Lemma and Theorem we have that
0y < 1 and dy7 is tangent to 1/}1‘2, and therefore we have
Oyt > Y.

Since v is (T, 9)—proper, 1 >0on Ly by Lemma and hence 9 > 51/,1/1 on
Ly. Therefore ¢ > 77/’1“ on Ly. Since wp = —oo outside of Ly, ¥ > Qpr on
ag. I > cre (o) = oo in addition, then d, > 1 and hence d; = 1. In
part1cular, w = 0y7) is tangent to 1/11‘2. Therefore this finishes the proof. [

8. DIVERGENCE OF POINCARE SERIES AND CONICAL SETS

Let ¢ € a; and I' < G be discrete subgroup. Denote by MZ) = Mi‘l’w the
collection of all (I, ¢)-conformal (probability) measures on Fy. Define the
following subset of M%:

either v(Ag) =1 and #suppr > 2, or
NP, = N = {u € MY, :

(supD |7, —ng,m) N Fy # 0 for all n € Ay

The reason for this definition is to guarantee that for I" f-transverse, the
shadow lemma (Lemma D holds for any v € NZ as well as its restriction
v|z,—n, (if non-zero).

Lemma 8.1. (1) IfT is Zariski dense, then
0 _ o
Ny, = My,

(2) If T is non-elementary 0-transverse, then

NS, O {v e Ml : v(Ag) =1}
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Proof. Since #Ay > 3 for a non-elementary #-transverse subgroup I, (2) is
straightforward. For (1), suppose that I is a Zariski dense discrete subgroup.
Then for any v € be, supp v is a closed I'-invariant set, and hence is Zariski

dense in Fy (Lemma . Therefore if v(Ag) = 1, then v € NZ}. Otherwise,
we have v(Fg—Ag) > 0, and supp v|r,—n, is a non-empty closed I'-invariant
set, and thus Zariski dense in Fy. Given 1 € Ay, the set {§ € Fy: (§,1) €
féQ)} is a Zariski open subset of Fy and hence (supp v|z,—a,,n) N .7'"‘52) # 0,
finishing the proof. ]

The main goal of this section is to prove the following theorem and discuss
its applications. Note that we do not assume that 1 is (I", #)-proper in the
following theorem.

Theorem 8.2. Let I" be any 0-transverse subgroup (which may be elemen-
tary). Then the following are equivalent:

(1) Zver e~ Vo) — o (resp. E’yEF e~ ¥(o(7) < o)
(2) v(Ag") =1 for allv € Nz; (resp. v(AG°") =0 for allv € NZ).

In the rest of this section, suppose that I' is #-transverse. We make the
following simple observation:

Lemma 8.3. Suppose that v(A§™") > 0 for all v € Nz}. Then
v(Ag") =1 forallve NZ)'

Proof. Suppose that for some v € NY, we have 0 < v(AP") < 1. Then

Vo= myﬁe,,\?n belongs to Mz. We now show that v/ € Ngj. There

are two cases:
(1) If v satisfies that (suppv|z,—a,, 1) N .7-"(52) # 0 for all n € Ay, then
the same holds for v/, so v/ € Nz}.
(2) Otherwise, v(Ag) = 1 and # suppr > 2. We consider the following
two subcases:
e If I" is non-elementary, then suppv’ = Ag. Since #Ay = oo in
this case, we have v € sz.
e IfI'is elementary, then #Ay < 2. Since v(Ap) = 1 and # suppv >
2, we have suppr = Ay and #Ap = 2. Since 0 < v(A") < 1,
we must have that #A°" = 1. Since both Ay and Ag°" are
I-invariant, this implies that each point of Ay is I'-invariant.
Now for & € Ag — A", let 7; € I' be a sequence that con-

verges to {. For n € Ajg) such that (§,7m) € .7:(52), we have

) = (&) € J’:z), and therefore the convergence v; — &
is conical by Lemma This contradicts & ¢ Ag™".

Therefore, in any case, we have v/ € pr. On the other hand, v/(A*") = 0,
contradicting the hypothesis. This finishes the proof. O

We will use the following;:
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Lemma 8.4 (Kochen-Stone Lemma [27]). Let (Z,v) be a finite measure
space. If {A,} is a sequence of measurable subsets of Z such that

00 N N

An O An,
> v(A) =oc and liminf Lom=1 Z}V"ﬂ U 5 ) c o, (81)
n=1 oo (anl V(An))

then v(limsup,, A,) > 0.

Proof of Theorem Suppose that Zwer e Ve (1) = 0. By Lemma
8.3} it suffices to show that v(A§°") > 0 for all v € Nfb' Let v € Nfb. Since T’
is f-transverse, it follows from the definition of NZ} that v satisfies Lemma
(.2

We fix a € 0. Since T is f-regular, o € 0 is (T, 0)-proper; in particular,
a(ug(T)) is a discrete closed subset of [0, 00). Therefore we may enumerate

I' = {y1,72, -} so that a(us(1n)) < a(ug(yn+1)) for all n € N. Fix a
sufficiently large R which satisfies the conclusion of Lemma Setting
A, := 0%(0,7,0), we then have

i v(Ay) > Z e~ V(o) — 5o

n=1 yel

where the implied constant depends only on R. Since limsup, A, C A§",
by Lemma, it suffices to show that

Yot Sone1 V(A g Am) < 0. (8.2)

lim inf
Moo (0 v(An)

Set Q := KA}LK where A}, = {a € A" : ||logal| < R} and Cy = Cp(Q)
be as in Lemma Note that @ = {g € G : d(0,g0) < R}. Define

Ty :=max{n € N: a(us(vn)) < alpug(yn)) + [|e]|Co}

for each N > 1. Clearly, N < T. Unless mentioned otherwise, all implied
constants in this proof are independent of N. Since I' is #-regular, «/q, is
(T", 0)-proper. Proposition implies that the collection A,, N <n < Ty,
has multiplicity at most ¢ = ¢(«, R, ||a||Cp), and hence

Z v(An) < q-v(Fp).
N<n<Ty

Therefore by Lemma we have that for all N > 1,

TN N TN
Z e~ V(ro(m)) _ Z e ¥(ho(m))| & Z v(An)
n=1 n=1 n=N-+1

N
L V(Fy) = ¥ o) g=vlne(n)) < cvlno(n)) Z e~ V(o (n))

n=1
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with all implied constants independent of N. Therefore we have:

Ty N
S e b0n) ¢ 3 e bntin)), (8.3)
n=1 n=1

Fix N € N. If A, N A,, # 0 for some n,m < N, then there exist k € K
and mgy € My such that d(kA"0,v,0) < R and d(kmgA*0,v,0) < R. Since
K C @, it follows that

Q NmQa,' NymQaytmy* # 0

for some a,, a,, € AT. Hence, setting

El = {(n7 m) n,m < N and HN@(’Y’@) - (NG(’Ym) + /149(7;11%1))” < CO};
Ey ={(n,m):n,m < N and ||g(vm) — (6 (vn) + 16 (v, "ym))ll < Co},

we get from Lemma [6.3] that

Y vAnAR < Y vA)+ Y v(Ag). (8.4)

n,m<N (n,m)eE (n,m)€Ey
For all (n,m) € E, we have
a(p0 (Y ) < 6 (vm) + 16 (Yon V)

= a(po(Ym) + 16 (V) — Ho(m)) + (po(m))  (8:5)
< [lae]|Co + a(pa(vn))-

Therefore, by Lemma

Z v(A,) < Z e~ ¥ (ke (n))

(n,m)€EL (n,m)€EL
< Z b (ko (Ym)) =% (1o (vm' 1))
(name (8.6)
N Tn
< Z Z eV wo(ym)) g =¥ (1o (75)).
m=1 j=1

the last inequality follows because, for each fixed 1 < m < N, the corre-
spondence n ¢ 7,17, is one-to-one and when (n,m) € Ey, v; = v,y for
some j < T, < Ty by (8.5). Similarly, we have

N Ty

Z ) < Z Z e~ Yo (1)) =t (1o (7))

(n,m)€Es n=1j=1



CONFORMAL MEASURES 39

By (8.4)), we have
N Ty

Z (An NAp) < Z Ze Ppo(yn)) o=t (1o(75))

nm<N n=1 j=1

N TN
_ ( e—wme(vn))) (Z e—w(w(%)))
n=1 n=1

N 2 N 2
< (Z e‘¢(ﬂ6("/ﬂ))> < (Z V(An>>

n=1 n=1
where we have applied for the second last inequality and Lemma
for the last inequality. Hence is verified, completing the proof of the
first statement.
We now suppose that Zwel“ e o) < 0. Consider the following in-
creasing sequence

3 infinite sequence Yo € ' s.t.
‘S € mn>1 ( 'Yno)
Since AS" = (Jy AY, it suffices to show v(A)) = 0 for all sufficiently large

N > 1. Since
A) C U 0% (0, v0)
YED, [l (V) [>1
for any ¢ > 0, we get from Lemma [7.2] that for all ¢ > 0,

v(AY) <« Z e~ ¥(ue(7))

YED, o (V)II>t

AN={§€.7:9: } N > 1.

where the implied constant depends only on N. Since Zver e Pe(v) <
oo implies that limy e E’YERHM(V)HN e o) = (0, we have v(AY) =0,
finishing the proof. ([l

Comparing with ¢¥r. Quint showed that for a Zariski dense discrete sub-
group I' < G, the existence of a (I, 1)-conformal measure on Fy for ¢ € aj,
implies the inequality

Yopy+2pm-g > Yr ona, (8.7)

where 2pr1_g is the sum of all positive roots which can be written as Z-linear
combinations of elements of IT — 6 (counted with multiplicity) [36, Theorem
8.1]. For #-transverse subgroups, Theorem and imply that the term
2pr1—p turns out to be redundant:

Corollary 8.5. Let I' < G be a Zariski dense O-transverse subgroup and
Y € ay be (I',0)-proper. If there exists a (I',1))-conformal measure v on Fy,
then

PYopg >Yr ona. (8.8)
Moreover, if v(AP") > 0, then 1 o py is tangent to r.
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Proof. The first statement follows from Theorem and Lemma [3.13] For
the second claim, if v(A§°") > 0, then we have > e~ (Were) (7)) = o by
Theorem If 1 o pg were strictly bigger than «r, then by [35, Lemma
3.1.3] we would have . e~ (Woro) (M) < 0o, Therefore 1 o py must be
tangent to ¢r. O

9. PROPERLY DISCONTINUOUS ACTIONS OF I'

Recall ]:9(2) = {(&,m) € Fyg x Fi(p) : &, n are in general position} and con-
sider the action of G on the space .7-"0(2) X ay defined as

g9-(&mu) = (g€, gn,u+ B9~ e)) (9.1)

for all g € G and (§,n,u) € f9(2) X ag. A discrete subgroup I' < G preserves

the subspace Aéz) X ag where

AP = (Ag x Ayg)) N,

When 6 = II, the Hopf parametrization of G/M gives a G-equivariant
homeomorphism between F?) x a and G /M, and hence any discrete sub-
group I' < GG acts properly discontinuously on F (2) x @ and hence the quotient

space F\A%2 ) xaisa locally compact Hausdorff space. For a general 0, this
is not the case. The aim of this section is to establish the following two
theorems on properly discontinuous actions of f-transverse subgroups.

Theorem 9.1. IfT" is a non-elementary 0-transverse subgroup, the I'-action
on Aé2) X g is properly discontinuous and hence

Qp = F\Aéf) X ag
is a locally compact Hausdorff space.

For a (T, §)-proper form ¢ € aj, consider the I'-action

(€ m,8) = (v€, v, s + (B (v €)) (92)
for all y € I" and (&,7,s) € Aé2) x R.

Theorem 9.2. Let I' be a non-elementary 0-transverse subgroup of G and
@ € ay a (I',0)-proper form. Then the action I' on AéQ) x R given by (9.2)
is properly discontinuous and hence

Q, :=T\AP x R

is a locally compact Hausdorff space. Moreover, 2, is compact if and only
if I' is 0-Anosowv.

Definition 9.3. Let Z be a compact metrizable space with at least 3 points.
An action of a countable group I' on Z by homeomorphisms is called a
convergence group action if for any sequence of distinct elements v, € T,
there exist a subsequence 7v,, and a,b € Z such that as k — o0, Yy, (2)
converges to a for all z € Z — {b}, uniformly on compact subsets.
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We will use the following property of a -transverse subgroup:

Proposition 9.4. [22] Theorem 4.16] For a 0-transverse subgroup T', the
action of I' on Ag is a convergence group action.

It is also proved in [22] that Ay is same as the limit set as the convergence
group action; this also follows from Lemma [2.5] In particular, if " is non-
elementary, then the ['-action on Ay is minimal.

The following observation is useful to transfer statements from 6 symmet-
ric to general 6.

Lemma 9.5. Suppose that T' is 0-antipodal. For any 61 C 0 C 0Ui(0), the

projection map p : Ng, — Ng, given by gFPy, — gFp, is a I'-equivariant home-

omorphism. In particular, for any (I, ¢)-conformal measure v supported on

ﬁgl Jor ¢ € ay C ay, , the pull back p*v is a (T, ¢)-conformal measure on
02 -

Proof. 1t suffices to show that p is injective when #y = Ui(#). Suppose that
§ # 1 € Mguip)- By the f-antipodality of I', & = gPyuj(9) and 1 = gwoPyuji(g)
for some g € G. Then p(§) = gPy, and p(n) = gwoFy,, and hence p(§) #
p(n), showing that p is injective. O

The following observation will be useful:

Lemma 9.6. Let I' be a non-elementary 0-transverse subgroup and v; € I’

an infinite sequence. Let (&,m;) € A((,Q) be a convergent sequence in A((f).

If the sequence 7;(&,m;) converges in AéQ), then there exists R > 0 so that
either

& € O%(o,vi_lo) for allt > 1; or
n; € Oijge)(o,fyflo) for all i > 1.

In particular, if the sequence ~;(§,m) € AéQ) converges in Aé2) for some

(&) € A((f), then ’yi_l converges conically either to & orn.

Proof. Set (£,1) = lim;(&,m;) € Ay and (&,70) = lim;7,(&, 1) € Ay
Since the projections Agyi) — Ag and Agui) — Ajp) are -equivariant
homeomorphisms by Lemma we also let &', &), & € Agui(p) be the preim-
ages of &, &, and &; for all # > 1 under the projection Ag;p) — Ay respec-
tively, and similarly 7', 179, 7; € Agui(g) the preimages of 1, 1o, and 7;. Note
that & # 1, § # 1y, and & # nj for alli > 1and & — &, nf — 0, i€ — &),
and vl — nj as i — 0.

Since the action of I' on Ay j(g) is a convergence group action by Propo-
sition there exist a,b € Agui(g) such that

'Yi|/\9ui(9)—{b} —a (9:3)

uniformly on compact subsets, after passing to a subsequence. That is, for
any compact subsets Co C Aguip) — {a} and Cp C Aguie) — {0},

#{7i : 7Cy N Cy # 0} < o0,
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or equivalently #{~v; 1, v 10, N Cy, # 0} < co. Therefore we have, as
17— 00,
’7;1|A0Ui(0)_{a} —b (9.4)
uniformly on compact subsets.
We claim that

(avb) = (77(/)7{/) or (a7 b) = (56777/)‘ (95)

Suppose &' # b. Excluding finitely many elements from {£/ : i > 1}, we may
assume that {£ 17 > 1} U {£'} is a compact subset of Ag;g) — {b}. Hence
(9.3) implies that & = lim; ;£ = a. If i’ were not equal to b, then we may
also assume that {n; : i > 1} U {n'} is a compact subset of Ag ;) — {0} and
hence implies 7 = lim; v;7; = a. Since & # 1, this is a contradiction.
This implies 7 = b. Now suppose that & = b. Since 1 # £ = b, we have
no = lim; v;n; = a by the above argument. This proves the claim.

Now and imply that

Y ooty = & 0T W oo —tggy (9:6)
uniformly on compact subsets.

Since T" is € U i(f)-regular, we may assume that by passing to a subse-
quence, the sequence -y, ! converges to some point, say, z = lim; ;" 1, in
Agui(py in the sense of Definition We claim that z is either & or 7.
Write v, - kibl-ei_l € KATK using the Cartan decomposition. By passing
to a subsequence, we may assume that k;, — kg € K and ¢; — (g € K.
Choose € Agui(g) — {7y, &o> } in general position with Lowo Pyu;g) = lim; ;,
which is possible by the f-antipodality and non-elementary hypothesis of I'.
Since I is QUi(0)-regular, by Lemma we have min, g gy a(log b;) — oo.
Hence, by Lemma [2.5] we have

Vi e = 2 = ko Pyui(a)-

Therefore, it follows from that 2 = & or 7.

If lim; ;- L' — ¢, then by Lemma there exists Ry > 0 such that
¢ e O%ﬁi(m(o,'yflo) for all i > 1. Otherwise, if lim;~; ' = 7/, then we
apply Lemma to the sequence (n),&) to obtain Ry > 0 such that 1] €
O%:i(g)(o,'yjlo) for all @ > 1. Setting R := max(R;, R2) and taking the
projections Agyig) — Ag and Aguip) — Ajp), we have either

& € 0%(0,v; ') for alli > 1; or
n; € Oi}%e)(o,yi_lo) for all i > 1,
completing the proof. O

Proposition 9.7. Let ' be a non-elementary 0-transverse subgroup and
¢ € a; a (I',0)-proper form. Let v; € T' be an infinite sequence and

(&, mi) € AéQ) a convergent sequence in AéQ). If the sequence ~v;(&,m;) € AéQ)
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converges in A((f), then the sequence go(ﬁgi ('yi_l, e)) is unbounded. In partic-

ular, Bg ('yi_l,e) 18 unbounded.
Proof. By Lemma there exists R > 0 so that either
& € 0% (0,7, ') for alli > 1; or
n; € Oi}%e)(o,yi_lo) for all 4 > 1.
We consider these two cases separately.
Case A. Suppose that & € 0%(o, ;o) for all i > 1. By Lemma we

have
sup [|8¢, (e,7,) — po(v; Ml < o0
A

and hence
sup (B¢, (e,7; ) — pa(v; )| < oo
KA

The f-regularity of T' implies pg(7; 1) — oo as i — oo. Since ¢ is (T, 6)-
proper, we have ¢(ug(7; 1)) — oo. Therefore

e(BL (vt e) = —p(BE (e,77 ")) = —o0,
as desired.

Case B. Now suppose that n; € Oifge)(o,’yi_lo) for all ¢ > 1. Then there
exist a sequence k; € K and a sequence a; — 0o in AT such that n; = ki,Pi(g)
for all 4 > 1 and the sequence ~;k;a; is bounded. By the hypothesis that the
sequence (&;,7;) converges in A((f), there exists a bounded sequence h; € G
such that (&,7;) = h;Lg, which means that {& = h; Py and n; = hiwo Py g).-
Since n; = hiwoPi(g) = k‘iR(g) for each i, we have hjwom/p; = k; for some
m, € Mgy and p; € P, using P,y = M) P. Since the sequences h;, ki,
and m) are bounded, the sequence p; € P is bounded as well. This implies
that the sequence a; Ypia; is bounded since a; € AT by Lemma Hence
it follows from the boundedness of the sequence ~;k;a; = vy;hjwom,pia; =
%hiwomgai(a;lpiai) that
the sequence g; := v;h;womia; is bounded.
For each 7, set m; = wom;wo_l € My. Then
;i = hiwoPyg) = hywomi Pygy = himgwo Py, & = hiPy = hym; Py

and
9i = vihiwomia; = yihimgwoa;.
Using &; = h;m; Py, we have
= BY.c.(e, 9i) + BE, (himawoa, €)

= 3c.(e.90) + B, (woai,e) + B, (e,m; b ),
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Since g; and m; 1h;1 are bounded sequences, the sequences 621'& (e,g;) and
,81939 (e,m;lhfl) are bounded by [29, Lemma 5.1].
Hence it suffices to show that as i — oo,

90(51%9 (woai, e)) — oo, (9.7)
Note that 61@9 (woai, e) = po(Bp(woai,e)) and

Bp(woai,e) = ﬂp(woaiwal, e) = i(loga;).
Since the sequences g; = ~y;him;woa; and h;m; are bounded and -, lgi =

himgwoa;, we have ||u(y; ') — logai|| = |u(vi) — i(loga;)|| is uniformly
bounded by Lemma and the identity (2.1)). Therefore

sup (1o (i) — (po 0 1)(loga;))| < oc.

It follows from the @-regularity of I' and the (I",0)-properness of ¢ that
o(pe(i)) — oo as i — oo, and hence ¢((pg o i)(loga;)) — oo, implying
(19.7). Therefore, we have gp(ﬁg (’yi_l, e)) — oo. This finishes the proof. [

Recall the definition of a #-Anosov subgroup given in the introduction.
Anosov subgroups are word hyperbolic. The notion of a f-conical set in
[22] is equal to the one we use here for #-Anosov subgroups, by the Morse
property of -Anosov subgroups obtained in [22].

Theorem 9.8. [22] Theorem 1.1] For a -transverse subgroup I', T' is 6-

Anosov if and only if Ag = AF".

Proof of Theorems and Suppose to the contrary that the I'-
. (2) . . . .

action on Ay™" x ag is not properly discontinuous. Then there exists a compact

subset @ C AéQ) x ag such that v,QNQ # () for an infinite sequence v; € I'. In

particular, there exists a sequence (&;,n;, u;) € @ such that v;(&,ni,u;) € Q
for all7 > 1. By passing to a subsequence, we may assume that the sequences

(&, mi,ui) and ~; (&, mi, ;) converge in Q C Aff) X ag. On the other hand,

Vi misus) = (i, yimi, ui + BE (v ' e)) forall i > 1
which cannot converge by Proposition yielding a contradiction. Hence
Theorem [9.1] follows.

The first part of Theorem follows from Proposition as well. Now
suppose that €, is compact. Fix a sequence s; — +oo and let £ € Ay.
Choose any 1 € Aj) so that (§,7) € Aég)
T such that the sequence (€, 1, 5:) = (7€, vin, si+ (827!, €))) converges
by passing to a subsequence. Hence the sequence %ﬁﬂ is convergent in

AéQ) and @(,Bg(fyi_l,e)) — —o00 as i — 0o. By Lemma

. Then there exists a sequence ~; €

the sequence ;" !
converges to & or 1) conically as ¢ — oo. If v, 1 5 1 conically, then as in the
Case B of the proof of Proposition m we must have gp(ﬁg(fy;17 e)) = +oo,

which is impossible. Therefore, 7, — £ conically as ¢ — oo, and hence
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£ € Ag°". Since ¢ is arbitrary, we have Ap = Ag°". By Theorem I is
6-Anosov.

Suppose that I is Anosov. By [10, Theorem 10.1], we have ¢ > 0 on
Ly—{0}. Hence it is a consequence of the Holder reparametrization theorem
for Anosov subgroups ([5, Proposition 4.1], [11, Theorem 4.15]) that €, is
compact (see also [I1, Theorem 3.5]). This finishes the proof. O

10. BOWEN-MARGULIS-SULLIVAN MEASURES ON ()¢ AND {),

Let I' < G be a non-elementary 0-transverse subgroup and ¢ € aj. As 1)
can be considered as a linear form on a which is pg-invariant and hence v oi
is a linear form on a which is p;g)-invariant, we have ¢ oi € af(g). For a pair
of a (T, ¢)-conformal measure v on Ay and a (I", ¢ oi)-conformal measure v;

)

- 2
on Ajg), we define a Radon measure dm,,,, on Aé X ag as follows:

. 5i(0)
iy, (6,7, 0) = e PO @) g, () dus () du (10.1)

where g € G is chosen so that (£,7) = (9P, gwoP;)) and du is the Lebesgue
measure on dg. This definition is independent of the choice of g by Lemma
below. The measure dm, ,, is left I'-invariant and right Ap-invariant.
We denote by

My, (10.2)
the Ap-invariant Borel measure on 2y induced by m, ,,, which we call the
Bowen-Margulis-Sullivan measure associated to the pair (v,14).

Lemma 10.1. Ifg,g’ € G satisfy (§,1) = (9Ps, gwoPyp)) = (9' Py, g'woPyg)),
then

B(e,9) +i(8 (e, 9)) = Be(e, ') + (B (e, 9)-

Proof. The hypothesis on g and ¢’ means that ¢’ = gh for some h € Ly.
Since

Blle,q") +i(B(e,g))
</ ol . ni(0
= (BLe, 9) +i(BL") (€, 9))) + (B, (e, h) +i(B)op,, (1))
it suffices to prove that
B2, (e, 1) +i(Byop,, (e;h) = 0.
Write h = as where a € Ap and s € Sy. Since py(log(AN Sp)) = 0 and
ﬂPg (6, 8) + i(BU)oPi(g) (6, ‘9)) € 1Og(A N S@)a
we have
. oi(0 . oi(0
B (e 1) +i(Biop, (6:1) = B, (e;a) +i(Blop, , (e,a)).

On the other hand, by the definition of the Busemann map, Sp(e,a) = loga
and By, p(e,a) = Bp(e, woawy ') = Ady,(loga) = —i(loga). Hence

Bp(e,a) +i(Bw,pr(e,a)) =loga — iz(loga) =0,
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finishing the proof. U

For a (T, 0)-proper form ¢, consider the I'-equivariant projection Aé2) X

ag — A((f) x R given by (&, n,u) — (£,1,¢(u)). By Theorem this induces
an affine bundle with fiber ker ¢:
Qp — Qs (10.3)

it is a standard fact that such a bundle is indeed a trivial vector bundle and
hence we have a homeomorphism
Qp =~ Q x ker p =~ Q, x R#0~L, (10.4)
We denote by the push-forward of the measure m,,,, on €, by my,, which
is an R-invariant Radon measure on {2,. Then
My, = m;’i,}i & Lebkergo‘ (105)

By the following proposition, the measures m,,,, and my,, are non-zero.

Proposition 10.2. Let I' < G be a discrete subgroup and let N\ and A
be probability measures on Fg and Fig) respectively. Suppose one of the
following:
(1) T is Zariski dense and X is I'-quasi-invariant.
(2) T is non-elementary 0-transverse, X is I'-quasi-invariant, and \ and
Ai are supported on Ag and Ajg) respectively.

Then
(A x M) (FP) > 0. (10.6)

Proof. Suppose (A x )\i)(}'a(z)) = 0. Then by Fubini’s theorem,
A ({{ € Fyg:(&n) € .7:9(2)}) =0 for Ai-a.e. n € Fig). (10.7)
We now deduce a contradiction in each case. In the case of (1), let n €
.E(g). Since supp v C Fg must be Zariski dense in this case by Lemma
and {£ € Fy: (&,n) € fé2)} is a non-empty Zariski open subset, we have
A ({f e Fp:(&n) € .7:9(2)}) > 0, contradicting (10.7)).
In the case (2), let n € Ajg). Since I' is O-transverse, there exists {o € Ag

such that Ag —{&} Cc {&€ Fyp: (&) € .7:9(2)}. Hence it suffices to note that
AAg — {&0}) > 0. If not, A is supported on {y}, which must be fixed by I'
due to the quasi-invariance of .

Since the I'-action on Ay is minimal (Proposition , Ag = {&o}, contra-
dicting the non-elementary hypothesis on I'. O

11. CONSERVATIVITY AND ERGODICITY OF THE ag-ACTION

In this section, we expand the dichotomies in Theorem to a criterion
on conservativity and ergodicity of ag-action on the quotient space 2y =

F\Aé2) X ag, or equivalently a criterion on conservativity and ergodicity of
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R-action on the quotient space €2, = F\Aff) xR, when I is a non-elementary
O-transverse subgroup and ¢ is a (I", #)-proper linear form. First of all, this
makes sense thanks to Theorems [9.1] and [0.21

We recall the notion of complete conservativity and ergodicity. Let H be
a locally compact unimodular group. We denote by dh the Haar measure on
H. Consider the dynamical system (H, €, \) where  is a separable, locally
compact and o-compact topological space on which H acts continuously
and A is a Radon measure which is quasi-invariant by H. A Borel subset
B C Q is called wandering if [, 1g(h.w)dh < oo for p-almost all w € B.
The Hopf decomposition theorem says that €2 can be written as the disjoint
union Q¢ U Qp of H-invariant subsets where €)p is a countable union of
wandering subsets which is maximal in the sense that {2¢ does not contain
any wandering subset of positive measure. If A\(2p) = 0, the system is
called completely conservative. If A(Q¢) = 0, the system is called completely
dissipative. The dynamical system (H,Q,\) is ergodic if any H-invariant
A-measurable subset is either null or co-null. An ergodic system (H,2, \)
is either completely conservative or completely dissipative. If (H,Q,\) is
ergodic, H is countable and A is atomless, then it is completely conservative
[20, Theorem 14]. The following is standard [30, Lemma 6.1]:

Lemma 11.1. Suppose that A is H-invariant. Then (H,$, \) is completely
conservative if and only if for A-a.e. x© € €, there exists a compact subset
B, C Q such that [, . 1p,(h.x) dh = oco.

The following theorem implies Theorem in the introduction. For a
non-elementary 6-transverse subgroup I' < G' and v € aj, we denote by

0 0
My, C My,
the space of all (I, ¢)-conformal measures supported on Ag.

Theorem 11.2. Let I' < G be a non-elementary 6-transverse subgroup. Let
Y € ay be (I',0)-proper such that ./\/lf; # (. Then the following are equivalent
to each other.

(1) Z’YGF 6—1/1(110(7)) = 0 (Tesp' Z’YEF e_w(NG(’y)) < OO);

(2) For any v € MY, v(ALY) >0 (resp. v(AL") =0);

(3) For anyv € MZ, v(AG") = 1 (resp. v(AP") =0);

(4) For any (v,1;) € MZ} X Mizz, the T'-action on (Ag), v X 1) 1S com-
pletely conservative and ergodic (resp. completely dissipative and
non-ergodic);

(5) For any (v,1) € be X Miﬁzz, the ag-action on (p, m, ;) is com-
pletely conservative and ergodic (resp. completely dissipative and
non-ergodic);

(6) For any (v,15) € MZ) X Ml(gg and any (I',0)-proper ¢ € aj, the
R-action on (Qy,, my,,) is completely conservative and ergodic (resp.
completely dissipative and non-ergodic).
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In the proof of Theorem [11.2] we will use the following observation.

Lemma 11.3. Let I" < G be a non-elementary 0-transverse subgroup. Let A
and A; be I'-quasi-invariant probability measures on Ag and A;g) respectively.

If the T'-action on (Aéz), A X Aj) is ergodic, then A X A has no atom in AéZ).

Proof. By Proposition we have (\ x )\i)(Ag)) > 0. Suppose that \ x )\

has an atom, say (&, 1n0) € A((f). By the ergodicity hypothesis, A x A;
is supported on a single I'-orbit T'(§y,n0) C A((f). Since A(&) > 0 and

Ai(no) > 0, we have

(T&o x To) N AL < T, 70)-
Since I' is #-antipodal,
I'éo C Tyoo U {mo}
where Ty, is the stabilizer of 1 in I" and ny is the image of 79 under the I'-

equivariant homeomorphism A;gy — Ag obtained in Lemma@ In addition,
the I'-equivariance of A;g) — Ay implies that I';, = I, and hence

Té C Tyyéo U {mo}- (11.1)

Since the I'-action on Ay is a convergence group action (Proposition ,
Ay is perfect and equal to the set of all accumulation points of I'§g. On the
other hand, L'y is an elementary subgroup and hence F%éo has at most two
accumulation points in Ag ([45], [4]). Therefore, we obtain a contradiction.

O

Proof of Theorem Note that aj can be regarded as a subspace of
az;ui(e) and that ¢ € aj is (I', )-proper if and only if ¢ oi is (I',i())-proper.
By Lemma we have T-equivariant homeomorphisms Ag — Agui) —
Ajp) and hence we can push-forward measures in Mz, to /\/l;()iz In par-

ticular, Miﬁgz # (). Note that since I' is non-elementary #-transverse, the
equivalence (1) < (2) < (3) follows from Lemma and Theorem (8.2

The divergent case. We will show (3) = (5) = (4), (3) = (6) = (4), and
(4) = (1), which will then finish the proof of this case.
In order to show (3) = (5), assume (3). Consider a pair (v,14) € /\/lf; X

/\/liézz Then for v-a.e. { € Ay, & belongs to A§°", that is, there exist g € G
and sequences v; € I', m; € My and a; € AT such that £ = gPy, the sequence
vigm;a; is bounded, and the sequence ~y; is infinite. By the #-regularity of I'

and Lemma we have min,eg a(loga;) — oo as i — oo. For any n € Ay
such that (&,n) € Aég) and any u € ag, there exists n € Ny and a € Ay such

that gnaSy € G /Sy represents (£, n,u) € AgZ) X ag C G/Sy. Since a; € AT,
the sequence

vignam;a; = ('yigmiai)(a;lm;lnmiaia) is bounded.
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This implies that writing u; = pg(loga;) € aj,

~vi(§,mu+w;) € AéQ) X ag is precompact.
Moreover, since a(loga;) — oo for all a € 0, we also have u; — oo in ag.
Projecting to 2y, this implies that there exists a compact subset Q) C €y so
that
/ 1o(T(&n,u+v))dv = occ.
vEay

Since this holds for v-a.e. £ € Ay, any 1 € Ay with (§,7) € A§2), and any
u € ag, the ag-action on (£, m,,,) is completely conservative by Lemma
By [26, Lemma 8.7], the complete conservativity implies the ergodicity,
showing (5).

To see the implication (5) = (4), note that for (v,14) € Mﬁj X Miﬁi?, the
ergodicity of the ap-action on (£, m,,,,) is equivalent to the ergodicity of
the T'-action on (Aé?), v x 14) by the definition of m, ,,. Hence, if (5) holds,
then v X 1; has no atom in A((f) by Lemma Consider the measure A on
A defined by

i(0)

dAN(E,n) = V(B2 HE @) gy, () dun ()

where g € G is chosen so that (£,7) = (9P, gwoPyp)) as in (10.1). Then

A is I'-invaraint, I'-ergodic, and atomless. Since I' is countable, this implies

that the I'-action on (Aé2), A) is completely conservative [20, Theorem 14].

Therefore, (4) follows. This establishes (3) = (5) = (4). The implications
(3) = (6) = (4) can be proved by a similar argument.

To show the implication (4) = (1), fixing a pair (v, 1) € ./\/lf; X M:z(;zza we

(2)
)

will show that the complete conservativity of the I'-action on (Ay”, v x v

implies (1). Since (T AgQ), v X 1) is completely conservative, it follows from

Lemma [11.1 that for v x y-a.e. (&,n) € A§2), there exists a compact subset

By C Aéz‘ and a sequence y; € I' such that v;(&§,m) € B, for all i. In

particular, after passing to a subsequence, we have that the sequence ~; (&, n)

is convergent in AéQ). By Lemma we have v, Vs ¢or v 1 n conically.

In particular, either £ € Ag®" or n € Aic(ogrs, and therefore
max{v(Ag>"), ni(AfE)} > 0.
In either case, it follows from Theorem that
Z e~ V(re() — Z e~ W) (ki) (V) — g,

~vel ~el

Now (1) follows.
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The convergent case. From the divergent case, we have the following
equivalences for the convergent case:

We first observe (4) = (5) and (4) = (6). As mentioned in the proof of
the divergent case, the ergodicity in (4), (5), and (6) are all equivalent to
each other. Moreover, if B C AgQ) is a wandering set for the I'-action on
(AéQ) ,v X v;) where (v,1;) € MZ X Migg, then for any non-empty compact
subset V' C ay, the set I'(B x V) C €y is a wandering set for the ag-action
on (g, m,,,,). Since ag is o-compact, this implies that if (Aéz), v X1y isa
countable union of wandering subsets, then so is (£, m,,,,), up to measure
zero. Therefore, the complete dissipativity in (4) implies the one in (5), and
hence (4) = (5) follows. The implication (4) = (6) can be shown similarly.

We finish the proof by showing (1) = (4). Assume (1) and fix (v,14) €
Mz X Mi(zg. We first show that the I'-action on (Ag), v X 1;) is completely

Y
dissipative. We write the Hopf decomposition Aé2) = Qo UQp and suppose

to the contrary that (v x 15)(€¢) > 0. By applying Lemma to the

restriction (v x 14)|q,, we deduce that there exists a Borel subset Q C AéQ)
with (v x 14)(2) > 0 such that for any (£,n) € Q, there exist a compact
subset B¢ ) C 2 and a sequence ; € I' such that v;(§,1) € Bgy for all i.
Hence after passing to a subsequence, the sequence ~;(§,n) is convergent in
QC Aé2), and therefore it follows from Lemma m that v, L s ¢or v —
conically. Since (v x 14)(£2) > 0, it implies

max{v(Ag™"), i(AfG)} > 0.
In either case, it follows from Theorem [§.2] that
S e b0 = 3 N0 () = oo,

el vyel

which contradicts (1). Therefore, (v x 14)(2¢) = 0 and hence the I'-action

on (AéQ), v X 14) is completely dissipative.
Now it remains to show that the I'-action on (Ag), v X 14) is non-ergodic.
Suppose not. Then the I'-action on (AéQ), v X 14) is ergodic, and hence v x v

has no atom in AéQ) by Lemma [11.3 As before, since I' is countable, this

must imply that the I'-action on (A92 ,V X 1;) is completely conservative [20),
Theorem 14]. This is a contradiction, and (4) follows. O
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Proof of Theorem Theorem implies Theorem [1.4[1). Theorem
[1.4(2) follows from Theorem and the following corollary. |

Corollary 11.4. Let I' be a Zariski dense 0-transverse subgroup. If 1 € aj
is (T, 0)-proper with M?p # 0 and Ever e ¥o() = o, then #MZ) =1.

Proof. By Theorem and the hypothesis on ¢, we have §; = 1. By
Proposition there exists a (I', 1)-conformal measure on Fy_j(g), and is
supported on Ag;i). Moreover it is unique by [9, Theorem 1.4]. It then

follows from Lemma that there exists a unique (T", ¢)-conformal measure
on Fy as well. O

12. LEBESGUE MEASURES OF CONICAL SETS AND DISJOINT DIMENSIONS
In this section, we discuss some of consequences of Theorem
Lebesgue measure of conical sets.

Theorem 12.1. If I' < G is a Zariski dense 0-transverse subgroup, then
Ag = ./T"g or Lebg(Agon) = 0.
Moreover, in the former case, 0 is the simple root of a rank one factor of G.

We need the following proposition for the second claim of the above the-
orem.

Proposition 12.2. Suppose that I" is Zariski dense and 0-antipodal and
that Ag = Fy. Then 0 consists of the simple root of a rank one factor of G.

Proof. We write G as the almost direct product of simple real algebraic
groups G = G1---Gp,. Let n be an index such that € contains a simple
root of G,. Denoting by m, : G — G,, the canonical projection, 7, (FPp) is
a proper parabolic subgroup of G,, and the limit set of 7, (") in G, /7, (Fp)
is equal to all of G, /m,(Py), as the limit set of a Zariski dense subgroup
is the unique minimal set (Lemma . Suppose that the rank of G, is at
least 2. Fix kPyuip) € Agui(p) for some k € K. Let w be a Weyl element
given by Lemma below such that w ¢ wONQJr Py U Py. Noting that

wONGJEJi(H)PGUi(é')M@ - w()PoJrPg = woN;Pg, we have
w ¢ woNgJ[Ji(e)Peui(e)Me U Pyuice) Mo- (12.1)

Note again that both Ag and A are unique I'-minimal subsets of Fy and
F, and hence the canonical projection F — Fy maps A onto Ay. Since
F = K/M and kwMy € Fy = K/My = Ay, we may choose m € My such
that kwmP € An, and hence kwm Py ;g) € Aguig)- Then by (12.3),

wm ¢ woNgti(g)PBUi(e) U P9u1(9)~

The condition that wm ¢ Py ;) implies that kwm Py N kPyuiey = 0.
Also, by Corollary the condition that wm ¢ wONGJ[Ji(G)Pgui(g) implies
that (kwm Py, kPouie) & G-(Pauie), woPsuie)), that is, kwmPy ) is
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not in general position with Py;). This yields a contradiction to the Ui(6)-
antipodality of I'. Therefore for any n such that # contains a simple root of
G, the rank of G, must be one. If there are n # n’ with this property, the
map v — (mn(y), T (7)) must be a Zariski dense subgroup of G, G, with
full limit set Gy, /mn(FPy) X Gy /7n (Py). However this yields a contradiction
to the f-antipodal property, because the product of two rank one geometric
boundaries does not have the antipodal property. Therefore 8 must be a
singleton, proving the claim. (Il

We now prove the following lemma which was used in the above proof.

Lemma 12.3. If G has a connected normal subgroup Gy, of rank at least 2
and 0 C Il contains a simple root of Gy, then we can find a representative
of a Weyl element w € Ng(A) such that w ¢ woN, Py U Py.

Proof. By replacing 6 with the intersection of  and the set of simple roots of
G, we may assume without loss of generality that G = G,,. Since the rank
of G is at least 2, we can find a representative w € N (A) of a Weyl element
such that Adw(aj) is equal to neither a; nor —a;Za). If w were contained

in PpN K = My, w would commute with ay and hence Ad,, ( ;) = ai.
Therefore w ¢ Py. On the other hand, if w € woN Py, then wy Lw e My by
Corollary E and hence Ady(af) = Ady,(ag) = ajze) which contradicts

our choice of w. Hence w ¢ woN, T Py. O

Proof of Theorem Note that Leby is a (I", 2popy)-conformal measure
where p is the half sum of all positive roots of (g,a™) [36, Lemma 6.3]. If
Ay # Fp, Lebg(AgP") < Lebg(Ay) < 1 as Fy— Ay is a non-empty open subset.
Therefore Lebg(A§°") = 0 by Theorem The second claim follows from
Proposition above. U

Disjoint dimensions and entropy drop. Recall from the introduction
that

DY = {y € a} : (T, 0)-proper, 0y = 1,Py(1) = oo}.
Lemma 12.4. For a Zariski dense 0-transverse I', we have
DY = {4 € a}y : (T, 0)-proper, 3 a (T, 1))-conformal measure, Py(1) = oo} .

Proof. The inclusion C follows from Proposition[5.13] If there exists a (', ¢)-
conformal measure on Fy for (I', §)-proper ¢, then §;, < 1 by Theorem [7.3] .
If 6y < 1, Py(1) < co. Hence this implies the inclusion D.

Note that any subgroup of a #-transverse subgroup of G is again a 6-
transverse subgroup.

Theorem 12.5 (Disjoint dimensions). Let I' < G be a non-elementary 0-
transverse subgroup. For any subgroup Ty < T' with Ag(To) # Ap(T), we
have

DN DY, = 0.
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Proof. Let ¢ € qu. By Proposition there exists a (I, v)-conformal
measure v on Ay(I"). By Theorem v(AgPN(IN)) = 1.

Since Ag(Tg) # Ap(T), Ap(T') — Ap(Tp) is a non-empty open subset of
Ag(T"). Hence, it follows from the I'-minimality on Ag(I') and the com-
pactness of Ag(I") that Ag(T") is covered by translates of Ag(I") — Ag(To)
under finitely many elements of I'. Since v is ['-quasi-invariant, this implies
v(Ag(T) — Ag(T'g)) > 0, and hence, v(A"(I'y)) < 1. Moreover, by the 6-
antipodality of T, it also follows from v(Ag(I') — Ag(Ip)) > 0 that v € N
in Theorem Again by Theorem [8 . E er, © v () < 0. Hence

Y ¢ DY, o> ﬁmshlng the proof. O

This turns out to be equivalent to the entropy drop phenomenon which
is proved by Canary-Zhang-Zimmer [9, Theorem 4.1] for § = i(6):

Corollary 12.6 (Entropy drop). LetI' < G be a non-elementary 6-transverse
subgroup. Let T'g < T' be a subgroup such that Ag(To) # Ag(T'). If ¢ € a
with 6y(I') < oo and 3. cr, e O T0)V(e () = 0o, then

9y (I'o) < dy(I).
Proof. Suppose that 6,(I') < oo; this implies that 1) is (I', #)-proper. Let
Lo <T be a subgroup such that }_ e~ 0w 0)v(1o(7) = o0 and §,(Tg) =
(51/,( ) If we set ¢ = (51/,( ) ¢ = (Sw(ro) lﬂ, then 5¢( ) = (5¢(F0) = 1.
Since 00 =}, €~ ) < doe e~ () we have ¢ € DL N DIQO By
Theorem _ this 1mphes that Ag (Fo) Ag(T ) proving the corollary. [

13. CONFORMAL MEASURES FOR 6-ANOSOV SUBGROUPS
Note that I" is §-Anosov if and only if T" is § Ui(#)-Anosov by (2.1)).

Proposition 13.1 ([18], [22] Theorem 1.1}). IfT' is 0-Anosov, then
(1) T is O-regular;
(2) Ap = A",
(3) Lo — {0} Cintay;
(4) 0-antipodal.

In particular, a #-Anosov subgroup is #-transverse.

Sambarino [4I, Theorem A] showed that if I" is #-Anosov, then the set
{ € a : §y = 1} is analytic and is equal to the boundary of a strictly
convex subset {¢) € aj : 0 < 6, < 1}. By the duality lemma ([37, Section
4], [40, Lemma 4.8]), we then deduce the following property of the #-growth
indicator:

Theorem 13.2. If T is Zariski dense 0-Anosov, then wfe 18 strictly concave,
differentiable on int Ly, and vertically tangent.

The vertical tangency means that if 1% (u) = 1 (u) for some (I, §)-critical
form ¥ and u # 0, then u € int Ly. Recall

T = {4 € a} : ¢ is (I, f)-critical }.
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Corollary 13.3. LetT' < G be a Zariski dense 0-Anosov subgroup. For any
subgroup 'y < T,

T 07}00 =) = 1#1(20 <YL on int Ly(T).
Proof. Suppose that v € 7}9 N 7}90. Then there exists u € Ly(I'g) such that

U () = ¢ (u).
Since wr < ’[/JF < 1, it follows that ¢ is tangent to wl(i at u as well. By
the vertical tangency of wr (Theorem 13 , u € int Ly(I"). Therefore, the
implication (<) follows.

Conversely, suppose that 1/1?0 (u) = ¥ (u) for some u € int Ly(T). Then by
the concavity of wle (Theorem , there exists ¢ € 7'9 such that ¢ (u) =
Pi(u). Since ¢ < ¢f < 4 and ¢f (u) = Y{(u), we have ¢ € T NTE.
This shows the implication (=). O

Lemma 13.4. If T is Zariski dense 0-Anosov, then
T¢ = {¢ € aj : (T, 0)-proper, 5, = 1} = DY.

Proof. The second identity is proved in [41, Section 5.9]. It suffices to prove
the inclusion C in the first equality due to Corollary [£.6] Suppose that
Y € ap is tangent to Y. Since ¥¥ is vertically tangent (Theorem ,
P > ¢1€ on 0Lg. It follows that 1) > 0 on Ly. Hence by the second clalm in
Corollary 6y = 1. O

Lemma 13.5. IfT" is a non-elementary 6-Anosov subgroup and there exists
a (I, v)-conformal measure on Fy for 1 € ay, then ¢ is (I, 0)-proper.

Proof. 1f >~ e V(M) < oo, then it implies that #{y € T : ¢¥(ug(7)) <
T} is finite for any 7' > 0. Therefore ¢ is (T, #)-proper. If Z er e*w(“‘)( M =

00, then v(Ag) = 1 by Theorem This implies that lim sup Llog #{y €
I (ug(y)) < T} < oo by [41, Theorem A]. Therefore, v is (T, §)-proper
in either case. 0

Proof of Theorem [1.11l Let I' be Zariski dense §-Anosov. Note that a
6-Anosov group is f-transverse. Hence (1) follows from Theorem since
¢ is (', 0)-proper by Lemma

Since Ag = A®" (Proposition|13.1)), (a) < (b) in (2) follows from Theorem
The equivalence (b) < (c) follows from Lemma and Sambarino’s
parametrization of the space of all conformal measures on Ag as {0, = 1} [41],
Theorem A], together with (1) shown above. For (3), let ¢ be a (I, #)-critical
form. By Lemma and Proposition there exists a (I, ¢)-conformal
measure vy, on Ay, which is the unique (I', ¢)-conformal measure on Ag by
[41, Theorem A] (see also Corollary . Since }_ cre —vwe() = oo,
by Theorem any (I',1)-conformal measure on Fy is supported on Ay.
Moreover, by Theorem the ag-action on (Q9, My, u,,,) is completely
conservative and ergodic. This finishes the proof. O
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Proof of Corollary Since a 6-Anosov subgroup is f-transverse and
Ag = A" (Theorem, we deduce from Theoremthat either Ay = Fy
or Lebg(Ag) = 0. In the former case, 6 is the simple root of a rank one
factor G of G with Fy = Ay by Proposition the projection of T to Gy
is a convex cocompact subgroup with full limit set, and hence a cocompact
lattice of Gy. U

Proof of Corollary Consider the map T — {u € int Ly : |lul| = 1
given by 1) + u,, where u,y satisfies ¥(uy) = wlq(uw) By Theorem 13.2}7

wl(i is strictly concave and vertically tangent, and hence such a map is well-
defined and also surjective. Moreover, since 1/)1‘2 is differentiable on int Ly
(Theorem , this map is injective as well, and therefore bijective. This
gives the one-to-one correspondence between (1) and (2).

By Lemma and [41, Theorem A], for each ¢ € 7}9, there exists a
unique (I, 1)-conformal measure v, supported on Ay, and vice versa. Hence
the map 1 — vy, is the one-to-one correspondence between (1) and (3).

Finally, by Theorem the sets (3) and (4) are in fact identical, which
finishes the proof. O

Proof of Corollary By Theorem and Lemma [13.4] it remains
to prove the second part. Since I'g < I', we have 1/11@0 < wf‘l. Suppose that

wf‘lo (u) = ¥ (u) for some u in the interior of L4(T'). Then there exists a

tangent form v to ¥ at u by Corollary Since wlqo < ¥ and wgo (u) =
Y(u), 9 is also tangent to ¢1€0 at u. Hence v € T N 7}90, contradicting the
first part. O
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