ERGODIC DICHOTOMY FOR SUBSPACE FLOWS
IN HIGHER RANK
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ABSTRACT. In this paper, we study the ergodicity of a one-parameter
diagonalizable subgroup of a connected semisimple real algebraic group
G acting on a homogeneous space or, more generally, a homogeneous-like
space, equipped with a Bowen-Margulis-Sullivan type measure. These
flow spaces are associated with Anosov subgroups of GG, or more gener-
ally, with transverse subgroups of G.

We obtain an ergodicity criterion similar to the Hopf-Tsuji-Sullivan
dichotomy for the ergodicity of the geodesic flow on hyperbolic man-
ifolds. In addition, we extend this criterion to the action of any con-
nected diagonal subgroup of arbitrary dimension. Our criterion provides
a codimension dichotomy on the ergodicity of a connected diagonaliz-
able subgroup for general Anosov subgroups. This generalizes an earlier
work by Burger-Landesberg-Lee-Oh for Borel Anosov subgroups.
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1. INTRODUCTION

A continuous flow ¢; on a phase space X with an invariant measure m
is called ergodic if any invariant measurable subset has measure zero or co-
measure zero.

If m is a probability measure on X, the Birkhoff ergodic theorem states
that the ergodicity of the dynamical system (X, ¢¢, m) is equivalent to the
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condition that for any f € L'(X, m), the time average along the trajectory
of almost every point z € X is equal to the space average with respect to

T

Hence, ergodicity ensures that the system’s behavior, when observed over a
long time, reflects the statistical properties of the entire phase space. This
property is crucial in understanding the long-term behavior of dynamical
Systems.

The main dynamical system of interest in homogeneous dynamics arises
from the quotient I'\G of a connected semisimple real algebraic group G by
a discrete subgroup I' of G. Any one-parameter subgroup H = {¢, : t € R}
of G acts on I'\G by translations on the right, giving rise to a continuous
dynamical system (I'\G, H). The ergodicity in finite-volume homogeneous
dynamics is well understood thanks to the Moore ergodicity theorem: if I' is
an irreducible lattice, any non-compact closed subgroup H acts ergodically
on (I"\G, m¢g) where m¢ denotes a G-invariant (finite) measure on I'\G.

The concept of ergodicity becomes much more delicate and challenging to
prove for an infinite measure system. Firstly, the Birkhoff ergodic theorem
no longer holds, but we have the Hopf ratio ergodic theorem: for a conser-
vative and ergodic action of a continuous flow ¢; on a o-finite measure space
(X, m), for any f,g € L*(X, m) with g > 0, we have

po Jo F(@@))dt [y fdm

T = for m-almost all z € X.
T=oe [Fg(gu(@))dt  Jxgdm

When m(X) = oo, while the denominator fOT g(¢¢(x))dt depends on the
initial position x, unlike in the finite measure case, the ratio of time aver-
ages still converges to the ratio of space averages. In particular, almost all
trajectories are dense in the phase space.

One of the first significant results on ergodicity in infinite measure sys-
tems is the Hopf-Tsuji-Sullivan dichotomy for the geodesic flow on hyper-
bolic manifolds with respect to Bowen-Margulis-Sullivan measures. The
hyperbolic nature of the geodesic flow and the quasi-product structure of
Bowen-Margulis-Sullivan measures, with respect to the stable and unstable
foliations for the geodesic flow, have been crucial in their approach. This
methodology was successfully extended to a one-parameter diagonalizable
flow on higher rank homogeneous spaces, which are quotients of a connected
semisimple real algebraic group of higher rank by Borel Anosov subgroups,
by Burger-Landesberg-Lee-Oh [9]. The main aim of this paper is to gener-
alize this result for general Anosov subgroups that are not necessarily Borel
Anosov, as well as to address the action of any connected diagonalizable
subgroup.
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Background and Motivation. To give some background, let G be a con-
nected semisimple real algebraic group. Fix a Cartan decomposition

G=KATK

where K is a maximal compact subgroup of G and A™ = expa™ is a positive
Weyl chamber of a maximal split torus A of G. Let M be the centralizer of
A in K. For any Zariski dense discrete subgroup I' of GG, we have a natural
locally compact Hausdorff space I'\G/M on which A acts by translations
on the right. For any non-zero vector u € a™, consider the one-parameter
subgroup A, = {exptu : t € R}. The ergodicity criterion for the A,-
action on I'\G/M with respect to a Bowen-Margulis-Sullivan measure was
obtained by Burger-Landesberg-Lee-Oh [9] in terms of the divergence of an
appropriate directional Poincaré series. In particular, it was shown that
for Borel Anosov subgroups of G (in other words, Anosov subgroups with
respect to a minimal parabolic subgroup), the ergodicity of the A,-action is
completely determined by the rank of G. Soon after [9] appeared, Sambarino
[34] gave a different proof for this rank dichotomy, but it applied only when
rank G # 3.

On the other hand, the ergodicity criterion of [9] is not very useful in prac-
tice for Anosov subgroups that are not Borel Anosov, since there seems to
be no way to decide whether the relevant directional Poincaré series diverges
or not.

In this paper, we consider a different dynamical space than I'\G/M de-
pending on the Anosov type of I'. Let € be a non-empty subset of simple
roots. Consider the standard parabolic subgroup Py = AySyNg where AySy
is a Levi-subgroup with Ay being the central real split torus and Ny is the
unipotent radical. The double quotient space I'\G /Sy is precisely I'\G/M
when P is a minimal parabolic subgroup, but it is not Hausdorff for a gen-
eral Py. If I" is a - Anosov subgroup, there exists a locally compact Hausdorff
subspace 9 C I'\G/Sp on which Ay acts by translations. We will obtain
the ergodicity criterion for the action of a one-parameter subgroup of Ay on
Q) in terms of the associated directional Poincaré series.

In fact, this viewpoint and our criterion can be applied to a much more
general class of discrete subgroups, called #-transverse subgroups. For 6-
Anosov subgroups, our criterion provides the dichotomy for the ergodicity
of A, on €y with respect to a Bowen-Margulis-Sullivan measure in terms
of the cardinality of . When #6 = 3, this was an open question while the
other cases were obtained by Sambarino [34]. Although our proof closely
follows the general strategy of [9], a major difficulty arises from the non-
compactness of Sy which requires new ideas and new technical arguments
to overcome.

Flow space. To discuss #-transverse subgroups and the associated flow
space {2y, we need to introduce some notation and definitions. We denote by
p: G — at the Cartan projection defined by the condition g € K exp u(g)K
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for g € G. Let II be the set of all simple roots for (LieG,a™t). Leti: Il — II
denote the opposition involution (see (2.1))). Fix a non-empty subset

0 C IL

Consider the #-boundary:

Fo =G/ Dy,
where Pp is the standard parabolic subgroup associated with . We say that
two points §{ € Fy and n € Fy) are in general position if the pair (£,7)
belongs to the unique open G-orbit in Fy x Fjg) under the diagonal action
of G.

Let I' < G be a Zariski dense discrete subgroup. Let Ay denote the #-limit
set of T, which is the unique I'-minimal subset of Fy (Definition . We
say that I' is 0-transverse if it satisfies

o (0-regularity): liminf,er a(u(y)) = oo for all o € 0;
e (0-antipodality): any distinet £, n € Agyj(g) are in general position.

The class of f-transverse subgroups includes all discrete subgroups of rank
one Lie groups, 6-Anosov subgroups and their relative versions. Note also
that every subgroup of a #-transverse subgroup is again f-transverse. The
class of transverse subgroups is regarded as a generalization of all rank one
discrete subgroups, while the class of Anosov subgroups is regarded as a
generalization of rank one convex cocompact subgroups.

In the rest of the introduction, we assume that

I' is a Zariski dense 6-transverse subgroup of G.

In order to introduce an appropriate substitute of I'\G /M for a 6-transverse
subgroup I', recall the Langlands decomposition Py = AySgNg where Ay is
the maximal split central torus, Sy is an almost direct product of a semisim-
ple algebraic subgroup and a compact central torus and Ny is the unipotent
radical of Py. The diagonalizable subgroup Ag acts on the quotient space
G/Sp by translations on the right. The left translation action of I on G/Sp
is in general not properly discontinuous (cf. [2], [23]) unless § = II, in which
case Sy is compact. However the action of I' is properly discontinuous on
the following closed Ap-invariant subspace ([22, Thm. 9.1]):

Qg == {[g] € G/Sy : gPp € Ng, gwoPyp) € Aj(p)}
where wy is the longest Weyl element. Therefore the quotient space
Qg :=T\Qy
is a second countable locally compact Hausdorff space equipped with the

right translation action of Ay which is non-wandering. Denoting by Aé2) the
set of all pairs (§,7) € Ag X Ajg) in general position, we have (see (5.2))):

Qg ~T'\ (AéQ) X Clg) .

By a subspace flow on 2y, we mean the action of the subgroup Ay = exp W
for a non-zero linear subspace W < ay.
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The main goal of this paper is to study the ergodic properties of the sub-
space flows on €y with respect to Bowen-Margulis-Sullivan measures. The
most essential case turns out to be the action of one-parameter subgroups of
Ag which we call directional flows. We first present the ergodic dichotomy
for directional flows.

Directional flows. Fixing a non-zero vector u € a;, we are interested in
ergodic properties of the action of the one-parameter subgroup

Ay, =A{ap, =exptu:t € R}

on the space y. We say that £ € Ay is a u-directional conical point if there
exists g € G such that £ = gPy and [g]at,, € Qg belongs to a compact subset
for some sequence t; — +o00. We denote by Aj the set of all u-directional
conical points, that isﬂ
Ay :={gPy € Ng : [g] € Qp,limsup[g]ar, # 0}.
t—+o00

See Definition and Lemma for an equivalent definition of A} given
in terms of shadows. It is clear from the definition that Ay is an important
object in the study of the recurrence of A,-orbits. Another important player
in our ergodic dichotomy is the directional ¢-Poincaré series for a linear form
Y € ay. To define it, we set g := pyop to be the ap-valued Cartan projection
where pg : @ — ay is the unique projection, invariant under all Weyl elements
fixing ag pointwise. The u-directional 1-Poincaré series is of the form

(1.1) 3 vl

'YEFU.,R

where I'y, g := {y € T : ||ug(y) — Ru|| < R} for a Euclidean norm || - || on
ag and R > 0. In considering these objects, it is natural to restrict to those
linear forms ¢ such that ¢ o gy : I' — [—,00) is a proper map for some
e > 0, which we call (T', §)-proper linear forms. A Borel probability measure
v on Fy is called a (T, v)-conformal measure if
drysv
dv
where v,v(D) = v(y~'D) for any Borel subset D C Fy and Bg denotes
the ag-valued Busemann map defined in . For a (T, §)-proper ¢ € ajy,
a (T',1)-conformal measure can exist only when ¢ > ¢1€ where 1/’19* is the
f-growth indicator of I' [22, Thm. 7.1].
Here is our main theorem for directional flows, relating the ergodicity

of A,, the divergence of the u-directional Poincaré series, and the size of
conformal measures on u-directional conical sets:

&) = P for all v € T and € € Fy

Theorem 1.1 (Ergodic dichotomy for directional flows). Let I' be a Zariski
dense O-transverse subgroup of G. Fix a non-zero vector u € ag and a

(T, )-proper linear form 1 € aj. Suppose that there exists a pair (v,v;) of

IThe set lim SUDP;_, 4 o0 [9]atu consists of all limits lim¢, oo [glasu.
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(I';9) and (T, o i)-conformal measures on Ag and Ajg) respectively. Let
m = m(v, v;) denote the associated Bowen-Margulis-Sullivan measure on g

(see (6.2)).

In each of the following complementary cases, claims (1)-(3) are equiva-
lent to each other. If m is u-balanced (Definition[7.1]), then (1)-(5) are all
equivalent.

The first case:

1) max (V(Ag), Vi(AIEG)))) > 0,

(
(2) (Qg, Ay, m) is completely conservative;
(3) (Qg, Ay, m) is ergodic;
(4) ZWGFH,R e—d)(uo(v).) = oo for some R > 0;
(5) v(AF) =1 =u(Aly).
The second case:
) v(AF) = 0 = n(AG):
2) (g, Ay, m) is completely dissipative;
3) (g, Ay, m) is non-ergodic;
4) Z'yel‘ e V(M) < 0o for all R > 0;
)

i(u)
5) v(Ay) = V1<Ai(9)).

We remark that in the first case, (1) is again equivalent to the condition
max (I/(Ag),l/i(A;Eg)))) =1.
Remark 1.2. (1) When 6 = II, or equivalently when Sy is compact, The-
orem was obtained for a general Zariski dense discrete subgroup
I' < G by Burger-Landesberg-Lee-Oh [9, Thm. 1.4].

(2) The u-balanced condition is required only for the implication (4) =
(5) in the first case, which takes up the most significant portion of
our proof. This condition can be verified for Anosov subgroups, as
we will discuss later (Theorem Corollary .

(3) By a recent work [6, Prop. 10.1], the existence of a (I, ¢)-conformal
measure on Ay implies that ¢ is (T, 0)-proper. Therefore the hy-
pothesis that 1 is (T, #)-proper is unnecessary.

(4) When G is of rank one, this is precisely the classical Hopf-Tsuji-
Sullivan dichotomy (see [35], [17], [36], [32, Thm. 1.7], etc.).

(1
(
(
(
(

Our proof of Theorem is a generalization of the approach of [9] to
a general 6. The main difficulties arise from the non-compactness of Sy
which we overcome using special properties of #-transverse subgroups such
as regularity, anitipodality and the convergence group actions on the limit
sets.

Subspace flows. We now turn to the ergodic dichotomy for general sub-
space flows. Let W be a non-zero linear subspace of ay and set Ay =
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{expw : w € W}. The W-conical set of I is defined as
(1.2) Ay ={gPy € Fy: [g] € Qp, limsuplg](Aw N AY) # };

see Definition and Lemma for an equivalent definition of Agv given
in terms of shadows. For R > 0, we set

(1.3) Pwr={yel:|uly) - Wl <R}

Theorem 1.3 (Ergodic dichotomy for subspace flows). Let 1, v,v; and m
be as in Theorem [I.1 Let W < ap be a non-zero linear subspace. In the
following complementary cases, claims (1)-(3) are equivalent to each other.
If m is W-balanced as in Definition [9.6, then (1)-(5) are all equivalent.

The first case:

i(w

1) max (V(Agv), Vi(A;EG))D > 0;
2) (9, Aw, m) is completely conservative;
3) (g, Aw,m) is ergodic;
4) Z’YGFW,R e VW) = oo for some R > 0;

5) v(A)) =1 =u(Afy)).
e

1) v(AY) =0 =u(A) )
(Qg, Ay, m) is completely dissipative;

)

2)

3) (9, Aw, m) is non-ergodic;
)
)

5) v(AY) = 0=wi(Afy)).

Remark 1.4. When W is all of ag, a similar dichotomy was obtained in ([25],
[10], [22]). In this case, the W-balanced condition of m is not required in
our proof; see Remark [0.9] Hence we give a different proof of the ergodicity
criterion for the Ap-action [22, Thm. 1.8].

A special feature of a transverse subgroup is that for any (I',#)-proper
form v, the projection Qy — AéQ) xR given by (&§,7n,v) — (&,1,1(v)) induces

a ker ¢-bundle structure of {2y over the base space (2, := F\Ag) xR with the
I-action given in (6.3)). In particular, we have a vector bundle isomorphism

Qg ~ Qy x ker ).

The ker ¢-bundle €y — €2, plays an important role in our proof of Theo-
rem Indeed, such a vector bundle Q¢ — €1, factors through the space

Qo = F\A((f) xag/(Wnker). Denoting by m’ the Radon measure on Qyyo
such that m = m’ ® Lebynier, the W Nker ¢-bundle (g, m) — (Qyo, m’)
enables us to adapt arguments of Pozzetti-Sambarino [28] in obtaining The-
orem from the ergodic dichotomy of the directional flow A, on Qo for
any u € W such that ¢ (u) > 0.



8 DONGRYUL M. KIM, HEE OH, AND YAHUI WANG

Remark 1.5. We remark that the Zariski dense hypothesis on I' is used to
ensure the non-arithmeticity of the Jordan projection of I', which implies
that the subgroup generated by pg(A\(T")) is dense in ap [4]. This is a key
ingredient in the discussion of transitivity subgroup (Proposition . In
fact, Theorem (and hence Theorem [1.1)) works for a non-Zariski dense
f-transverse subgroup I' as well, provided that py(A(I")) generates a dense
subgroup of ay.

The case of §-Anosov subgroups. A finitely generated subgroup I' < G
is called 6-Anosov if there exist constants C,C’ > 0 such that for all o € 6
and v €T,
a(u(v)) = Ch| =’

where |v| is the word length of v with respect to a fixed finite generating
set of T ([24], [16], [19], [15], [7]). By the work of Kapovich-Leeb-Porti [19],
a f-transverse subgroup I' < G is 6-Anosov if Ay is equal to the 6-conical
set A" of I' (see for definition). If I is a #-Anosov subgroup, then for
each unit vector u in the interior of the limit cone Ly, there exists a unique
linear form v, € a; tangent to the growth indicator wle at u and a unique
(T, ¢y )-conformal measure v, on Ay. Moreover u — 1, and u — v, give
bijections among the directions in int Ly, the space of tangent linear forms

to ¥%, and the space of I'-conformal measures supported on Ay ([26], [34],
[22]). Let

(1.4) my, = m(v, Vi(u))

denote the Bowen-Margulis-Sullivan measure on {2y associated with the pair
(Vu» Vi(u))- We deduce the following codimension dichotomy from Theorem
.ol

Theorem 1.6 (Codimension dichotomy). Let I' < G be a Zariski dense -
Anosov subgroup. Let u € int Ly and W < ay be a linear subspace containing
w. The following are equivalent:
(1) codimW <2 (resp. codimW > 3);
(2) vu(AY) =1 (resp. v, (A})Y) =0);
(3) (Qq, Ay, my) is ergodic and completely conservative (resp. non-
ergodic and completely dissipative);
(4) Z’YGFW,R e~ Vue()) = oo for some R > 0 (resp. .
oo for all R > 0).

veTw.r e_wu (re (7))

We can view this dichotomy phenomenon depending on codim W as con-
sistent with a classical theorem about random walks in Z? (or Brownian
motions in Rd), which are transient if and only if d > 3. Since codim W =
#60 — dim W, we have the following corollary:

Corollary 1.7 (f-rank dichotomy). Let I' < G be a Zariski dense 0-Anosov
subgroup and let w € int Ly. Then #0 < 3 if and only if the directional flow
Ay on (Q9,my,) is ergodic.
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For a #-Anosov subgroup I', Qy, is a compact metric space ([33] and [11],
Appendix]), and hence Qo is a vector bundle over a compact space €y,
with fiber RImW N\oreover, we have the following local mixing result due
to Sambarino [34, Thm. 2.5.2] (see also [12]) that for any fi, f2 € CC(QWo)H

codim W

(1.5) lim 72 fi(@) fa(wag)dmy, (2) = Kumi,(f1)m,(f2)
t—o0 QWQ
where £, > 0 is a constant depending only on u. In particular, m], satisfies
the u-balanced hypothesis. The key part of our proof lies in establishing the
inequalities (Propositions and [10.6) that for all large enough R > OE|
v€l'w,r

T codim W 1/2 T codim W
</ t2dt) < ) bl <</ = at
1
Yulpo(7))<0T

1
for T > 2 where 0 = tp,(u) > 0. Therefore, >° . . e Vulne() = o if and
only if codim W < 2. 7

Remark 1.8. (1) When 6 =1I and dim W = 1, Theorem and hence
Corollary were obtained in [9]; in this case, codim W < 2 trans-
lates into rank G < 3.

(2) For a general 6, when dimW = 1 and codim W # 2, Sambarino
proved the equivalence (1)-(3) of Theorem using a different ap-
proach [34]; for instance, the directional Poincaré series was not dis-
cussed in his work. This was extended by Pozzetti-Sambarino [2§]
for subspace flows, but still under the hypothesis codim W # 2, us-
ing an approach similar to [34]. Thus, Theorem settles the open
case of codimW = 2.

(3) We mention that in (J20], [21], [28]), the sizes of directional /subspace
conical limit sets were used as a key input in estimating Hausdorff
dimensions of certain subsets of the limit sets.

(4) Theorem[1.6/and Corollary [1.7]are not true for a general f-transverse
subgroup, e.g., there are discrete subgroups in a rank one Lie group
which are not of divergence type. Consider a normal subgroup I' of
a non-elementary convex cocompact subgroup I'g of a rank one Lie
group G with Tg/T" ~ Z¢ for d > 0. In this case, by a theorem of
Rees [31, Thm. 4.7], d < 2 if and only if I is of divergence type, i.e.,
its Poincaré series diverges at the critical exponent of I'. Using the
local mixing result [27, Thm. 4.7] which is of the form as with
eodimW/2 raplaced by t4/2 and Corollary the approach of our
paper gives an alternative proof of Rees’ theorem.

2The notation C.(X) for a topological space X means the space of all continuous
functions on X with compact supports.

3The notation f(T) < g(T) means that there is a constant ¢ > 0 such that f(T) <
cg(T) for all T in a given range.
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(5) Corollaries and reduce the divergence of the u-directional
Poincaré series to the local mixing rate for the A,-flow. For example,
we expect the local mixing rate of relatively 6-Anosov subgroups
to be same as that of Anosov subgroups, which would then imply

Theorem and Corollary for those subgroups.

Examples of ergodic actions on I'\G/Sy. By the work of Guéritaud-
Guichard-Kassel-Wienhard [15], there are examples of Borel Anosov sub-
groups which act properly discontinuously on G/Sy for some 6 # II ([I5)],
Coro. 1.10, Coro. 1.11}), in which case our rank dichotomy theorem can
be stated for the one-parameter subgroup action on I'\G/Sp. We discuss
one example where G = SLy(R), d > 3. For 2 < k < d — 2, let Hy be

the block diagonal subgroup <Ik ~ SL4_;(R) where I}, de-

SLd—k(R))
notes the (k x k)-identity matrix. Set «a;(diag(vi,- - ,vq)) = v; — viyy for
1<i<d-1;s0Ill ={a;:1<i<d—1} is the set of all simple roots for
G. For 0 = {ai,- - ,ai}, we have Sy = Hy. Let I' < G be a II-Anosov sub-
group. Then T' acts properly discontinuously on SLy(R)/SL4—(R) by [I5,
Coro. 1.9, Coro. 1.10]. Hence any Radon measure on €2y can be considered
as a Radon measure on I'\ SL;(R)/SL4_x(R). Then Theorem implies
the following:

Corollary 1.9. LetT' < SL4(R) be a Zariski dense II-Anosov subgroup (e.g.,
Hitchin subgroups), 2 < k < d—2 and 0 = {aq, -+ ,ax}. Let u € int Ly
and my be as in . We have k = 2,3 if and only if the A,-action on
(T\ SLg(R)/ SLg—x(R), my,) is ergodic.

Acknowledgements. We would like to thank Blayac-Canary-Zhu-Zimmer
for telling us that an admissible metric can be used to prove Proposition
3.0l

2. PRELIMINARIES

Throughout the paper, let G be a connected semisimple real algebraic
group. In this section, we review some basic facts about the Lie group
structure of G and the notion of convergence of elements of G to boundaries,
following [22), Sec. 2] to which we refer for more details.

Let P < G be a minimal parabolic subgroup with a fixed Langlands
decomposition P = M AN where A is a maximal real split torus of G, M
is the maximal compact subgroup of P commuting with A and N is the
unipotent radical of P. Let g and a respectively denote the Lie algebras of
G and A. Fix a positive Weyl chamber a™ < a so that log N consists of
positive root subspaces and set AT = expat. We fix a maximal compact
subgroup K < G such that the Cartan decomposition G = KA'TK holds.
We denote by

p:G —at
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the Cartan projection defined by the condition g € K exp u(g)K for g € G.
Let X = G/K be the associated Riemannian symmetric space, and set
o = [K] € X. Fix a K-invariant norm || - || on g and a Riemanian metric
d on X, induced from the Killing form on g. The Weyl group W is given
by Nk (A)/Ck(A), where Ni(A) and Ck(A) denote the normalizer and the
centralizer of A in K respectively. Oftentimes,we will identify W with the
chosen set of representatives from Nk (A), and hence treat W as a subset of

G.

Lemma 2.1. [3| Lem. 4.6] For any compact subset Q C G, there exists
C = C(Q) > 0 such that for all g € G,

sup ||u(q1g9g2) — w(g)ll < C.
q1,92€Q
Let ® = ®(g, a) denote the set of all roots, @+ C ® the set of all positive
roots, and II C ®T the set of all simple roots. Fix an element wg € K of

order 2 in the normalizer of A representing the longest Weyl element so that
Ady, at = —a™. The map

(2.1) i=—-Ady,:a—a

is called the opposition involution. It induces an involution & — ® preserv-
ing II, for which we use the same notation i, such that i(«) o Ad,,, = —« for
all @ € . We have u(g~!) =i(u(g)) for all g € G.

Henceforth, we fix a non-empty subset § C II. Let Py denote a standard
parabolic subgroup of G corresponding to 6; that is, Py is generated by M A
and all root subgroups U,, where o ranges over all positive roots and any
negative root which is a Z-linear combination of IT — 8. Hence P = P. Let

ap = ﬂ ker o, ay =agNat,
a€ell-0

Ag =expag, and A; = exp a;.

Let pg : a — ay denote the projection invariant under w € W fixing ay
pointwise. We also write

u(;::p(;o,u:G—ml;.

Definition 2.2. For a discrete subgroup I' < G, its 6-limit cone Ly = Ly(T")
is defined as the the asymptotic cone of uy(I') in ag, that is, u € Ly if and
only if u = lim;_, t;pg(7y;) for some sequences t; — 0 and v; € I'. If I' is
Zariski dense, Ly is a convex cone with non-empty interior by [3]. Setting
L= ,CH, we have pg(ﬁ) = ,C@.

We have the Levi-decomposition Py = LgNg where Ly is the centralizer of
Ap and Ny = R, (Fy) is the unipotent radical of Py. We set My = KN Py C
Ly. We may then write Ly = AypSy where Sy is an almost direct product
of a connected semisimple real algebraic subgroup and a compact center.



12 DONGRYUL M. KIM, HEE OH, AND YAHUI WANG

Letting By = SyN A and Bj = {b € By : a(logh) > 0 for all « € Il — 0}, we
have the Cartan decomposition of Sy:

So = MyBy M.

Note that A = AgBy and AT C AJB;. The space aj; = Hom(ag,R) can
be identified with the subspace of a* which is pp-invariant: aj = {1 € a* :
1 opg = 1)}; so for 01 C B2, we have a, C dag,.

The #-boundary Fy and convergence to Fy. We set
Fo=G/Py and F=G/P.

Let

mo: F — Fy
denote the canonical projection map given by gP +— gFy, g € G. We set
(2.2) o = [P] € Fo.

By the Iwasawa decomposition G = KP = KAN, the subgroup K acts
transitively on Fy, and hence Fy ~ K/Mjy.

We consider the following notion of convergence of a sequence in G to
an element of Fy. For a sequence g; € G, we say g; — oo f-regularly if
mingep a(p(g;)) — 00 as i — oo.

Definition 2.3. For a sequence g; € G and & € Fy, we write lim; o ¢; =
lim;_,~ g;o = £ and say g; (or g;o € X) converges to & if

e g; — oo f-regularly; and

o lim; .o k;&p = € in Fy for some k; € K such that ¢g; € k; ATK.

Definition 2.4. The #-limit set of a discrete subgroup I' can be defined as
follows:

AQZAQ(F) = {§€f9:£:ilirgovi, ”inF}

where lim;_,o 7; is defined as in Definition If T is Zariski dense, this
is the unique I'-minimal subset of Fy ([3], [30]). If we set A = Ay, then
mo(A) = Ayp.

Lemma 2.5 (|22, Lem. 2.6-7], see also [26] for § = II). Let g; € G be an
infinite sequence.

(1) If g; converges to & € Fy and p; € X is a bounded sequence, then
lim g;p; = ¢&.
1— 00

(2) If a sequence a; — oo in AT O-regqularly, and g; — g € G, then for
any p € X, we have

lim g;a;p = g&.
1— 00
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Jordan projections. A loxodromic element g € G is of the form g =
hagmh~! for h € G, ay € int AT and m € M; moreover a, € int AT is
uniquely determined. We set

(2.3) Mg) :==logay € a® and y,:=hP€F,

called the Jordan projection and the attracting fixed point of g respectively.

Theorem 2.6. [4] For any Zariski dense subgroup I' < G, the subgroup
generated by {\(7) : v is a lozodromic element of '} is dense in a.

Busemann maps. The a-valued Busemann map 8 : F X G X G — a is
defined as follows: for £ € F and g,h € G,

65(97 h) = 0(9717 g) - O—(h717 g)
where o(g~ !, £) € ais the unique element such that g~k € Kexp(o(g~!,£))N
for any k € K with £ = kP. For (§,g9,h) € Fyp x G x G, we define
(2.4) B(g,h) == po(Be, (g, h)) for & € w5 (6);

this is well-defined independent of the choice of &y [30, Lem. 6.1]. For
g € X and & € Fp, we set Bg(p, q) = Bg(g,h) where g,h € G satisfies
go =p and ho = q. It is easy to check this is well-defined.

Points in general position. Let Pg be the standard parabolic subgroup
of GG opposite to Py such that Py N Py = Ly. We have Py = woPi(g)wal and
hence
Fig) = G/ Pe.
For g € G, we set
gy =9Py and g, = gwoPip);

as we fix 6 in the entire paper, we write gt = g;t for simplicity when there is

no room for confusion. Hence for the identity e € G, (et,e™) = (P, Py) =
(€0, wo&i(py), Where & is as in (2.2). The G-orbit of (e, e™) is the unique
open G-orbit in G/FPy x G/ Pg under the diagonal G-action. We set

(2.5) 7o) ={(95.95) : 9 € G}.
Two elements { € Fy and n € Fjy) are said to be in general position if

(&) € ]:9 2 Since Py = LyNy where Ny is the unipotent radical of Py, we
have

(2.6) (95.€5) € }'(g?) if and only if ¢ € NyPs.
The following lemma will be useful:

Lemma 2.7. [22, Coro. 2.5] If w € W is such that mw € NyPy for some
m € My, then w € My. In particular, if (wp, wo&;g)) = (we ey) € ]:(2)
then w € My.
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Gromov products. The map g — (¢g7,g~) for ¢ € G induces a homeo-
morphism G/Lg ~ .7-"(32). For (§,m) € .7-"(32), we define the §-Gromov product
as
G%(&m) = Bl(e.g) +i(B\V (e, g))

where g € G satisfies (g7, 97 ) = (&,71). This does not depend on the choice
of g [22, Lem. 9.13].

Although the Gromov product is defined differently in [7], it coincides
with ours (see [26, Lem. 3.11, Rmk. 3.13]); hence we have:

Proposition 2.8. [7, Prop. 8.12] There exists ¢ > 1 and ¢ > 0 such that
forall g € G,

¢ HG%(g™, 97l < d(o, gLgo) < |G (g T, 97| + ¢
3. CONTINUITY OF SHADOWS

The notion of shadows plays a crucial role in studying recurrence of diag-
onal flows. In this section, we recall the definition of #-shadows and prove
some basic properties. In particular, we prove that shadows vary continu-
ously on viewpoints, which are of independent interests.

FI1GURE 1. Shadows

For p € X and R > 0, let B(p,R) denote the metric ball {z € X :
d(xz,p) < R}. For ¢ € X, the f-shadow O%(q,p) C Fy of B(p, R) viewed
from ¢ is defined as

(31)  Oklg,p)={9Pr€ Fo: g€ G, go=gq, gA"oN B(p, R) # I}
We also define the #-shadow O%(n, p) C Fp viewed from 1 € Fjg) as follows:

O%(n,p) = {gPy € Fo: g € G, guwoPyg) =1, go € B(p,R)}.

For any 7 € wig)(n), we have

(3.2) OR(a,p) = m(Ok(a,p)) and  Of(n,p) = mo(OR(7},p))-
Note that for all g € G and n € X U Fp),

(3.3) gO%(n,p) = O%(gn, gp)-
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We define the ay-valued distance gy : X x X — ay by

ag(q.p) = polg~'h)

where ¢ = go and p = ho for g,h € G. The following was shown for 6 = II
in [26, Lem. 5.7] which directly implies the statement for general 6 by (3.2]).

Lemma 3.1. There exists £ > 0 such that for any q,p € X and R > 0, we
have
sup  ||8¢(q,p) — ag(q,p)l| < KR
£€0%(q,p)

Lemma 3.2. For any compact subset Q C G and R > 0, we have that for
any h € G and g € Q,

0% (go, ho) C O%JFDQ (0,ho) and 0% (hgo,o0) C O%JFDQ (ho, o)
where D¢ 1= maxyeqg d(go,0).

Proof. Note that d(ao,pao) < d(o,po) for all a € AT and p € P. Let
g € Qand ¢ € O%(go, ho). Then for some k € K and a € A", we have
¢ = gkPy and d(gkao,ho) < R. Write gk = ¢p € KP for ¢ € K and
p € P by the Iwasawa decomposition G = KP. Since d({ao,¢pao) < Dg,
we have d(lao, ho) < d(Lao, lpao) + d(gkao, ho) < Dg + R. Therefore £ €
O% +Dg (0, ho), proving the first claim. The second claim follows from the

first by (3.3). O

Lemma 3.3. Let p € X, n € Fyy) and r > 0. If a sequence n; € Fiq)
converges to n € Fy), then for any 0 < e <r, we have

34) 0% _(ni,p) C O%(n,p) C OY (ni,p) for all large i > 1.

Proof. We first prove the second inclusion. Let ¢ € G be such that gt €
0O%(n,p), g~ = n and d(go, p) < r. Since 1; — 1, we have (g7, n;) € ]:9(2) for
all large i > 1, and hence (g7, ;) = (h;", h;) for some h; € G. In particular,
g = h;qin; for g;n; € LeNg = Py. By replacing h; with h;q;, we may assume
that g = hyn;. Since h; — g—, we have n; — e~, and hence n; — e as
i — 0o. Therefore for all ¢ > 1 large enough so that d(n;0,0) < e, we have
d(hio,p) < d(h;o, hin;0)+d(go,p) < e+r, and hence g* = h € O, .(n;,p).

To prove the first inclusion, fix k; € Stabg(p) such that k;n; = n for each
1 > 1. After passing to a subsequence, we may assume that the sequence k;
converges to some k € Stabg(p) as i — oo. Since 1; — 7, we have kn = 7. In

particular, the sequence k;n converges to n. Applying the second inclusion
of (3.4) to a sequence k;n, we have

08 __(kimi,p) = O%__(n,p) C O%(kim,p) for all large i > 1.

Since k; € Stabg(p), it follows from (3.3) that OY__(kin;, p) = k;OY__(ni, p)
and Of(k;n, p) = k;0%(n, p). This proves the first inclusion. O
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We show that for a fixed p € X and n € Fj(), shadows Of(n,p) vary
continuously on a small neighborhood of 7 in G'U Fj¢) (see [26, Lem. 5.6]
for 6 = II):

Proposition 3.4 (Continuity of shadows on viewpoints). Let p € X, n €
Fipy and r > 0. If a sequence g; € X converges to n as i — oo, then for any
0 <e<r, we have

(35) OV (qip) COL(n,p) C O, (gi,p) for all large i > 1.

Proof. We first prove the second inclusion which requires more delicate ar-
guments. By and the fact that K acts transtively on Fg), we may
assume without loss of generality that n = P = wy and p = o. Write
¢ = klajo with k} € K and a; € AT using Cartan decomposition. Since
¢ — wy , we have kjwy; — w, and a; — oo i(#)-regularly.

By Lemma we may assume k, = e without loss of generality. By ,
the claim follows if we replace 6 by any subset containing #. Therefore we
may assume without loss of generality that a(loga;) is uniformly bounded
for all a € II —i(6).

Let £ € Of(Pi(g),o), i.e., £ = hPy for some h € G such that d(ho,0) < r
and hwo Py = Pg). Since Pg) = PM;) and wo_lMi(g)wo = My, we may
assume hwy € P by replacing h with hm for some m € My. We need to
show that for some p; € Py such that hp;o = a;0, d(p;At0,0) < &; this then
implies d(hp; A*0,0) < r + ¢, and hence £ € OF, (a;0,0).

We start by writing

a; 'h = kiaini € KAN, @; = c;d; € AgBy and n; = uv; € (Sp N N)Ny.
As hwy € P and a; € AT, the sequence a; Yhwoa; is bounded. Since
a;lhwoai = (kiwo)(wo_ldiwoai)(ai_lwo_lniwoai) € KANT,

it follows that both sequences wg ldiwgai and a; 1w0_ lniwoai are bounded.
Since wo_lniwo = (wo_luiwo)(wo_lviwo) € Si(H)Ni—(’—g) and a; € At with
a; — o0 i(f)-regularly, the boundedness of a;lwalniwoai implies that v; — e
as i — oo and wu; is bounded. On the other hand, the boundedness of
wgldiwoai implies that a; € woaflwalAc for some C' > 0. As a; — o0 i(0)-
regularly, it follows that ¢; € A; and ¢; — oo B-regularly. Moreover, since
max,er—i(g) @(log a;) is uniformly bounded, the sequence d; is bounded.
As d;u; € Sy, we may write its Cartan decomposition d;ju; = m;bym, €
M(;B;Mg. Since ¢; — oo #-regularly and d;u;, and hence b; € BT, is
uniformly bounded, we have c;b; € AT for all large i > 1. Set p; =
(mflémi)_l € Py. Recalling a;lh = k;a;n;, we have hp;o = hn{ld;lo =
a;o. Moreover, we have
1

1 1

pi(cibi)o =n; d;lmicibimgo =n,; &;lcidiuio =v; 0
using the commutativity of My and Ay as well as the identity m;b;m, = d;u;.

Since v; — e, we have d(p;(c;b;)o,0) — 0. This proves the second inclusion.
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We now prove the first inclusion. Similarly, as in the previous case, we
may assume that ¢; = a;o for a; € AT and 1 = Pyg). Let n; € 0?__(aj0,0),
i.e., n; = a;k; Py and d(a;k;b;0,0) < r — ¢ for some k; € K and b; € AT. Set
g; = a;k;b;, which is a bounded sequence. We will find n; € Ny such that
(9ini)~ = Pypy and d(g;n;o0,0) < r from which n; € 0?(n, o) follows.

We may assume that g; converges to some g € G. Since a; — oo i(6)-
regularly, the boundedness of g; = a;k;b; together with Lemma implies
that b; — oo f-regularly. Since a;k; — Pyp) and a;k; = giwo(w61b7 wo)wal —
gwoPyg) as i — oo by Lemma we have

(2

gwo Py = Pig)-
On the other hand, as i — oo, we have
9i(Po, woPyg)) = g(Pa, woPyg)) = (9Ps, Pyg))-

Hence for all large ¢ > 1, g;F is in general position with P;y) and thus we
have a sequence h; € G such that

(9iPo, Pyg)) = hi(Pa, woP,))-

As g;Py = h;Py, we write h; = g;n;¢; for some n; € Ny and ¢; € Lyg.
Note that (gin;)~ = h; = Pg). We now claim that n; — e, from which
d(gin;o,0) < d(gin;o, gio) + d(gio, 0) < r follows for all large .

Since hi(Py, woPye)) = (9:F%, Pyoy) — (9P, Pg)) = 9(FPo, woPip)), we
have h;Lg = gin;Lg — gLgy. Since g; — g and n; € Ny, we have n; — e as
1 — 00. This finishes the proof. O

Lemma 3.5. Let S > 0. For any sequence g; — oo in G 0-regularly, the
product Og(o, gio) X O;@ (gio,0) is precompact in ]-'9(2) for all sufficiently
large i > 1.

Proof. Consider an infinite sequence (&;,7;) € O%(o, gio) x OIS@ (gio,0). By
the #-regularity of g; — oo, we have g;o0 — £ as i — oo for some £ € Fy,
after passing to a subsequence. For each i, we write & = k; Py for k; € K
such that d(k;a;0,g;0) < S for some a; € AT. In particular, a; — oo 6-
regularly. After passing to a subsequence, we may assume that k; — k € K
so that k;a;0 — kPy as i — oo. On the other hand, the boundedness
of d(k;a;o0,g;0) < S implies that k;a;o — £ by Lemma Therefore,
¢ = kPy = lim; &. By passing to a subsequence, we may assume that 7; — n
for some n € Fg). Since gio — £, and n; € Oga) (gi0,0), it follows from

Proposition [3.4] that n € O;(g) (&,0). In particular, (§,n) € ]:9(2). O

4. GROWTH INDICATORS AND CONFORMAL MEASURES ON Fy

In this section, we review the notion of #-growth indicators and discuss
their influence on conformal measures on the #-boundary.

Let I' < G be a Zariski dense discrete subgroup. We say that I' is 6-
discrete if the restriction pglp : I' — ag is a proper map. Observe that
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I is f-discrete if and only if the counting measure on py(I") weighted with
multiplicity is locally finite i.e., finite on compact subsets. Following Quint’s
notion of growth indicators [29], we have introduced the following in [22]:

Definition 4.1 (#-growth indicator). For a 6-discrete subgroup I' < G, we
define the f-growth indicator 1% : ay — [—00,00] as follows: if u € ap is
non-zero,

(4.1) ¥r(u) = [lull inf 78

where C C ag ranges over all open cones containing u, and wg(O) = 0. Here

—o0 < Tg < oo is the abscissa of convergence of s — Zwel‘ 1o (y)EC e slluo (Il

We showed ([22, Thm. 3.3]):

9
® Yp < o0;
° wg is upper semi-continuous and concave;
o Lo={yf >0} = {¢f > —cc}, and ¥¥ > 0 on int Ly .

Let v € aj. Recall that a (I', ¢))-conformal measure v is a Borel probabil-
ity measure on JFy such that

dry.v

() = Ve for all v €T and € € Fp.
v

A linear form 1) € aj is said to be tangent to ¢1€ at v € ag — {0} if ¢ > @bl‘i
and ¥ (v) = ¢1€(U).

Proposition 4.2 ([30, Thm. 8.4], [22, Prop. 5.8]). For any v € aj which is
tangent to 1/11‘2 at an interior direction of a;r, there exists a (I',1)-conformal
measure supported on Ag.

Recall that I' is called @-transverse, if

o I' is O-regular, i.e., liminf cr a(u(y)) = oo for all a € 0; and
e [' is 0-antipodal, i.e., any distinct §,m € Agyg) are in general posi-
tion.
Recall also that ¢ € aj is (I', 6)-proper if ¢ o g|r is a proper map into
[—&,00) for some & > 0.

Theorem 4.3 ([30, Thm. 8.1] for § = II, [22, Thm. 7.1] in general). Let
I’ be a Zariski dense O-transverse subgroup of G. If there exists a (I',)-
conformal measure v on Fg for a (I',0)-proper 1 € aj, then

¢ > Pl

Moreover, if Zver e ¥ o™) = o in addition, then the abscissa of conver-
gence of s — Z'yEF e~5%oe™) s equal to one.
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Shadow lemma. The following is an analog of Sullivan’s shadow lemma
for I'-conformal measures on Fy which was proved in [22, Lem. 7.2].

Lemma 4.4 (Shadow lemma). Let v be a (I',1))-conformal measure on Fy.
We have the following:
(1) for some R = R(v) > 0, we have ¢ := inf,cr v(0%(y0,0)) > 0; and
(2) for allr > R and for all v € T,
(4.2) ce IIsre=v (o) < (0 (0, ~v0)) < ell?lnre=v (o ()

where k > 0 is the constant given in Lemma |3.1]

If T' is a O-transverse subgroup with #Ay > 3 (which is not necessarily
Zariski dense), then (4.2) holds for any (I',v)-conformal measure supported
on Ag.

5. DIRECTIONAL RECURRENCE FOR TRANSVERSE SUBGROUPS

In this section, we recall the flow space {2y for each #-transverse subgroup
I". We then define the directional conical set of I and give a characterization
in terms of the recurrence set for directional flows on Q.

We suppose that I' is a Zariski dense #-transverse subgroup unless men-
tioned otherwise. The I'-action on G /Sy by left translations is not properly
discontinuous in general, but there is a closed subspace Qy C G /Sp on which
I" acts properly discontinuously.

We first describe a parametrization of G/Sy as .7-"(52) X ag, which can be
thought as a generalized Hopf-parametrization. For g € G, let

9] = (g%,9~. B0 (e.9)) € Fy % ag.
Consider the action of G on the space .7-"9(2) X ag by
(5.1) 9-(&,m,b) = (9, gn,b+ BL(g ", €))

where g € G and (§,7,b) € ]-"(g2) X ag. Then the map G — ]-"9(2) X ag given by
g — |g] factors through G/Sy and defines a G-equivariant homeomorphism

G /Sy~ F§? x ay.

The subgroup Ay acts on G/Sp on the right by [g]a := [ga] for g € G and
a € Ap; this is well-defined as Ay commutes with Sy. The corresponding

Ap-action on .7-"0(2) X ag is given by
(& n,b).a=(&n,b+loga)

for a € Ap and (§,n,b) € .7:9(2) x ag. For 6 = II, this homeomorphism is
called the Hopf parametrization of G/M.

Set AS) := (Ag x Ayg)) N F,”), and define
(5.2) 0y = A x ag

which is a closed left I'-invariant and right Agy-invariant subspace of ]:9(2) X ag.
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Theorem 5.1. [22,~ Thm. 9.1] If T is 6-transverse, then T' acts properly
discontinuously on Qg and hence

Qp := F\Qg
is a second countable locally compact Hausdorff space.

By [3], the set {(y,,y,-1) € A®) : 4 €T loxodromic} is dense in A (see

(2.3) for the notation y,). Hence the projection {(mg(yy), mi(9)(y,-1) € A((f) :

v € I" loxodromic} is dense in A§2). This implies that {2y is a non-wandering

set for Ay, that is, for any open subset O C €y, the intersection O N Oa; is
non-empty for some sequence a; € Ay going to oo.
Fix u € a; — {0} and set

a, = exptu  fort € R.

We describe the recurrent dynamics of the one-parameter subgroup A, =
{at, : t € R} on Q. That is, for a given compact subset Qy C Qg, we
describe when the translate QQga¢, comes back to (o and what the intersec-
tion Qoag, N Qo looks like for ¢ large enough. This is equivalent to studying
Qaw, NTQ for a compact subset Q € Qp C G /Sp. Difficulties arise because
Sy is not compact, and the #-transverse hypothesis on I' is crucial in the
following discussions.

We will repeatedly use the following lemma: note that the product A;B(j
is not contained in AT in general.

Lemma 5.2. Suppose that v; € T' and d; € A;rBe+ are sequences such
that the sequence v;hym;d; is uniformly bounded for some bounded sequences
h; € G with h;P € A and m; € My. Then there exists w € W N My such
that after passing to a subsequence,

d; € wATw ™! foralli>1.

Proof. Since d; € A, by passing to a subsequence, there exists w € W such
that d; = we;w™! for some ¢; € AT. We will show that w € My. We may
assume without loss of generality that as ¢ — oo, h; and m; converge to
some h € G and m € My respectively. The @-regularity of I' implies that
vt — oo BUI(6)-regularly. Since A, := y;hym;we;w ™" is bounded, it follows
that ¢; — oo in AT 6 Ui(f)-regularly as well by Lemma

By Lemma (1)—(2), we have that ’yz-_lh; converges to a point in Agy;(p)
and hym;wc;w™" — hmw Py ;g) as i — oco. Therefore, we have himw Py €
Aguip)-  Since hPyip) € Aguie) by the hypothesis, it follows from the
¢ U i(¢)-antipodality of I' that either wPy ;) = m_ngui(g) or wPp ()
is in general position with mfngui(e). In the former case, by consider-
ing the projection to Fp, we get wPy = m~'Py and hence w € My as
desired. It remains to show that the latter case does not happen. The lat-
ter case would mean that wPg) is in general position with m~1Py = Py.
By Lemma this implies w € woM;g) = Mowo. Writing d; = a;b; €
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Angr and w = mowg with mg € My N Ni(A), we get ¢; = wldjw =
wo_lazwo(wo_lmalb mowo) € Ajg)(Sigy N A) = Aig)Big). As ¢; € At C

AT) :(r@) we must have w “Lawy € AT i(0)’ which is a contradiction since
a; € A . This finishes the proof. O

Proposition 5.3. Let Q C Qp be a compact subset and u € a —{0}. There
are positive constants C1 = C1(Q),Cy = C2(Q) and R = R(Q) such that if
[h] € QN YQa—yy, for some h € G, v €T and t > 0, then the following hold:

(1) llue(y) —tull < Ci;
(2) (hF,h™) € 0%(0,70) x O (70, 0);
(3) G(h*,h)| < Ch.

Proof. Let Q' C G be a compact subset such that Q'My = Q' and Q C
Q'Sp/Se.

To prove (1), suppose not. Then there exist sequences ; € T', h; € G and
a sequence t; — +o0o such that ||ug(y;) — tiul| > @ and [h] € Q N ViQa_t4
for all ¢ > 1. By replacing h; by an element in h;Sy, we may assume that
hi € Q" and there exist h, € @ and s; € Sp such that h;sjar, = Vil
Since @ C Qp, we have h;Py € Ag. By replacing h; with an element of
h; My, we may assume that h; P € A as well. Since t; — 400, v; — 00 in
I'. Writing s; = mzb m; € M(;B+Mg in the Cartan decomposition of Sy,
we have h;m;a,bim,, = %h’ By Lemma n 5.2, by passing to a subsequence,
there exists w € WnN Mg such that a;,b; = we;w ~! for some ¢; € AT, Since
c; = ayu(wlbw) € AT N AgBy, Tt follows that

to(ci) = po(log ;) = tiu.

Since hymjwe;w™ ml = ~;hl, we get that the sequence ||ug(vi) — po(ci)||
is uniformly bounded by Lemma Hence ||po(y:) — tiu| is uniformly
bounded, yielding a contradiction.

To prove (2), suppose not. Then there exist sequences h; € @, v; € I and
t; > 0 such that [h;] € QNviQa_ and b ¢ OY(0,v,0) or h; ¢ O;(e) (vio,0)
for all 7+ > 1. As before, we may assume h; € Q', h;P € A and for some
h; € @ and s; € Sp, we have h;s;jar,, = vVih}. If v; were a bounded sequence,
0%(0,7;0) — Fp and O;(e)(o,'yio) — Fi(g) as i — 0o, which cannot be the
case by the hypothesis on hfc. Hence 7; — oo in I'. As in the proof of Item
(1), there exist w € WN My, b; € B;’, mi, m; € My and ¢; € AT such that

1

himaweaw ™ 'mj = yihj
and a¢,b; = we;w™ . Then we have hymjwPy = h;Py and hymwe; =
’yih;mg_lw. Since hgm;_lw € @', it follows that
hi € O%, (hio,~vi0) foralli>1
where Ry = 1 + max,eQrugrw, @(qo,0) > 0. On the other hand, we have

/ -1 -1, —1
himiwwo —'yzhm wwo (woc; “wy ),
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which is a bounded sequence. Since %-h;mflwwalpi(g) = himiwwalPi(g) =
hiwoP;(g), we have

h; € O (vilo,0) for all i > 1.
Therefore, by Lemma |[3.2] we have

ht,ho) e 0f 0,7;0) X 0\ v;0,0) forall ¢ > 1,
2Ry 2Rg

AR

yielding a contradiction.
To prove (3), as before, we may assume h € Q" and h = yhja_4y,s for
some h; € Q' and s € Sy. Then we have

Bi(e,h) = Bi(e,y) + Bl (b ', e) + B (e, a—sus)
B e,n) = 8D (e,7) + B9 (h7 e) + B9 (e, a—tus),
Since 8%, (e, a_tus) + i(,@ie(f)(e, a_ws)) = G%et,e”) =0, we deduce that
GO (h*, ™) = B4 (e,7) + (8,7 (e,7)) + Bl (ht,€) +i(BD (T e)).
Observe that ]\Bg+(h1_1,e) + i(ﬁie@(hl_l,e))H < 2maxgeq d(go,0). Since
(h*,h™) € O%(0,70) x Oi}_(f) (70,0) by Item (2), it follows from Lemma
that

182+ (e,7) — ue()|| < kR and [|i(B” (7, €))) — i(pey(v )| < KR

Since j19(7) = (o) (7)), we get |87, (e,7) + (8,7 (e,7))]| < 2R, and
hence

IG°(h*,h7)| < 2R+ 2m%2x d(qo, o).
qeQ’
This finishes the proof. O

Directional conical sets. A point £ € Fy is called a #-conical point of I’
if and only if there exist R > 0 and a sequence y; — oo in I' such that & €
0% (0,7;0), that is, £ = k; Py for some k; € K such that d(k;A%o,7v0) < R,
for all 4 > 1. Using the identification Fy = K /My, the #-conical set of T" is
equal to

(5.3) A" = {kMy € Fy: k € K and limsupTkMyA™ # 0} .
For r > 0, we set
Luri={yel:|lu(y) —Rul <r}.

Definition 5.4 (Directional conical sets). For u € aj — {0}, we say £ € Fp
is a wu-directional conical point of I' if there exist R,r > 0 and a sequence
~vi — oo in I'y , such that for all ¢+ > 1,

5 € O?{(O7 ’Yio)v
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that is, £ = k; Py for some k; € K such that d(k;A%o,v;0) < R. In other
words, the u-directional conical set is given by
(5.4)

Ay ={kMy € Fy: k € K and limsup F;},kMgAJr # () for some r > 0}.

We note that 'y = {y € T : [|(g) () — Ri(u)| <7}

Clearly, Ay C AS" for all u € af — {0} and A} = () if u ¢ L. These
notions of conical and directional conical sets can be defined for any discrete
subgroup. On the other hand, for #-transverse subgroups, these notions can
also be defined in terms of recurrence of Ay and A,-actions on €2y respec-
tively: we emphasize that for a sequence g; € G, the sequence [g;] € Qp
is precompact if and only if there exists s; € Sy (which is not necessarily
bounded) such that the sequence g;s; is bounded in G.

Lemma 5.5 (Conical points and recurrence). Let I' be O-transverse. Then

(1) £ € A" if and only if § = gPy for some g € G such that [g] € Qo
and v;[gla; is precompact in Qg for infinite sequences v; € T' and
a; € A;

(2) € € Ay if and only if £ = gFp Nfor some g € G such that [g] € Qq
and 7;[glat,., is precompact in Qg for infinite sequences y; € T' and
t; > 0.

Proof. Item (1): Let £ € A" so there exist k € K, v; € I', m; € My
and ¢; € AT so that £ = kPy and ~;km;c; is a bounded sequence in G.
By the #-regularity of I', we have AS°" C Ay [22, Prop. 5.6(1)], and hence
kt = kPy € Ay. Since Ajg) is Zariski dense and kNgwoP;g) is a Zariski
open subset of Fj), we have (kn)~ € Aj(g) for some n € Ny. Since (kn)* =
kt = ¢, we have [kn] € Qg. Note that vknmic; = (vikmie)(c;

i
n; = m;lnmi € Ny is a bounded sequence. Since ¢; € A", the sequence
c; ln;ci is bounded as well and hence ~;knm;c; is bounded. Write ¢; = b;a; €

B; A;’; so the sequence ~;(knm;b;)a; is contained in some compact subset of

/
n;c;) where

G and m;b; € Sp. Since the map g — [g] € Qp is continuous, and hence the
image of a compact subset is compact, the sequence v;[knla; = [y;knm;b;a;]
is precompact in Qg, as desired.

Conversely, suppose that £ = gFPy for some g € G such that [g] € Qo
and v;[gla; is precompact for infinite sequences v; € I' and a; € Ag. We
can replace ¢ with an element in gMpy so that gP € A. Since the sequence
vilglai = [yiga;] is precompact, there exists a bounded sequence h; € G such
that for all i > 1, [h;] = ~vilgla; € Q. that is, ga;s; = 7;1h2- for some s; €
Sp. Writing the Cartan decomposition s; = m;b;m;, € MgB;ng, we have
gmiaibimg = 1hz-. Since the sequence v;gm;a;b; = him;_l is bounded,
it follows from Lemma that a;b; = we;w™! for some w € W N My
and ¢; € AT, after passing to a subsequence. Hence we have gm;wc; =
v 1him;*1w, which implies that & = gPy € O%(go,'y; o) for all i where
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R =1+ max; d(h;0,0). By Lemma we have £ € O%er(go’o)(o,fy;lo) for
all ¢ > 1, completing the proof.
Item (2): Let £ € Ay. Then § = kP for some k € K and y;kmja; is a
bounded sequence in G for some infinite sequences y; € 1";;, m; € My and
a;j € AT. Since £ = kPy € A and Ay C A" C Ay by the O-regularity of T
[22, Prop. 5.6(1)], we have k™ € Ay. As in the proof of Item (1) above, there
exists n € Ny so that (kn)~ € Ayg) and v;knm;a; is bounded. In particular,
[k:n] € Qg.

Since y;knm;a; is a bounded sequence in G and v, © € I'y,, we have
a; = ag;ub; for some t; > 0 and a bounded sequence b; € A by Lemma .
Hence the sequence vy;knmjaz,, is bounded as well. Therefore, v;[kn]at,, =

1

[yiknmiag,,) is precompact in €. Since (kn)* = kT = £, this shows the
only if direction in (2).

To show the converse implication, suppose that the sequence ~;[g]at,,, is
contained in some compact subset @Q of €2y which we also assume contains [g].
Since [g] € @ N ’yi_lQa,tiu, it follows from Proposition that ’yl-_l ey
and g+ = gPy € 0%(0,7; '0) for all i > 1 where C7 = C1(Q) and R = R(Q)
are given in Proposition Therefore, g7 € Aj. O

Theorem 5.6. Let I' < G be a Zariski dense discrete subgroup. Let u €
a('; — {0} and ¢ € a}, be (I, 8)-proper. Suppose that EVGFW e V() < 5o
for all v > 0. For any (I',)-conformal measure v on Fy, we have

V(AL = 0.

Proof. For each r > 0, we set Agm = limsup,er, Of(o, ~0). In other words,
S A},"T if and only if there exists a sequence v; — oo in I'y, such that

¢ € O%o,7i0) for all i > 1. Then Ay = U,5Af,. Let v be a (T, ¢)-
conformal measure on JFy. Since
o C U 0%0,~v0)  for all t > 0,
YE w,ry o (V1>
it follows from Lemma [4.4] that
(5.5) v(Af,) < > e ¥We™M) for all t > 0.
YELw,rllo (V1>
Since Zwerw e () < o0, taking t — oo in (5.5) implies I/(Agvr) = 0.
Therefore, v(Ay) = limsup,_,o, v(Af,) = 0. O

r>0

Lemma 5.7. If > . e VW) = oo for some > 0, then ¥(u) > 0. If
there exists a (I',1)-conformal measure on Fy in addition, then

b(u) = ¢f(u).

Moreover the abscissa of convergence of the series s — Z'yel“u N e s (ko (7))

is equal to one.
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Proof. Suppose that Z'YEFU,T e %) = oo, Then #I'y,r = oo. If Y(u)
were not positive, then (opg)(I'y,,) is contained in the interval (—oo, ||¢)||7].
Therefore it contradicts the (I", #)-proper hypothesis on ¢. Hence ¥ (u) > 0

Now suppose that there exists a (I',¥)-conformal measure on Fy. We
then have ¢ > 4% by Theorem Now suppose that 1(u) > ¥%(u). We
may assume that u is a unit vector as both ¢ and 1/}161 are homogeneous of
degree one. By the definition of ¢1€a there exists an open cone C containing
u so that - cp 0 )ec e VWMl < o0, Since fig(T,) is contained in C
possibly except for finitely many elements, we have

Z P(pe(7)) < Z w)l[o ()l < 00,

’YEFu r ’Yeru I3

which is a contradiction. Therefore, 1 (u) = ¥4 (u).

We now show the last claim. Since } . e~ ¥e(7) > Dyl e~ Ple(n) =
oo, the abscissa of convergence of s — Z er € —s¢(1e(1) is equal to one by
Theorem . Hence the abscissa of convergence of s — Z er, e ¥ (ko (7))

is at most one. Since Zv Lo e~ ¥e(1) = 0o, it must be exactly one. [

6. BOWEN-MARGULIS-SULLIVAN MEASURES

In this short section, we recall the definition of Bowen-Margulis-Sullivan
measures on 2. We also recall one-dimensional flow space €2y, and the
corresponding Bowen-Margulis-Sullivan measures on it.

Let I' < G be a Zariski dense #-transverse subgroup. Recall our flow
space from the previous section:

Qg =T\AY x ay
where the action is given by (j5.1]).

Bowen-Margulis-Sullivan measures on ()y. We may identify a; with
{¢ € a* : ¢ opy = ¢}. Hence for ¢ € aj, we have poi € ai*(e). For a pair
of a (T, ¢)-conformal measure v on Ay and a (I", ¢ oi)-conformal measure v;

2)

on Ajg), we define a Radon measure dm,,,, on Aé X ag as follows:

(6.1) iy, (€,7,b) = €@ EM du(€)du () db

where db is the Lebesgue measure on ay. It is easy to check that m,, ,, is left
I-invariant, and hence induces a Ag-invariant Radon measure on {2y which
we denote by

(6.2) My, -

We call it the Bowen-Margulis-Sullivan measure (or simply BMS measure)
associated with the pair (v, 15).
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Bowen-Margulis-Sullivan measures on ;. Let ¢ € aj be a (I',0)-
proper form. We remark that this implies that ¢ > 0 on £y and ¥ > 0 on

int £y [22, Lem. 4.3]. Consider the I-action on Q, := A§2) x R given by
(6.3) v.(€m,8) = (&, v, s +(BL(v ' e)))
for y €T and (&,n,s) € A((f) x R.

Theorem 6.1. [22, Thm. 9.2] IfT" is Zariski dense §-transverse and ¢ € aj
is (I', 0)-proper, then I' acts properly discontinuously on €y, and hence

(6.4) Qy :=T\Qy
is a second countable locally compact Hausdorff space.
The map Aé2) X ag — AéQ) xR given by (§,n,v) — (§,n,%(v)) is a principal

ker y-bundle which is trivial since ker is a vector space. Therefore it
induces a ker ¥-equivariant homeomorphism between

(6.5) Qg >~ Qy x kerp.
Let
(6.6) m}fyui

be the Radon measure on Qw induced from the I'-invariant measure on sz

Ay, (€,7, ) = @ EMdy(&)du(n)ds.

‘We then have
My, = m}f,l,i ® Lebyerqp -

7. DIRECTIONAL CONICAL SETS AND POINCARE SERIES

In this section, we relate the divergence of the directional -Poincaré
series with the size of the directional conical set with respect to a (T',)-
conformal measure on Fy. The main theorem of this section (Theorem [7.2))
is the most significant part of Theorem

Let I' < G be a Zariski dense #-transverse subgroup. We fix
u € af — {0} and a (T, §)-proper ¢ € aj.

We also fix a pair v, v of (I',¢) and (I", ¢ o i)-conformal measures on Ay and
Aj(g) respectively. Denote by m = m,,, and m = m,,,, the associated BMS
measures on Qg and p respectively.

Our dichotomy theorem is stated under a hypothesis on m which we call
a u-balanced condition:
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Definition 7.1 (u-balanced condition). A Borel measure space (X, m) with
{ay, }-action is called wu-balanced or simply m is u-balanced, if for any
bounded Borel subset O; C X with m(0;) > 0 for i = 1,2, for all T > 1,

/ (01 N Olatu dt XI/ 02 N Ogatu)d
0

The main goal of this section is to prove the following:

Theorem 7.2. Suppose that m is u-balanced. If > e ¥ (M) = 5o for
some r > 0, then

YE u,r
v(Ay) >0 and Vi(A;Eg))) > 0.
Remark 7.3. When 3 e~ ¥(0(7) = o0, there exists at most one (I, 1))-
conformal measure on Fp ([22, Thm. 1.5]). Furthermore, the existence of a
(T, ¢)-conformal measure on Ay implies the existence of (I, 1 o i)-conformal
measure on Ay as well. Indeed, it follows from [22, Thm. 7.1] that oy =
1 where 6, is the abscissa of the convergence of the Poincaré series s
> er e~¥e() Tn particular, dye = dy = 1. By [10] and [22, Lem. 9.5],
there exists a (I',% o i)-conformal measure v; on A;) which is the unique
(', 1poi)-conformal measure on Fjg), since nyer e~ WeD(i0)()) = o0 as well.

For simplicity, we set for all £ € R
At = Gty = €XPp tu.
The following proposition is the key ingredient of the proof of Theorem

Proposition 7.4. Set § = 1(u), which is positive by Lemma .

(1) For any compact subset Q C Qg, there exists 7 = 7(Q) > 0 such that
for any T > 1, we have
2

/ / Z (QNYQa—tNY' Qa—i—s)dtds < Z e~ (1a (7))

' er VE u,r
P (po (7)) <6T
(2) For any r > 0, there exists a compact subset Q' = Q'(r) C Qg such
that for any T > 1,

/ Z (Q' NAQ'a—y)dt > Z o~ ¥(no(7)

yel YE w,r
Y(po(7))<6T
To prove this proposition, we relate the integrals on the left hand sides
to shadows and apply the shadow lemma. Together with results obtained in
Section [B] the following proposition on the multiplicity bound on shadows
for transverse subgroups is crucial.

4The notation f(T) < g(T) means that f(T),g(T) — co as T — oo and f(T) < g(T)
and g(T) < f(T).
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Proposition 7.5. [22) Prop. 6.2] For any R,D > 0, there exists q =
q(v, R, D) > 0 such that for any T > 0, the collection of shadows

[0%(0,70) € Fo: T < (uo()) < T + D}
has multiplicity at most q.
Lemma 7.6. Let Q C Qy be a compact subset. For anyt > 1, we have
M(Q NYQa_;) < e ¥Ho()
where the implied constant is independent of t.

Proof. There exists ¢y = ¢o(Q) > 0 such that if QN Qa # () for some a € Ay,
then ||logal < ¢p. By Proposition [5.3(2) and the compactness of Q, we
have for large enough R > 0 that

m(Q NyQa—y)

<</ | / LgraQa_. (€ 71,0)e” " EMdu (&) du () db
O%(o,'yo)xolée)(‘yo,o) ag

< / o omga (& me T EM dy(€)dvi(n).
O%(o,vo)xO}é )('yo,o)

Since GY(£,7) in the above integrand is uniformly bounded by Proposition
5.3(3), we obtain

M(Q N yQa—r) < ¥(Ok(0,70))11 (0} (70,0)).
By Lemma [£.4] we have
m(Q NYQRa—) K I/(O%(O, 70)) < e~ Yo (7))

The following is immediate from Proposition (1)

Lemma 7.7. Let Q C Qg be a compact subset. If QNyQa_; Ny Qa_t_s # 0
for some v,y €T and t,s > 0, then we have

(1) [lpo(v) — tull , [lo(y=1") = sull, luo(v') = (¢ + s)ull < C1;
(2) P(uo()) +¥(po(v ")) < b(uo(y")) + 3C1][4|
where C; = C1(Q) is given as in Proposition .

Proof of Proposition (1) Let Q C Qg be a compact subset. Fix
s,t > 0. For v, € T such that Q NvQa—_s Ny Qa—_i_s # 0, it follows from
Lemma [7.6] that

M(QNQa—y Ny Qa_y_s) < e ¥,

By Lemma[7.7)(2), we have ¥ (ua(7)) + 9 (no(v 1)) < ¥(po(7')) + 3C1 |||
and hence

m(QNYQa—y Ny Qa_s_s) < e~ V(o (M) =¥ (re(v=19"))
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Since we also have ||po () —tu|, ||po(y 1) —sul| < Cy by Lemmawhere
(1 is given in Proposition (1), we deduce by replacing v~/ with 4 that

> mQNyQa— Ny Qayy)

vy €T
< Z e~ ¥ (1o() Z e~ V(o))
'yEFu,cl '?EFu,Cl
(e (7)) E(St—c,dt+c) Y(po(¥))€(ds—c,ds5+c)

where ¢ := C1||¢||.
We observe that if ¥(ug(y)) € (6t — ¢, 6t + ¢) for some ¢t € [0,T], then
Y(pp(y)) < 0T 4 c. Hence we have

T
/ 3 ) Jare S e,
0

’YEFu,Cl 'YEFu,Cl
¥ (o (7)) E€(St—c,5t4c) Y(po(7))<6T+c

Similarly we also have

T
/ ) ) | gy« Y e,
0

'AYEFu,Cl 'AYGFu,Cl
P(po(9))€(8s—c,ds+c) Y(peo(¥))<6T+c

Therefore, we have

T T
/ / Z M(QNYQa—_M Qa—_i—s)dtds < Z e~ ¥(1o(7)
‘ ‘ 1Y€l ’YeFu,Cl
Y(pe(7))<6T+c
Since
Z e—¢(ﬂe(7)) << Z I/(O%(O’ 70)) << 1
’YEF“’Cl ’YEFu’cl
6T <9p(ng(7))<6T+e ST <1p(pg(7))<6T+c

for large R = R(v) by Lemmal[d.4)and Proposition|[7.5] setting r(Q) = C1(Q)
completes the proof. O

Lemma 7.8. For any R > 0, there exists 0 < fp < oo such that any
i(o .
(&) € Uyer () 1>0n 0% (0,v0) x O}% )(70, 0) satisfies ||G%(&,m)| < £g.

Proof. Suppose not. Then there exist sequences 7; — oo in I" and (&;,7;) €
0% (0,7i0) x O}(ie)('yio, 0) such that ||G%(&,m;)|| — oo as i — oo. We may
assume that § — £ and 7; — 1 by passing to subsequences. As y; — oo
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f-regularly, Lemma implies that (¢,7n) € .7-"(52). Since ||G?(&,m)l| —
1G?(€,7)|| < oo, this is a contradiction. O

Lemma 7.9. Let u € a; — {0}. For any r,R > 0, there exists a compact
subset Q = Q(r, R) C Qg such that for any v € I'y, with |[pe(Y)|| > ¢r and

(€, € (0%(0,70) x O (v0,0)) N A,
there exists v € ag and t > 0 such that
(ga , U) €Q and (ga n, U)a[t—l,t—‘rl] - 7@

Proof. Let (&,m) € (0%(0,70) x O}g’) (v0,0)) N A((f) for some v € I'y,, with
llo(Y)|| > £r. Then there exists k € K such that £ = kPy and d(kago,v0) <
R for some ag € A*. Write ag = ab € AJ B

By Lemma we have ||u(y) — logag| < D for some D = D(R), and
hence ||pg(v) —logal| < D. We also obtain from v € 'y, that ||ug(y) —tul| <
r for some ¢t > 0 and hence we have ||tu —log a|| < D+ r. Therefore, we have

d(kag,bo,v0) < d(ka,bo, kago) + d(kago,y0)
(7.1) = d(aty0, ao) + d(kago, y0)
<D+r+R.
We also note that
ltu + log b — log ag|| = ||tu — logal| < D + .
Hence there exists a € A such that
|loga| < D+r and agpbac AT.

Let go € G such that (goFy, gowoPi9)) = (§,1). Since (§,71) € O%(o7 70) X
0D (70, 0) and ||1g(~)|| > £, we have [|G?(¢,7)|| < €. By Proposition .8]
we can replace gg by an element of ggLg so that we may assume that
d(0,900) < c||G° (&, + ¢ < ctr+c.
Since { = kPy = goPp, we have g, 'k € Py. We write the Iwasawa decompo-
sition
9o 'k = man € KAN.

Then we have m = go_lk:ﬁ_ld_l € Pyn~'a~! = Py. In particular, we have
m € PpNK = My. We let g = ggm. Since m € My C Ly, we still have
(9Fy, gwoPyg)) = (§,m) and d(o, go) = d(o0,go0) < clr + . Moreover, we
have g1k = an € P. Now for s € [t — 1,¢ + 1], we have

d(gbasy,0, kbag,0) < d(gbasy,o, gbaw,0) + d(gbas,o, kbay,0)

< 1+ d(gba,0, gba,ao) + d(gbat,ao, kba,ao) + d(kbag,ao, kbag,o)

=1+ 2d(o, ao) + d(gba,ao, kbay,ao).
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Since g~'k € P and bay,a € AT, we get d(gbas,ao, kbas,do) < d(go, ko) =
d(go,0) < clp + . Together with ||logal| < D + r, we have

d(gbasy,0, kbag,0) < 1+2(D +7) +clr+c.
Since d(kba,0,7v0) < D +r + R, we finally have
d(gbasy,0,70) <1+3(D+r)+ R+clgp+c.

Weset R =1+3(D+7)+R+clr+c and Q := {[h] € Qg : d(ho,0) < R’}
which is a compact subset of Q.

Now the image of g under the projection G — .7-"9(2) X ag is of the form
(&,m,v) for some v € ay. Since b € Sy, the product gb also projects to
the same element (£,7n,v). It follows from d(o,go) < ¢lr + ¢ < R’ that
(€,m,v) € Q. Moreover, since d(y 'gbas,0,0) < R for all s € [t — 1, + 1],
we have v~1(&,1,v)as, € Q and hence (€, 7, v)ap_14+1) C 7Q. This finishes
the proof. O

Recall the notation § = 1(u) > 0.

Lemma 7.10. Fiz 7, R > 0, and let Q = Q(r, R) C Qg and C1 = C1(Q) > 0
be as in Lemma[7.9 and Proposition[5.3 respectively. Let T >0 andy € Ty,
be such that

lug(VIl > €r and Cil|b]| +0 < P(ug(y)) < 6T — Chlly| — 6.

I er,, € V1000 = oo, then, for any (€,1) € (O%(0,70)x O} (v0,0))N

AéQ) , we have

T
/ / ]lQ’ﬂ'yQ’a_t (g’ 1, b)dbdt >2 VOI(AG,Q)
0 Qg

where Aga = {a € Ag : ||logal| <2} and Q' := QAga C Q.

Proof. By Lemma there exist v € ag and ¢y > 0 such that (¢,n,v) € Q
and (&,7,v)ap—14+1] C 7Q. In other words, (§,7,v) € Q NyQa—, for all
t € [to— 1,9+ 1]. Since ||ug(7) — tou|| < C1 by Proposition [5.3{(1), we have
[(pg(y)) — tod| < Cil|¢]]. In particular, we have [to — 1,to + 1] C [0,7] by
the hypothesis.

We set Q' := QAp2 which is a compact subset of Q. We then have for
each t € [to — 1,to + 1] that

/A Lm@a.((§n,v)b)db 2/ Lyqr((§,m,v)bar)db > Vol(Ag )

0 Ap 2
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where the last inequality follows from (&, 7n,v)a; € vQ. Therefore, we have

T T
| [ temeudenbasdi= [ [ tgmgu (€ opi
0 ag 0 Ag

to+1
> / / ]]-Q/ﬂ’lea—t ((57 7, ’U)b)dbdt
t Ag

0—1
> 2Vol(Ap2)

as desired. O
Proof of Proposition|7.4)(2). Fix R > max(R(v), R(v:)) where R(v), R(v;)
are defined as in Lemma Let Q" = Q(r, R)Ag2 where Q(r, R) is given

in Lemma so that @’ satisfies the conclusion of Lemma For any
v €I and t > 0, we have

m(Q NQ'a—y)
N / (/ Lo/rnQa—i (€1, b)db) " €M dy (&) dia ()
72

ag

> / . ( / Lorngra, (&1, b)db) @ EM dy (€)dvs(n).
0% (0,70) XO}&G) (y0,0) ag

By Lemma [7.10} if v € Ty, [lo(7)]] > €r and Cul|¢|| + 6 < 1 (ue(7)) <
0T — C1||¢|| — 6 where C; = C1(Q), then

T
/ m(Q N~Q'a_;)dt
0
> 2Vol(4s;) | e gy dun ()
O%(o,wo) X O%(,/m (y0,0)

> 2 Vol(A(;,g)e*”w”ERV(O%(O, ’yo))ui(Oi]_(ze) (v0,0))

where the last inequality follows from ||G?(¢,7)| < £r. By Lemma we
conclude

T
/ m(Q' NyQa_y)dt > e Vo),
0
For each T' > 1, we define

Pr={y el : oMl > lr, Crl¢ll + 6 < ¢ (po(y)) < 6T — (Cil|9][ + 6)}
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Since both {y € I': [[ug(y)|| < €r} and {y € I': P (ug(7)) < Cul|[| + 0} are
finite sets, we have

T T
| Ta@n@aniz [ w@niQad

’}/EF 'YEFu,rmFT
> Y V)
'YGFu,'r ﬁFT
S > =0 (1)

’Veru,r
Y(po (7)) <IT—(Cr||[|+9)

By Lemma [£.4] and Proposition

Z e Vo) Z v(0%(0,70)) < 1.
'Yeru,r ’YEFu,T
ST—(Cr[$l1+8) <t (o (1)) <6T ST—(Cr[pl|+8) < (o (1)) <6T

Therefore, we obtain

T
/ Z m(Q NYQ a—y)dt > Z e Y(uo(7)
0

’YGF 'Yeru,'r
P(pe (7)) <8T

O
We will apply the following version of Borel-Cantelli lemma.

Lemma 7.11. [I, Lem. 2] Let (2, M) be a finite Borel measure space and
{P; : t > 0} be a collection of subsets of @ such that the map (t,w) — Lp,(w)
is measurable on Ry x Q. Suppose that

(1) Jo° M(P,)dt = o0, and
(2) for all large enough T,

/OT /OT M(P; N P,)dtds < (/OT M(Pt)dt>

where the implied constant is independent of T .

M <{w €N: /000 1p,(w)dt = oo}) > 0.

Proof of Theorem Let Q C Qp be a compact subset with m(Q) > 0.
Let r = r(Q) > 1 be large enough so that Z'yel“u,r e Y1) = oo and that
Proposition|7.4(1) holds. Let Q' = Q'(r) be a compact subset of g given by
Proposition [7.4(2). Replacing Q" with a larger compact subset if necessary,
we may assume that m(Q’) > 0.

Since m is u-balanced, we have for T' > 1 that

T T
12 [ S aQniQegir= [ n@ nQad

yel yel’

2

Then we have
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with the implied constant independent of T". Since we already have

T T
/ / Z m(Q NyQa—t Ny Qa_i—s)dtds < Z e~ V(ko())
o Jo

v,y €l YE  u,r
Y(po () <6T
and
T
(7.3) Y et « / > m(Q NQ'ay)dt
V€ u,r 0 yer
Y(po(v))<6T
by Proposition it follows from ([7.2)) that
(7.4)
2
T T T
/ / Z m(QMNyQa_iNy Qa_;_g)dtds < / Z m(Q NyQa—)dt
0 0 v,y el 0 ~el'

By abusing notation, for a subset U C €y, we denote by [U] the image
of U under the projection Qp — Qg, i.e., [U] = T\I'U. We set M = m|(q]
which is a finite Borel measure. We let P, = [Q NT'Qa_;] for ¢t > 0. Since
#{y €T : Qa_rNyQa—; # 0} is uniformly bounded independent of ¢, we
have M(F) =< > o m(Q NyQa—;) with the implied constant independent

of t. Noting that Y . e *(#()) = oo, it follows from (7.2) and (7.3)
that

/OOO M(P,)dt = oo

and hence the condition (1) in Lemma is satisfied.
The following is a rephrase of (|7.4]):

/OT /OT M(P; N Ppys)dsdt < (/OT M(Pt)dt>

T T T pT
/ / M(P; N P,)dsdt = 2/ / M(P, N Py)dsdt
0 0 0 t

T T
S 2/ / M(PthH_s)det
0 0

2

< (/TI\/I(Pt)dt> ,

showing that the condition (2) in Lemma is satisfied.
Hence, by Lemma [7.11], we have

M ({l€n o €@l [ ug e olad = oc} ) >0,

2

It implies
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In particular, there exists a subset Qo C @ such that m(Qp) > 0 and for
all (§,n,v) € Qo, there exist sequences v; € T' and t; — oo such that
v 1€, v)a, € Q for all i > 1. In particular,

(&mn,v) € QNvyiQa—y, foralli>1,

which implies £ € Af by Lemma Since this holds for all (§,7n,v) € Qo,
we have that

ge Ay forall (§,n,v) € Qo.

Since m(Qp) > 0 and m is equivalent to the product measure v ® v; ®
db, it follows that v(Ay) > 0 as desired. Since m is A,-invariant, the u-
balanced condition remains same after changing the sign of 7. Then the

same argument with the negative T' gives Vl(AiEZ)) ) > 0. O
Lemma 7.12. We have either
v(Ag) =0 or v(Ay)=1.

Proof. Suppose that v(Aj) > 0. Then by Theorem we must have
Z'Yerun' e ¥e(7) = oo for some r > 0. This implies that v is the unique
(T, ¢)-conformal measure on Fy ([10], [22, Thm. 1.5]). On the other hand, if
0 <v(Ay) <1, then v := mu\ﬁ_,\g defines another (T, ¢)-conformal

measure, which would contradict the uniqueness of the (I',)-conformal
measure. Therefore, v(Aj) must be either 0 or 1. O

Corollary 7.13. If m is u-balanced, the following are equivalent:
(1) ZWGFuT e %o (1) = o for some r > 0;

(2) v(Ag) =1 =wu(Aly).

Similarly, if m is u-balanced, the following are also equivalent:
(1) Zyerw e Vo) < 0o for all v > 0;

(2) v(Ag) = 0= mi(Aly)).

Proof. By Lemma we have v(Af) = 0 or v(Af) = 1. Similarly, noting
that ¢oi € afy) is (T,i(@))-proper as well, we also have either Vi(A;EZ)) =0or

Vl(AiEZ)) ) = 1. Therefore Theorem 7.2/ implies that if > .

for some r > 0, then v(A}) =1 = Vi(A;Eg))). On the other hand Theorem

implies that if > cp e VW) < oo for all r > 0, then v(AY) =0 =

Z/I(Aigz))) This proves the corollary. O

o) — o0

We finish the section with the following corollary of Proposition|7.4] which
will be used later. The following estimate reduces the divergence of the series
ZveFu ; e ¥e(M) to the local mixing rate for the as-flow:
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Corollary 7.14. For all sufficiently large r > 0, there exist compact subsets
Q1, Q2 of Qy with non-empty interior such that for all T > 1,

1/2

T T
(/ m(QQO—t)dt) < ) e <</ m(Q2NQaa_y)dt.
0

YELw,r 0
Y(po(v))<oT

Proof. Let Q C Qg be a compact subset with non-empty interior. By Propo-
sition [7.4f1), there exists ro = ro(Q) > 0 such that for all 7" > 1 and for all
T 210,

(7.5)

T T
/ / Z m(QNYQa—tNY Qa_t_s)dtds < Z o~ Yo ()
0 0

'Y,’Y/GF 'Yeru,r
Yo (7)) <0T
Fix a small € > 0 so that Q™ :=[y<,<. @a—s has non-empty interior. Since
we have o
T T pre
[ Sa@ niQanis [ [ Y Q0@ Qaaidsar
0 vel 0 0 ~vel

it follows from (7.5)) that for all r» > 7o,

/ ' D m(Q NYQ ay)dt < > o~ V(e(7)
0

~vel YELu,r
P(po(7))<6T

Now let Q' = Q'(r) C Qp be a compact subset given in Proposition (2)
such that for any 7' > 1,

T
(7.6) / Y om@ NQa)dt> > e ™)
0

~yer Y€y, r
P(po (7)) <oT

Replacing Q' with a larger compact subset, we may assume that int Q" # 0.
Hence it suffices to set Q1 = I'\I'Q™ and Q2 = I'\I'Q’ to finish the proof. O

Remark 7.15. For § = II, Corollary was established in [9] for any
Zariski dense discrete subgroup of G (see [9, Proof of Thm. 6.3]). If I is
a lattice of G, then, together with the Howe-Moore mixing property of the
(finite) Haar measure [I8], it implies that for any non-zero u € a*, we have
Zverw e 2r(n(") = o for all r > 1 large enough where 2p denotes the sum
of all positive roots counted with multiplicity.
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8. TRANSITIVITY SUBGROUP AND ERGODICITY OF DIRECTIONAL FLOWS

In this section, we complete the proof of Theorem by establishing
the equivalence between co-nullity of directional conical sets and conser-
vativity /ergodicity of directional flows. We use the notion of transitivity
subgroup to carry out the Hopf argument in our setting.

Let I' < G be a Zariski dense #-transverse subgroup. We fix a non-zero
vector u € a; and a (I', 0)-proper linear form v € aj. We also fix a pair
v,y of (I';9) and (I', 9o i)-conformal measures on Ay and A;g) respectively.
Denote by m = m(v, 1) the associated BMS measure on €. In this section,
we discuss the ergodicity and conservativity of the directional flow

Ay = {a; == exp(tu) : t € R}

on )y with respect to m. We emphasize that the notion of a transitivity
subgroup plays a key role in showing the A,-ergodicity.

Conservativity of directional flows. Recall the following definitions:
(1) A Borel subset B C €y is called a wandering set for m if for m-a.e.
x € B, we have [*_ 1p(zay)dt < co.
(2) We say that (Qg, Ay, m) is completely conservative if there is no
wandering set B C Qp with m(B) > 0.
(3) We say that (Qg, Ay, m) is completely dissipative if gy is a countable
union of wandering sets modulo m.
The following is proved for § = II in [9, Prop. 4.2] and a similar proof
works for general 6:

Proposition 8.1. The flow (g, Ay, m) is completely conservative (resp.
completely dissipative) if and only if max (V(Ag), yi(A;EZ)))) > 0 (resp. v(Af) =
0= wmi(Ajy)).
Proof. Suppose that there exists a non-wandering subset B with m(B) > 0.
Setting BT := {x € B : limsup,_,, . va;NB # 0}, we have m(BTUB~) > 0.
Since m is locally equivalent to v ® v; ® db, if we have m(B™) > 0, then
v(Ay) > 0 by Lemma Otherwise, if m(B~) > 0, then I/i(Aigg))) > 0. It
shows the following two implications:
(Qp, Ay, m) is completely conservative = max (I/(Ag), I/l(AiEg)))) > 05
(Qp, Ay, m) is completely dissipative < v(Ag) =0 = Vi(AiEZ)))

where the second implication is due to the o-compactness of Q.

Now suppose that v(Ay) > 0 (resp. yi(A;EZ)) > 0). By Theorem [5.6
2 el e PWe(M) = oo (resp. > er;t e~ W) (M) = 50) for some r > 0.

Note that v € Iy} if and only if H;;i(g) (v) — ti(u)]| < r for some t > 0.

Hence it follows from ([7.12)) that v(Ay) =1 (resp. Vi(Aigg)) ) =1). It implies
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that for m-a.e. I'[g] € Qy, we have g™ € A} (resp. g~ € Alég))) and hence

I'[g]at,., is a convergent sequence for some sequence t; — oo (resp. t; —
—00). Hence, for m-a.e. x € Qy, there exists a compact subset B such that
ffooo 1p(xay)dt = oo. This implies the conservativity of (g, Ay, m) by [25]
Lem. 6.1]. O

Density of O-transitivity subgroups.

Definition 8.2 (6-transitivity subgroup). For g € G with (¢7,¢97) € Aé2),
define 7—[% (g) to be the set of all elements a € Ay such that there exist v € T,
s € Sy and a sequence nq,--- ,n; € Ny U Ny such that

(1) ((gn1---ny)", (gn1---n,)7) € Aé2) for all 1 <r < k; and

(2) ygni---ny = gas.
It is not hard to see that #%(g) is a subgroup (cf. [38, Lem. 3.1]).

We deduce the density of transitive subgroups from Theorem

Proposition 8.3. For any g € G with (¢g7,97) € Ag), the subgroup H{(g)
is dense in Ag.

Proof. Note that we have a Zariski dense open subset gNyPy /P C F; this
is well-defined since P C Py. Hence there exists a Zariski dense Schottky
subgroup I'g < I' so that for any loxodromic element v € T'g, its attracting
fixed point ., belongs to gNpPy (cf. [14, Lem. 7.3], [3]). Note that any non-
trivial element of I'y is loxodromic. By Theorem [2.6] it suffices to prove:

(8.1) {ps(A(7)) : ¥ € To} C log H1(g)-

Fixing any non-trivial element vy € I'g, write ¥ = ha,mh~t € hATMh~?
for some h € G. Then A(y) = logay and y, = hP € A; hence yf; = hPy €
gNyPy. Using Py = NyAySy, we can write h € gnnAySy for some 1 € Ny
and n € Ny. By replacing h with gnn, we may assume that

h = gin € gNgNy and ~ = hash™!

for some s € Sy where a is the Ay-component of a, in the decomposition
ay, € A By so that pp(loga,) = loga. It remains to show that a € H%(g).
We first note from v = hash™! and h = gnn that

1= (gas) ((as) "(as)) ((as) " n(as)) 0ty
and hence
(8.2) vgim ((as)~'n~(as)) ((as)"'n"1(as)) = gas.

Writing nqy = n, ng = n, ng = (as) In 1( s) and ny = (as)"'n " (as), we

have nj,ng € Ny and ng,ng € Ny. By (8.2 -, the elements n;, 1 < i < 4,

satisfy the second condition for a € H%(g). We now check the first condition:
o gn1Py = gnPy = hPy =y € Ay and gnywoPyg) = gwoP,g) € Aj(p);

6
o gninaPy = hPy € Ag and gninawo P9y = hwoPy) = y;(fl € Aig);
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o gninansPy = gninaPy € Ag and gninongwoPyg) = v~ gasny 'woPg) =

v~ tgaswoPyg) = v~ tgwo Py € Aip) by (8.2);
o gningnznaPy = v 'gasPy = v~ 'gPy € Ag and gningnznawoPyg) =
grnananzwoPyg) € Ayg)-

This proves that a € Hi‘l (¢9) and completes the proof. O

Stable and unstable foliations for directional flows. Recall the nota-
tion that for g € G, we set

9] = (97,97, B (e.9)) € Fy) x ag.
Lemma 8.4. Let g € G, n € Ny and i € Ny. Then
lgn] = (g%, (9n) ™, BY+ (e, 9));
lgn] = ((g7) ", 97, B0+ (e.9) + G°((9) T, 97) = G%(gT,97)).
Proof. Since (gn)™ = gnPy = gPp, we have
By (e:gn) — B2 (e, 9) = B4 (e,n) =0

and therefore [gn] = (g7, (gn)~, 63+(e, g)). To see the second identity, we

first note that gnwo P9y = gwoPy(s), that is, (gn)~ = g~ . Since ﬁie(_e)(e, n) =
0, we have

G’ ((g7)*,97) = Blyny+ (e.97) +i(B10 (e, 9)) + (B (e, 7))
= Bl (e:97) + (8 (e, 9)).
Since G/(g%,97) = Bl (e.9) +i(8," (c,9)), we get
By (e:97) = By (e, 9) +G°((97) T, 97) = (g7, 97)
proving the second identity. ([

We say a metric d on y admissible if it extends to a metric of the one-
point compactification of Qy (if €y is compact, any metric is admissible).
Since €y is a second countable locally compact Hausdorff space (Theorem
, there exists an admissible metric.

For z € Qy, we define W*%(x) (resp. W5%(x)) to be the set of all y € Qy
such that d(xza¢,yay) — 0 as t — +oo (resp. t — —o0). They form strongly
stable and unstable foliations in Qg with respect to the flow {a;} respectively.

In turns out that with respect to any admissible metric d on €y, the
N, and Ng-orbits are contained in the stable and unstable foliations of the
directional flow {a;} on Qg respectively. The following proposition is impor-
tant in applying Hopf-type arguments; the observation that one can use an
admissible metric in this context is due to Blayac-Canary-Zhu-Zimmer [5].
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Proposition 8.5. Let g € G be such that [g] € Qp. For any compact subsets
U C Ny and U C Ny, we have, as t — 400

diam ({I'[gn] € Qo :n e U} - ar) — 0;
diam ({T'[gi] € Qo : 7 €U} - a—y) — 0

where the diameter is computed with respect to an admissible metric d on
Q. In particular,

(1) {T'[gn] € Qg : n € Np} C W*(T'[g]);

(2) {T'[gn] € Qp : 1 € Ny} C W*(T'[g]).

Proof. Let & be the point at infinity in the one-point compactification of
Qg. For each € > 0, set Q. = Qp if Qy is compact and Q. = {x € Qp :
d(z, #) > £/2} otherwise, and choose a compact lift Q. C Qy of Q.. Let
[g] = (€,m,v) € Q. To show the first claim, suppose not. Then there exist
e > 0, a sequence t; — oo and convergent sequences n;,n, € Ny such that
[gni], [gnt] € Qg and d(T[gn,]as,, T[gnilas,) > € for all i > 1. By passing to a
subsequence and switching n; and n if necessary, we may assume that for
all ¢ > 1, vilgnilas, € Q- for some ~; € I'. After passing to a subsequence,
we have the convergence

(8.3)

yilgnilay, = (vi€, vi(gn:)~, v + 5?(7{1, e) + tyu) = (§o, M0, v0) as i — oo,

for some (£o,70,v0) € Qe. In particular, for any linear form ¢ € a; positive
on a;r, we must have gb(ﬁ?(’y{l, €)) — —oo as i — oo and the sequence 7; is
unbounded.

Since the sequence n; € Ny converges, the sequence (£, (gn;)”) € AgQ) is
convergent as well. Moreover, implies that the sequence v;(&, (gn;)~) €
AéQ) is precompact. By the argument as in the proof of [22, Lem. 9.10,

Prop. 9.11], for any compact subset C' C Ay with {} x C' C A(92), we
have v;C — 19 as ¢ — oo. Since n, € Ny is a convergent sequence and

(& {(gn})~}) €AY, we have i(gnf)~ = mo. Since [gn]] = (&, (gnf) ™) by
Lemma we deduce from ({8.3]) that

vilgnilar, = (vi&,vi(gni) ", v+ BL(v; ' €) + tiu) = (€0, m0,v0) as i — oo.

Therefore, two sequences ~;[gn;]a;, and ~;[gn}]a:, converge to the same limit,
which is a contradiction to the assumption d(I'[gn;]as,;, I'[gn}]as,) > € for all
1 > 1. Hence the first claim is proved.

For the second claim, suppose to the contrary that for some £ > 0, there
exist a sequence t; — oo and convergent sequences 7;, 1, € Ny such that
[g7i], [g7t] € Qp and d(T[gnila_y,, T[gntJa_s,) > € for all i > 1. As above,
we may then assume that for all i > 1, v;[gn;la_y, € Q. for some sequence
v; € I'. By passing to a subsequence, we have the convergence

’Yi[ghi]a—ti — (61577171)1) as ¢ — 00
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for some (&1,m1,v1) € QE. By Lemma we have for each 7 > 1 that
vilgna] = i ((gna)F,m, 0 + G ((gma) Fom) = G7(€,m))

= (vilgra)*vim v + G ((gra) m) — GUEm) + Bl s (v te))
and therefore we have that as i — oo,

Yilgni) T = &
(8.4) Yin = M

v+ G ((g7a) ", m) = G (&) + Bl (1 1s€) — tiu = vn.
Since the sequence 7; € Ny converges, the sequence ((gi;)*,n) € AéQ) is
convergent as well. Hence G%((g7n;)T,n) is a bounded sequence in ag. It

then follows from ({8.4) that for any linear form ¢ € aj positive on a;r, we
have

(b(ﬁ(egmﬁ(%_lve)) — 00 ast— oo
and the sequence ~; is unbounded.

Again, by the same argument as in the proof of [22, Lem. 9.10, Prop.

9.11], we obtain that for any compact subset C' C Ay such that C x {n} C
Aé2), we have v;C — & as i — co. Since the sequence ((gn})*,n) € Aé2) is
convergent as mentioned above, we also have v;(gn;)"™ — & as i — oco. It

then follows from Lemma [R.4] that
vilgnd = (vilgna)tvim v + (v ) + G (vilgni) T, vm) — G (i€, vim) ) 5
Yilgn) = (vi(gni) T vim v + BL(; T €) + G0 (lgny) T vim) — G0 (g, vm) ) -

Since both sequences (v;(gni)™,vin) and (vi(gni)*,vin) converge to (&1,m1)
and vi[gnila—s, — (&1,m,v1) as ¢ — oo, it follows that

%[gﬁ;]a_ti — (&1,m,v1) asi— oo.

Again, two sequences y;[gn;|la—, and v;[gni]a_s, converge to the same limit,
contradicting the assumption that d(I'[gn;|a—,, ['[gnt]a_s,) > € for all i > 1.
This proves (2). O

For a (I',0)-proper form ¢ € aj, the action of A, = {a; : t € R} on
)y induces a right A,-action on Qg4 via the projection €y — € where €2,
is defined in (6.4). Note that when u € int Ly, the condition ¢(u) > 0 is
satisfied for any (I', 0)-proper ¢ € aj [22], Lem. 4.3].

Proposition 8.6. Let ¢ € aj be a (I',0)-proper form such that ¢(u) > 0
and g € G be such that [g]y € Qy. For any compact subsets U C Ny and
U C Ny, we have, as t — +o0,

diam ({I'[gn]y € Qg : n € U} - a;) — 0;
diam ({T[gn], € Qp 12 €U} -a_y) — 0
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where the diameter is computed with respect to an admissz’bleﬁ metric d on
Qy. In particular, we have

{T'lgn]y € Qg : n € Ngj € W*(T'[gly);
{Tlgnly € Qg : 1 € No} € W(T[gly),

where W**(x) (resp. W**(x)) is the set of ally € Q4 such that d(zas, yas) —
0 ast — 400 (resp. t = —00) for x € Q.

Proof. The condition ¢(u) > 0 ensures that the convergence of the sequences
BB, €) + ti(u) in (B3 and (87, (77" )~ tip(u) in (BA) implies
that qﬁ(ﬂg(’yi_l, e)) — —oo and (b(ﬂ?gm)* (v; ', €e)) — 4oo respectively. Given
this, we can proceed exactly as in the proof of Proposition [8.5] replacing €2y
by Q. 0

Conservativity of general actions. Let H be a connected subgroup of
A. Denote by dh the Haar measure on H. Consider the dynamical system
(H,Q, \) where Q) is a separable, locally compact and o-compact topological
space on which H acts continuously and preserving a Radon measure A on ().
A Borel subset B C Q2 is called wandering if [, 1g(h.w)dh < co for A-almost
all w € B. If there is no wandering subset of positive measure, the system
is called completely conservative. If Q is a countable union of wandering
subsets, then the system is called completely dissipative. An ergodic system
(H,$, \) is either completely conservative or completely dissipative by the
Hopf decomposition theorem.

Lemma 8.7. If (Qy, Ag, m) is completely conservative, then it is Ag-ergodic.

Proof. Choose any ¢ € a; which is positive on a;; in particular, ¢ is (T, 0)-
proper. Consider Q¢, 14 and m? = mfi,,i as defined in and . The
conservativity of the Ap-action on (g, m) then implies the conservativity
of the R-action on (245, m?), and the Ag-ergodicity on (£, m) follows if we
show the ergodicity of (€24, R, m?).

Let f be a bounded m?-measurable R-invariant function on Q,. We need
to show that f is constant m?-a.e. Choose any admissible metric on 14 which
exists by Theorem [6.1] and apply Proposition 8.6 By a theorem of Coudéne
[13, Sec. 2], it follows that there exists an m®-conull subset Wy C € such
that if T'[g]y, T[gn]s € Wo for g € G and n € Ny U Ny, then

f(Tlgly) = f(Tlgnls)-
Let f : Q¢ — Rand Wy C (~2¢, be I'-invariant lifts of f and Wy respectively.
Since f is R-invariant, we may assume that W, is R-invariant as well. For
any [glg, My € Q4 with g7 = h*, we can find n € Ny and a € Ay such
that [gnaly, = [h]y by (2-6). Similarly, if g~ = h~, we can find n € Ny and
a € Ag such that [gnal, = [h]g. Hence, by the R-invariance of f and hence

5I,e.7 it extends to a metric on the one-point compactification of 24
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of f, for any (£,7,s),(&,n/,s') € Wy such that £ = & or n = 1/, we have

f(&mn,8) = f(&n',8).
Let

Wt .= {£ €y (§,77’,8) S Wg for all s € R and y;-a.e. 77'};
W™= {n € Ayp : (¢,n,5) € W for all s € R and v-a.e. £'}.

Then v(W*) = 15(W~) = 1 by Fubini’s theorem. Hence the set W' :=
(WHtxW=)n Aéz) has full v ® vi-measure. We choose a v ® vj-conull subset
W C W’ such that W x R € Wy. Let (€,7), (¢,7/) € W. Then there exists
m € Ajg) so that (& m1), (§';m) € W. Hence for any s € R, we get

f~(§77778> = JF(§777173) = f~(§/7n173) = f(é./anlas)'
Therefore, f is constant on W x R, and hence f is constant m?-a.e., com-
pleting the proof. ([

Ergodicity of directional flows. We now prove the following analog of
the Hopf dichotomy:

Proposition 8.8. The directional flow (g, Ay, m) is completely conserva-
tive if and only if (Qg, Ay, m) is ergodic.

Proof. Suppose that (9, Ay, m) is completely conservative. Since this im-
plies that (g, Ag, m) is completely conservative, we have (g, Ag, m) is er-
godic by Lemma Let f : Q9 — R be a bounded measurable function
which is A,-invariant. By the Ag-ergodicity, it suffices to prove that f is
Ap-invariant.

Choose any admissible metric on €y which exists by Theorem Sim-
ilarly to the proof of Lemma Proposition and [13] imply that there
exists an m-conull subset Wy C €y such that if I'[g],'[gn] € W, for g € G
and n € Ny U ]\79, then

f(Tlg]) = f(Tgn]).
Consider the I'-invariant lifts f : 0y — R and the m-conull subset Wy C
of f and Wy respectively. Let

Wy = {(&n) € AP : (¢,m,b) € Wy for db-a.e. b€ ag};

W={(&n) e Wi : (&), (€ ,n) € Wi for v-a.e. £ € Ag,v-a.e. i € Ny}
By Fubini’s theorem, W has the full ¥ ® v;-measure and we may assume that

W is I-invariant as well. For all small £ > 0, we define fg :Q — Rby

Fa) = iz, [, T

where Ag. = {a € Ap : |logal| < e}. Then for g € G and n € Ny U Ny

such that (g%, ), ((gn)"*, (gn)~) € W, we have f.([g]) = f(lgn]) and f. is
continuous on [g]Ag.
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Since f = lim,._,g fs m-a.e., it suffices to show that fs is Ap-invariant.
Fix g € G such that (¢g*,¢97) € W. By Proposition and the continuity
of fg on each Ag-orbit, it is again sufficient to show that fa is invariant
under H%(g). Let a € H%(g). Then there exist v € T' and a sequence
N, -+ ,nE € Ny U Ny such that

(1) (gn1---n.)" € Ag and (gng ---n,)~ € Aj(p) for all 1 <7 < k; and
(2) gni---ng =~ygas for some s € Sy.
For each ¢ = 1,--- ,k, we denote by N; = Ny if n; € Ny and N; = Ny if
n; € Ny. We may assume that N; # Nijyq1 for all 1 <4 < k— 1. Noting
that W is I'-invariant, we consider a sequence of k-tuples (ny j,--- ,ng ;) €
Nj X -+ X Ny as follows:

Case 1: N, = Ny. In this case, we have

(v9)" = (gna---n)" and  (v9)” = (gna---mp-1)”.
Take a sequence of k-tuples (n1;,---,nx;) € N1 X --- x N}, converging to
(n1,--+ ,ng) as j — oo so that for each j, we have

(1) ((gnij---nrj) T, (gnij---nrj)”) € Wiorall 1 <r <k;

(2) (vg)” = (gnaj---nk-15)"; and

(3) (vg)* = (gnag - -mey)™
This is possible since (g7, 97), ((v9)", (yvg)~) € W and W has the full v®@v;-
measure. Since ny ; € Np, we indeed have (vg)~ = (gn1;---nk;)~ as well,
and therefore gnyj---ny; = ~vga;s; for some a; € Ay and s; € Sp. In
particular, we have

lgnij - mej] = [yga;) € Qo for all j > 1.

Case 2: N, = Ny. In this case, we have

(v9)* = (gni---ne—1)™ and  (vg)” = (gni---nx)”.
We then take a sequence of k-tuples (ny j, -+ ,n;) € N1 X --- x Nj, con-
verging to (ni,---,ng) as j — oo so that for each j, we have

(1) ((gnag---neg) T, (gnig---npj)~) € Wforall 1 <r < k;

(2) (vg)" = (gn1 -+ mp—15)"; and

3) (vg)™ = (gna---mwy) ™
Since ny; € Ny, we have (yg)t = (gnij---ng ;)" as well, and therefore
gni;---ny; = vga;s; for some a; € Ag and s; € Sy. In particular, we have

lgni ;- nx ] = [vga;] € Qg for all j > 1.

In either case, we have that for each 7 > 1,

fs(hgaj]) = fs([gnl,j g gl) = fs([gnl,j cengo1g]) == fe([g])-
Since fa is I'-invariant, it implies

J=(l9a;]) = f(lg]) for all j > 1.
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Since a; converges to a as j — oo, we get f-([ga]) = f-([g]) by the continuity
of fg on gAg. This shows that fg is invariant under Hi‘l (g), finishing the proof
of ergodicity.

Now suppose that the flow (€, A,, m) is ergodic. Then by the Hopf
decomposition theorem, it is either completely conservative or completely
dissipative. Suppose to the contrary that (g, Ay, m) is completely dissi-
pative. Then it is isomorphic to a translation on R with respect to the
Lebesgue measure. This yields a contradiction as in proof of [22 Thm.
10.2], as we recall for readers’ convenience. Since (g, Ay, m) is isomorphic
to a translation on R, (v x 1) ]Aéz> is supported on the single I'-orbit I'(&o, 70)

by the ergodicity of (F,Ag2), v X vj). Since v and v; also have atoms on &
and 7o respectively, we have

(T¢o x Tno) N AP < T(¢0,m0).

We deduce from the #-antipodality of I" that I'¢y C T’y &oU{n,} where I, =
Stabr(no) and n; is the image of 1y under the I'-equivariant homeomorphism
Aip) — Ag obtained in [22, Lem. 9.5]. Since I';, =TI';/, we have

(8.5) Té C Tyyéo U {mo}-

Recall that the I'-action on Ay is a non-elementary convergence group action
[19, Thm. 4.16] and hence there must be infintely many accumulation points
of I'¢y. On the other hand, as I‘% is an elementary subgroup, the orbit
' 60 accumulates at most at two points of Ag ([37], [8]). This yields a
contradiction, and therefore (29, A, m) is completely conservative. O

Proof of Theorem The equivalences between (1)-(3) follow from
Proposition and Proposition Suppose that m is u-balanced. Corol-
lary implies that (1) < (4) < (5). That the first case occurs only when
¥(u) = ¥ (u) > 0 is a consequence of Lemma

9. ERCGODIC DICHOTOMY FOR SUBSPACE FLOWS

In this section, we extend our ergodic dichotomy to the action of any
connected subgroup of Ay of arbitrary dimension. In fact, we deduce this
from the ergodic dichotomy for directional flows.

Let I' be a Zariski dense f-transverse subgroup of G. Let W < ay be a
non-zero linear subspace and set Ay = exp W. We consider the subspace
flow Ay on Qy and explain how the proof of Theorem extends to this
setting so that we obtain Theorem adapting the argument of Pozzetti-
Sambarino [28] on relating the subspace flows with directional flows.

For R > 0, we set

Pwr={y€Tl:|u(y) - W[ <R}
If W = ag, then I'iy g =T for all R > 0.
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Definition 9.1 (W-conical points). We say that £ € Fy is a W-conical point
of T if there exist R > 0 and a sequence 7; € I'yy g such that £ € O%(o, Yi0)
for all ¢ > 1. We denote by Agv the set of all W-conical points of T'.

Fix a (I', §)-proper linear form 1 € aj. Let v,1; be a pair of (I',¢) and
(I', 9 oi)-conformal measures on Ay and A;g) respectively, and let m = m,,
denote the associated BMS measure on .

If Wn Ly =40} or W C ker, then the (T',§)-proper hypothesis on

implies that I'yy g is finite for all R > 0, and hence AZV = Aigg[)/) = () and
(Q9, Ay, m) is completely dissipative and non-ergodic.
The rest of this section is now devoted to proving Theorem assuming

that
e WNLy# {0}
o W & ker.
Recalling that ¢ > 0 on Ly by [22, Lem. 4.3], the intersection W N ker ¢

has codimension one in W and intersects int £y only at 0.
Set

W =uag/(WNkery) and Qo := A§2) x W°.

Recalling the spaces Qw and Qy defined in (6.4), the projection Qy — Qw
factors through Qe in a I'-equivariant way. Since the I'-action on €2 is

properly discontinuous (Theorem [6.1), the induced T-action on Qe is also
properly discontinuous. Moreover, the trivial vector bundle €y — € in

factors through

(9.1) Quro == D\ Qyyo.

Hence we have a W N ker ¢-equivariant homeomorphism:
Qg ~ Qo x (W Nkere).

Denote by m’ the Ay-invariant Radon measure on Qo such that m =
m’ ® Lebywrker -

The main point of the proof of Theorem is to relate the action of Ay,
on 2y with that of a directional flow on Q. Once we do that, we can
proceed similarly to the proof of Theorem

Since W ¢ ker 1), there exists u € W with ¥ (u) # 0. By replacing u by
—u if necessary, we fix u € W such that

Y(u) > 0.

Set A, = Ary = {aw, = exp(tu) : t € R} and consider the A,-action on
(Qo,m"). Since W = Ru + (W Nker ), we have:

Lemma 9.2. The Ay -action on (g, m) is ergodic (resp. completely con-
servative, non-ergodic, completely dissipative) if and only if the Ay-action
on (Qwe, m") ergodic (resp. completely conservative, non-ergodic, completely
dissipative).
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Among the ingredients for the proof of Theorem Lemma [5.2] and
Proposition [5.3| were repeatedly used and played basic roles in the proof.
The following analogue of Lemma, [5.2| can be proved by a similar argument
as in the proof of Lemma [5.2

Lemma 9.3. Suppose that d; € ay,,, exp(WNker @ZJ)B;, t; >0and~y; €T are
sequences such that v;hym;d; is bounded for some bounded sequence h; € G
with h; P € A and m; € My. Then there exists w € W N My such that, after
passing to a subsequence, we have that for all i > 1,

d; e wATw™L

Proof. As in the proof of Lemma there exists a Weyl element w €
W such that d; € wATw™" for all i > 1 after passing to a subsequence,
and moreover w € My or w € Mywy. We claim that the latter case w €
Mpwo cannot happen. Suppose that w € Mywy and write d; = ay;,a:b; for
a; € exp(W Nkert) and b; € B, . Since w € Mpwy, we get o) (di) =
log(wo_latiuaiwo) for all 4 > 1. In particular, t;u + loga; € —a;.

Since the sequence v;h;m;d; is bounded by the hypothesis, the sequence
14i(0) (v h - ti(e)(d:) is bounded as well by Lemma Since fi;(p) (vl =
— Aduy, (po(7i)) and pyg)(di) = Adw, (tiv + loga;), it follows that pg(v;) =
—(t;u +log a;) + ¢; for some bounded sequence ¢; € ag. Applying 1, we get
Y(po(vi)) = —tip(u) + (g:) since loga; € kery. Since t(u) > 0, ¥(uo(7i))
is uniformly bounded. The (T, #)-properness of 1 implies that ~; is a finite
sequence, yielding a contradiction. Therefore, the case w € Mywy cannot
occur; so w € Mpy. O

Let p : ag — W?® denote the natural projection map. Choosing a norm
| - || on W€, the map p is Lipschitz. Then for a constant ¢ > 1 depending
on the Lipschitz constant of p as well as norms on ay and W<, we have for
all R > 0,

{veT:lp(po(v))—Rul| < R/c} CTwr C{y €T : |p(ue(y))—Rul < cR}.

Note also that ¥ (p(ue(7y))) = ¥ (ug(7y)) for all v € T.
Using this relation and Lemma similar arguments as in Sections

and |Z| apply to the A,-flow on Qyye, replacing I',, with I'yyg. In partic-
ular, applying Lemma in place of Lemma the following analogs of
Proposition and Lemma [5.5{2) respectively can be proved similarly.

Proposition 9.4. Let Q C Qo be a compact subset. There are positive
constants C1 = C1(Q),Ca = C2(Q) and R = R(Q) such that if [h] € QN
YQa_ty for some h € G, v €' and t > 0, then the following hold:

(1) lp(ue()) — tull < Cr;

(2) (h*,h7) € O%(0,70) x O}_(zg) (v0,0);

(3) G°(hT,h7)|l < Ca.

Lemma 9.5. The following are equivalent for any £ € Ag:
(1) £ e A,
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(2) £ = gPy € Fy for some g € G such that [g] € Qp and lim sup[g](Aw N
A%) £ 0;

(3) the sequence [(§,7,v)]atu is precompact in Qo for some n € Ayg),
v e We® and t; — oo.

In particular, a W-conical point of I' is a u-conical point for the action of
A, on Qe and vice versa.

Since the recurrence of the A,-flow on Qo is related to the W-conical
set as stated in Lemma the arguments in Section [8| for the directional
flow (Qwe, Ay, m’) yield the following equivalences:

(9.2)

max (V(Agv), I/i(AiEZI)/)))

Qwo Au, m'

0<( ) is completely conservative
& (Qwe, Ay, m’) is ergodic;
max (V(Agv), ui(A;(W))) 0 < (Qwe, Ay, m’) is completely dissipative
& (e, Ay, m’) is non-ergodic.
This proves the equivalence (1) < (2) < (3) of Theorem

Definition 9.6. We say that m is W-balanced if there exists u € W with
¥(u) > 0 such that (Qpe, m’) is u-balanced.

To complete the proof of Theorem it remains to prove the following:

Theorem 9.7. Suppose that m is W -balanced. The following are equivalent:
(1) Z%FWR e ¥ke() = o for some R > 0;

(2) v(A)) =1 =u(Aly)).

Similarly, the following are also equivalent:

(1) > erw a e V(™) < 0o for all R > 0;

(2) v(A)) =0 = u(Aly)).

In the rest of this section, we assume that m is W-balanced, and choose
u € W with ¢(u) > 0 so that m’ is u-balanced. Following the proof of
Proposition while applying Proposition in the place of Proposition

[6.3] we get:
Proposition 9.8. Suppose that Z’YGFWR e () = o for some R > 0.
Set § = (u) > 0.

(1) For any compact subset Q C Quyye, there exists R = R(Q) > 0 such
that for any T > 1, we have

/ / Z QQVQG tul VY QCL (t+s)u)dtd$ < Z @*w(ﬂﬁ(w)

v,y €T YEl'w,r
P(po (7)) <oT
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(2) For any R > 0, there exists a compact subset Q' = Q'(R) C Qo

such that
T
/ Z Q' NYQ ayy)dt > Z e~ V(ro(7))
0 ~verl vel'w,r

P(po(1))<6T

The proof of Theorem ﬁ works verbatim for AgV so that the convergence
Z’YEFW,R e V) < oo for all R > 0 implies that v(A}/) = 0. Using
Proposition together with the W-balanced condition, Theorem can
now be proved by the same argument as in the proof of Corollary [7.13]

Remark 9.9. The W-balanced condition on m was needed because @ and @Q’
in Proposition may not be the same in principle. However when W = ay,
we have I'yygp = T for any R > 0 and @ and @ in Proposition can be
taken to be the same set, and hence the WW-balanced condition is not needed
in the proof of Theorem

Similarly to Corollary we have the following estimates which reduce
the divergence of the series Z’YGFWR e ¥e(M) to the local mixing rate for
the a;-flow:

Corollary 9.10. For all sufficiently large R > 0, there exist compact subsets
Q1, Q2 of Qe with non-empty interior such that for all T > 1,

T 1/2
(/0 m'(Q1 N Q1at)dt)

10. DICHOTOMY THEOREMS FOR ANOSOV SUBGROUPS

T
< Y et « / m’(QaNQ2a_;)dt.

vel'w,r 0
P(pe (7)) <0T

In this last section, we focus on Anosov subgroups and establish the codi-
mension dichotomy for ergodicity of the subspace flow given by exp W, for
a linear subspace W < ay. Using the local mixing theorem for directional
flows for Anosov subgroups, we show that the Poincaré series associated to
W diverges if and only if the codimension of the subspace W in ay is at most
2.

Let I' < G be a Zariski dense #-Anosov subgroup defined as in the in-
troduction. Recall that £y C a; denotes the 6-limit cone of I'. Denote
by 7}9 C ay the set of all linear forms tangent to the growth indicator @bl‘i

and by ./\/lie the set of all I'-conformal measures on Ayg. There are one-to-one
correspondences between the following sets ([22, Coro. 1.12], [34, Thm. A]):

P(int £g) +— T +— M.

Namely, for each unit vector v € int Ly, there exists a unique v, € aj; which
is tangent to 1/}1‘2 at v and a unique (T, %, )-conformal measure v, supported

on Ag. The linear form v, oi € ai*(e) is tangent to wip(g) at i(v) and the
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measure vy, is a (I', ¢, o i)-conformal measure on A;g). Denote by m, the
BMS measure on {2y associated with the pair (v, vi(y))-

What distinguishes 6-Anosov subgroups from general #-transverse sub-
groups is that €y, is a compact metric space ([33] and [I1, Appendix]) and
hence )y is a vector bundle over a compact space €1, with fiber ker, ~
R#0~1 We use the the following local mixing for directional flows due to
Sambarino.

Theorem 10.1 ([34, Thm. 2.5.2], see also [12] for § =1I). LetI' < G be a
0-Anosov subgroup and v € int Lg. Then there exists k, > 0 such that for

any fla f2 S CC(QG))

lim t fl( )fQ(ZEeXp(t’U))dmv(:E) = vav(fl)mv(fQ)'

t—o00
In particular, for any v € int Ly, m,, is v-balanced.

Corollary 10.2. For any v € int Ly and any bounded Borel subset Q C
with non-empty interior, we have for any T > 2,

'Ss T e
/Oz:mv(Qﬁ’YQeXp(—ztv))dtA/1 t dt.

~yel'

Proof. Given a bounded Borel subset Q C Qg with non-empty interior, we
choose fi1, fo € C.(€) so that 0 < f; < Ig < f2 and i, (f1) > 0. For each
i = 1,2, we define the function f; € Cc(€) by fi(T'lg]) = >, cr fi(vg). By
Theorem [10.1} for each ¢ = 1,2, we have that for all ¢ > 1,

/ > fitlglexp(to) fillg)dmu([g]) = | fi(w exp(tv)) fi(z)dm, (w)

0 vel Qo

By Corollary and Corollary we get:

Proposition 10.3. Let v € int Ly and § = ¥, (v). For all sufficiently large
r > 0, we have that for all T > 2,

T 1—# 1/2 T 1—#0
(10.1) (/ t ) < > el <</ t2 dt.
1 1

’YEF’U,’V‘
Yo (pe(v))<6T

Theorem 10.4. For any v € int Ly and u € a; — {0}, the following are

equivalent:

(1) #6 < 3 and Ru = Ro;
(2) Yyer,, € W) = oo for some r > 0.
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0o | 1=#0 . . . .
Proof. Note that [[°¢ 2 dt = oo if and only if #6 < 3. Hence (1) implies
(2) by Propositionlm To show the implication (2) = (1), suppose that
> el e o)) = o0 for some r > 0. By Lemma Yo(u) = Vo (u).
It follows from the strict concavity of ¥% [22, Thm. 12.2] that v, can be
tangent to 1/11‘2 only in the direction Rv. Therefore Ru = Rv. Now #6 < 3
follows from Proposition [10.3 O

Here is the special case of Theorem [I.6] for dim W = 1:

Theorem 10.5. Let I' < G be a Zariski dense 0-Anosov subgroup. For any
u € int Ly, the following are equivalent:
(1) #6 < 3 (resp. #0 > 4);
(2) vu(Ag) =1 (resp. vy (Ay) =0);
(3) (g, Ay, my,) is ergodic and completely conservative (resp. non-ergodic
and completely dissipative);
(4) Z%F%R e Vule() = 0o for some R > 0 (resp. S
oo for all R > 0).

Proof. Since m,, is u-balanced by Theorem the equivalences between
(2)-(4) follow from Theorem By Theorem we have (1) & (4). O

er, g V) <

Codimension dichotomy for Anosov subgroups. We now deduce The-
orem We use the notation from Theorem and set ¢ = 1,. As in
Section [0} we consider the quotient space W = ag/(W N kert) and set
Qo = F\A((f) x W¢ (see (0.1))). We denote by m/, the Ag-invariant Radon
measure on Qo such that m, = m}, ® Lebwniery- As before, Qe is a
vector bundle over a compact metric space €),, with fiber RIMW=1 "and the
local mixing theorem for the {a, }-flow on Qo [34, Thm. 2.5.2] says that
there exists k,, > 0 such that for any f1, fa € Ce(Qyye),

dim W°—1

(10.2)  lim ¢° 2 fi(@) fa(wap,)dmi,(z) = wumy, (f1)mg,(f2).

t—o0 QWO

We then obtain the following version of Proposition [10.3] using Corollary

[9.70/ and [T0.2¢

Proposition 10.6. For 6 = ¢(u) > 0 and all sufficiently large R > 0, we
have that

T 1—dim W° 1/2 T 1—dim W°
(10.3) /tz at) < > e—w(“0(7)><</ t 2 dt
1

YEl'w,Rr 1
Y(pe(7))<0T

where the implied constants are independent of T > 2.

Since dim W° — 1 = codim W and hence dim W® < 3 < codim W < 2,
the following is immediate from Proposition [I0.6}
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Proposition 10.7. IfI' is a Zariski dense 8-Anosov subgroup of G, then

codimW < 2 <— Z e P (M) = for some R > 0.
vel'w,r

Hence the equivalence (1) < (4) in Theorem [L.6| follows. Since the local
mixing for (Qwe, {aw,}, m),) implies that m/, is u-balanced, and hence m,, is
W-balanced, we can apply Theorem to obtain the equivalences (2)-(4)
in Theorem [L.6l Therefore Theorem [L.6] follows.
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