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Abstract. In this paper, we study the ergodicity of a one-parameter
diagonalizable subgroup of a connected semisimple real algebraic group
G acting on a homogeneous space or, more generally, a homogeneous-like
space, equipped with a Bowen-Margulis-Sullivan type measure. These
flow spaces are associated with Anosov subgroups of G, or more gener-
ally, with transverse subgroups of G.

We obtain an ergodicity criterion similar to the Hopf-Tsuji-Sullivan
dichotomy for the ergodicity of the geodesic flow on hyperbolic man-
ifolds. In addition, we extend this criterion to the action of any con-
nected diagonal subgroup of arbitrary dimension. Our criterion provides
a codimension dichotomy on the ergodicity of a connected diagonaliz-
able subgroup for general Anosov subgroups. This generalizes an earlier
work by Burger-Landesberg-Lee-Oh for Borel Anosov subgroups.
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1. Introduction

A continuous flow ϕt on a phase space X with an invariant measure m
is called ergodic if any invariant measurable subset has measure zero or co-
measure zero.

If m is a probability measure on X, the Birkhoff ergodic theorem states
that the ergodicity of the dynamical system (X,ϕt,m) is equivalent to the

Oh is partially supported by the NSF grant No. DMS-1900101.
1



2 DONGRYUL M. KIM, HEE OH, AND YAHUI WANG

condition that for any f ∈ L1(X,m), the time average along the trajectory
of almost every point x ∈ X is equal to the space average with respect to
m:

lim
T→∞

1

T

∫ T

0
f(ϕt(x))dt =

∫
X
f dm for m-almost all x ∈ X.

Hence, ergodicity ensures that the system’s behavior, when observed over a
long time, reflects the statistical properties of the entire phase space. This
property is crucial in understanding the long-term behavior of dynamical
systems.

The main dynamical system of interest in homogeneous dynamics arises
from the quotient Γ\G of a connected semisimple real algebraic group G by
a discrete subgroup Γ of G. Any one-parameter subgroup H = {ϕt : t ∈ R}
of G acts on Γ\G by translations on the right, giving rise to a continuous
dynamical system (Γ\G,H). The ergodicity in finite-volume homogeneous
dynamics is well understood thanks to the Moore ergodicity theorem: if Γ is
an irreducible lattice, any non-compact closed subgroup H acts ergodically
on (Γ\G,mG) where mG denotes a G-invariant (finite) measure on Γ\G.

The concept of ergodicity becomes much more delicate and challenging to
prove for an infinite measure system. Firstly, the Birkhoff ergodic theorem
no longer holds, but we have the Hopf ratio ergodic theorem: for a conser-
vative and ergodic action of a continuous flow ϕt on a σ-finite measure space
(X,m), for any f, g ∈ L1(X,m) with g > 0, we have

lim
T→∞

∫ T
0 f(ϕt(x))dt∫ T
0 g(ϕt(x))dt

=

∫
X f dm∫
X g dm

for m-almost all x ∈ X.

When m(X) = ∞, while the denominator
∫ T
0 g(ϕt(x))dt depends on the

initial position x, unlike in the finite measure case, the ratio of time aver-
ages still converges to the ratio of space averages. In particular, almost all
trajectories are dense in the phase space.

One of the first significant results on ergodicity in infinite measure sys-
tems is the Hopf-Tsuji-Sullivan dichotomy for the geodesic flow on hyper-
bolic manifolds with respect to Bowen-Margulis-Sullivan measures. The
hyperbolic nature of the geodesic flow and the quasi-product structure of
Bowen-Margulis-Sullivan measures, with respect to the stable and unstable
foliations for the geodesic flow, have been crucial in their approach. This
methodology was successfully extended to a one-parameter diagonalizable
flow on higher rank homogeneous spaces, which are quotients of a connected
semisimple real algebraic group of higher rank by Borel Anosov subgroups,
by Burger-Landesberg-Lee-Oh [9]. The main aim of this paper is to gener-
alize this result for general Anosov subgroups that are not necessarily Borel
Anosov, as well as to address the action of any connected diagonalizable
subgroup.
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Background and Motivation. To give some background, let G be a con-
nected semisimple real algebraic group. Fix a Cartan decomposition

G = KA+K

where K is a maximal compact subgroup of G and A+ = exp a+ is a positive
Weyl chamber of a maximal split torus A of G. Let M be the centralizer of
A in K. For any Zariski dense discrete subgroup Γ of G, we have a natural
locally compact Hausdorff space Γ\G/M on which A acts by translations
on the right. For any non-zero vector u ∈ a+, consider the one-parameter
subgroup Au = {exp tu : t ∈ R}. The ergodicity criterion for the Au-
action on Γ\G/M with respect to a Bowen-Margulis-Sullivan measure was
obtained by Burger-Landesberg-Lee-Oh [9] in terms of the divergence of an
appropriate directional Poincaré series. In particular, it was shown that
for Borel Anosov subgroups of G (in other words, Anosov subgroups with
respect to a minimal parabolic subgroup), the ergodicity of the Au-action is
completely determined by the rank of G. Soon after [9] appeared, Sambarino
[34] gave a different proof for this rank dichotomy, but it applied only when
rankG ̸= 3.

On the other hand, the ergodicity criterion of [9] is not very useful in prac-
tice for Anosov subgroups that are not Borel Anosov, since there seems to
be no way to decide whether the relevant directional Poincaré series diverges
or not.

In this paper, we consider a different dynamical space than Γ\G/M de-
pending on the Anosov type of Γ. Let θ be a non-empty subset of simple
roots. Consider the standard parabolic subgroup Pθ = AθSθNθ where AθSθ
is a Levi-subgroup with Aθ being the central real split torus and Nθ is the
unipotent radical. The double quotient space Γ\G/Sθ is precisely Γ\G/M
when Pθ is a minimal parabolic subgroup, but it is not Hausdorff for a gen-
eral Pθ. If Γ is a θ-Anosov subgroup, there exists a locally compact Hausdorff
subspace Ωθ ⊂ Γ\G/Sθ on which Aθ acts by translations. We will obtain
the ergodicity criterion for the action of a one-parameter subgroup of Aθ on
Ωθ in terms of the associated directional Poincaré series.

In fact, this viewpoint and our criterion can be applied to a much more
general class of discrete subgroups, called θ-transverse subgroups. For θ-
Anosov subgroups, our criterion provides the dichotomy for the ergodicity
of Au on Ωθ with respect to a Bowen-Margulis-Sullivan measure in terms
of the cardinality of θ. When #θ = 3, this was an open question while the
other cases were obtained by Sambarino [34]. Although our proof closely
follows the general strategy of [9], a major difficulty arises from the non-
compactness of Sθ which requires new ideas and new technical arguments
to overcome.

Flow space. To discuss θ-transverse subgroups and the associated flow
space Ωθ, we need to introduce some notation and definitions. We denote by
µ : G→ a+ the Cartan projection defined by the condition g ∈ K expµ(g)K
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for g ∈ G. Let Π be the set of all simple roots for (LieG, a+). Let i : Π→ Π
denote the opposition involution (see (2.1)). Fix a non-empty subset

θ ⊂ Π.

Consider the θ-boundary:
Fθ = G/Pθ,

where Pθ is the standard parabolic subgroup associated with θ. We say that
two points ξ ∈ Fθ and η ∈ Fi(θ) are in general position if the pair (ξ, η)
belongs to the unique open G-orbit in Fθ × Fi(θ) under the diagonal action
of G.

Let Γ < G be a Zariski dense discrete subgroup. Let Λθ denote the θ-limit
set of Γ, which is the unique Γ-minimal subset of Fθ (Definition 2.4). We
say that Γ is θ-transverse if it satisfies

• (θ-regularity): lim infγ∈Γ α(µ(γ)) =∞ for all α ∈ θ;
• (θ-antipodality): any distinct ξ, η ∈ Λθ∪i(θ) are in general position.

The class of θ-transverse subgroups includes all discrete subgroups of rank
one Lie groups, θ-Anosov subgroups and their relative versions. Note also
that every subgroup of a θ-transverse subgroup is again θ-transverse. The
class of transverse subgroups is regarded as a generalization of all rank one
discrete subgroups, while the class of Anosov subgroups is regarded as a
generalization of rank one convex cocompact subgroups.

In the rest of the introduction, we assume that

Γ is a Zariski dense θ-transverse subgroup of G.

In order to introduce an appropriate substitute of Γ\G/M for a θ-transverse
subgroup Γ, recall the Langlands decomposition Pθ = AθSθNθ where Aθ is
the maximal split central torus, Sθ is an almost direct product of a semisim-
ple algebraic subgroup and a compact central torus and Nθ is the unipotent
radical of Pθ. The diagonalizable subgroup Aθ acts on the quotient space
G/Sθ by translations on the right. The left translation action of Γ on G/Sθ
is in general not properly discontinuous (cf. [2], [23]) unless θ = Π, in which
case Sθ is compact. However the action of Γ is properly discontinuous on
the following closed Aθ-invariant subspace ([22, Thm. 9.1]):

Ω̃θ := {[g] ∈ G/Sθ : gPθ ∈ Λθ, gw0Pi(θ) ∈ Λi(θ)}
where w0 is the longest Weyl element. Therefore the quotient space

Ωθ := Γ\Ω̃θ
is a second countable locally compact Hausdorff space equipped with the

right translation action of Aθ which is non-wandering. Denoting by Λ
(2)
θ the

set of all pairs (ξ, η) ∈ Λθ × Λi(θ) in general position, we have (see (5.2)):

Ωθ ≃ Γ\
Ä
Λ
(2)
θ × aθ

ä
.

By a subspace flow on Ωθ, we mean the action of the subgroup AW = expW
for a non-zero linear subspace W < aθ.
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The main goal of this paper is to study the ergodic properties of the sub-
space flows on Ωθ with respect to Bowen-Margulis-Sullivan measures. The
most essential case turns out to be the action of one-parameter subgroups of
Aθ which we call directional flows. We first present the ergodic dichotomy
for directional flows.

Directional flows. Fixing a non-zero vector u ∈ a+θ , we are interested in
ergodic properties of the action of the one-parameter subgroup

Au = {atu = exp tu : t ∈ R}
on the space Ωθ. We say that ξ ∈ Λθ is a u-directional conical point if there
exists g ∈ G such that ξ = gPθ and [g]atiu ∈ Ωθ belongs to a compact subset
for some sequence ti → +∞. We denote by Λuθ the set of all u-directional

conical points, that is1,

Λuθ := {gPθ ∈ Λθ : [g] ∈ Ωθ, lim sup
t→+∞

[g]atu ̸= ∅}.

See Definition 5.4 and Lemma 5.5 for an equivalent definition of Λuθ given
in terms of shadows. It is clear from the definition that Λuθ is an important
object in the study of the recurrence of Au-orbits. Another important player
in our ergodic dichotomy is the directional ψ-Poincaré series for a linear form
ψ ∈ a∗θ. To define it, we set µθ := pθ◦µ to be the aθ-valued Cartan projection
where pθ : a→ aθ is the unique projection, invariant under all Weyl elements
fixing aθ pointwise. The u-directional ψ-Poincaré series is of the form

(1.1)
∑

γ∈Γu,R

e−ψ(µθ(γ))

where Γu,R := {γ ∈ Γ : ∥µθ(γ) − Ru∥ < R} for a Euclidean norm ∥ · ∥ on
aθ and R > 0. In considering these objects, it is natural to restrict to those
linear forms ψ such that ψ ◦ µθ : Γ → [−ε,∞) is a proper map for some
ε > 0, which we call (Γ, θ)-proper linear forms. A Borel probability measure
ν on Fθ is called a (Γ, ψ)-conformal measure if

dγ∗ν

dν
(ξ) = eψ(β

θ
ξ (e,γ)) for all γ ∈ Γ and ξ ∈ Fθ

where γ∗ν(D) = ν(γ−1D) for any Borel subset D ⊂ Fθ and βθξ denotes

the aθ-valued Busemann map defined in (2.4). For a (Γ, θ)-proper ψ ∈ a∗θ,

a (Γ, ψ)-conformal measure can exist only when ψ ≥ ψθΓ where ψθΓ is the
θ-growth indicator of Γ [22, Thm. 7.1].

Here is our main theorem for directional flows, relating the ergodicity
of Au, the divergence of the u-directional Poincaré series, and the size of
conformal measures on u-directional conical sets:

Theorem 1.1 (Ergodic dichotomy for directional flows). Let Γ be a Zariski
dense θ-transverse subgroup of G. Fix a non-zero vector u ∈ a+θ and a
(Γ, θ)-proper linear form ψ ∈ a∗θ. Suppose that there exists a pair (ν, νi) of

1The set lim supt→+∞[g]atu consists of all limits limti→+∞[g]atiu.
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(Γ, ψ) and (Γ, ψ ◦ i)-conformal measures on Λθ and Λi(θ) respectively. Let
m = m(ν, νi) denote the associated Bowen-Margulis-Sullivan measure on Ωθ
(see (6.2)).

In each of the following complementary cases, claims (1)-(3) are equiva-
lent to each other. If m is u-balanced (Definition 7.1), then (1)-(5) are all
equivalent.

The first case:

(1) max
Ä
ν(Λuθ ), νi(Λ

i(u)
i(θ))
ä
> 0;

(2) (Ωθ, Au,m) is completely conservative;
(3) (Ωθ, Au,m) is ergodic;

(4)
∑

γ∈Γu,R
e−ψ(µθ(γ)) =∞ for some R > 0;

(5) ν(Λuθ ) = 1 = νi(Λ
i(u)
i(θ)).

The second case:

(1) ν(Λuθ ) = 0 = νi(Λ
i(u)
i(θ));

(2) (Ωθ, Au,m) is completely dissipative;
(3) (Ωθ, Au,m) is non-ergodic;

(4)
∑

γ∈Γu,R
e−ψ(µθ(γ)) <∞ for all R > 0;

(5) ν(Λuθ ) = 0 = νi(Λ
i(u)
i(θ)).

We remark that in the first case, (1) is again equivalent to the condition

max
Ä
ν(Λuθ ), νi(Λ

i(u)
i(θ))
ä
= 1.

Remark 1.2. (1) When θ = Π, or equivalently when Sθ is compact, The-
orem 1.1 was obtained for a general Zariski dense discrete subgroup
Γ < G by Burger-Landesberg-Lee-Oh [9, Thm. 1.4].

(2) The u-balanced condition is required only for the implication (4)⇒
(5) in the first case, which takes up the most significant portion of
our proof. This condition can be verified for Anosov subgroups, as
we will discuss later (Theorem 1.6, Corollary 1.7).

(3) By a recent work [6, Prop. 10.1], the existence of a (Γ, ψ)-conformal
measure on Λθ implies that ψ is (Γ, θ)-proper. Therefore the hy-
pothesis that ψ is (Γ, θ)-proper is unnecessary.

(4) When G is of rank one, this is precisely the classical Hopf-Tsuji-
Sullivan dichotomy (see [35], [17], [36], [32, Thm. 1.7], etc.).

Our proof of Theorem 1.1 is a generalization of the approach of [9] to
a general θ. The main difficulties arise from the non-compactness of Sθ
which we overcome using special properties of θ-transverse subgroups such
as regularity, anitipodality and the convergence group actions on the limit
sets.

Subspace flows. We now turn to the ergodic dichotomy for general sub-
space flows. Let W be a non-zero linear subspace of aθ and set AW =
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{expw : w ∈W}. The W -conical set of Γ is defined as

(1.2) ΛWθ = {gPθ ∈ Fθ : [g] ∈ Ωθ, lim sup[g](AW ∩A+) ̸= ∅};

see Definition 9.1 and Lemma 9.5 for an equivalent definition of ΛWθ given
in terms of shadows. For R > 0, we set

(1.3) ΓW,R = {γ ∈ Γ : ∥µθ(γ)−W∥ < R}.

Theorem 1.3 (Ergodic dichotomy for subspace flows). Let ψ, ν, νi and m
be as in Theorem 1.1. Let W < aθ be a non-zero linear subspace. In the
following complementary cases, claims (1)-(3) are equivalent to each other.
If m is W -balanced as in Definition 9.6, then (1)-(5) are all equivalent.

The first case:

(1) max
Ä
ν(ΛWθ ), νi(Λ

i(W )
i(θ) )

ä
> 0;

(2) (Ωθ, AW ,m) is completely conservative;
(3) (Ωθ, AW ,m) is ergodic;

(4)
∑

γ∈ΓW,R
e−ψ(µθ(γ)) =∞ for some R > 0;

(5) ν(ΛWθ ) = 1 = νi(Λ
i(W )
i(θ) ).

The second case:

(1) ν(ΛWθ ) = 0 = νi(Λ
i(W )
i(θ) );

(2) (Ωθ, AW ,m) is completely dissipative;
(3) (Ωθ, AW ,m) is non-ergodic;

(4)
∑

γ∈ΓW,R
e−ψ(µθ(γ)) <∞ for all R > 0;

(5) ν(ΛWθ ) = 0 = νi(Λ
i(W )
i(θ) ).

Remark 1.4. WhenW is all of aθ, a similar dichotomy was obtained in ([25],
[10], [22]). In this case, the W -balanced condition of m is not required in
our proof; see Remark 9.9. Hence we give a different proof of the ergodicity
criterion for the Aθ-action [22, Thm. 1.8].

A special feature of a transverse subgroup is that for any (Γ, θ)-proper

form ψ, the projection Ω̃θ → Λ
(2)
θ ×R given by (ξ, η, v) 7→ (ξ, η, ψ(v)) induces

a kerψ-bundle structure of Ωθ over the base space Ωψ := Γ\Λ(2)
θ ×R with the

Γ-action given in (6.3). In particular, we have a vector bundle isomorphism

Ωθ ≃ Ωψ × kerψ.

The kerψ-bundle Ωθ → Ωψ plays an important role in our proof of Theo-
rem 1.3. Indeed, such a vector bundle Ωθ → Ωψ factors through the space

ΩW ⋄ := Γ\Λ(2)
θ ×aθ/(W∩kerψ). Denoting by m′ the Radon measure on ΩW ⋄

such that m = m′ ⊗ LebW∩kerψ, the W ∩ kerψ-bundle (Ωθ,m)→ (ΩW ⋄ ,m′)
enables us to adapt arguments of Pozzetti-Sambarino [28] in obtaining The-
orem 1.3 from the ergodic dichotomy of the directional flow Au on ΩW ⋄ for
any u ∈W such that ψ(u) > 0.
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Remark 1.5. We remark that the Zariski dense hypothesis on Γ is used to
ensure the non-arithmeticity of the Jordan projection of Γ, which implies
that the subgroup generated by pθ(λ(Γ)) is dense in aθ [4]. This is a key
ingredient in the discussion of transitivity subgroup (Proposition 8.3). In
fact, Theorem 1.3 (and hence Theorem 1.1) works for a non-Zariski dense
θ-transverse subgroup Γ as well, provided that pθ(λ(Γ)) generates a dense
subgroup of aθ.

The case of θ-Anosov subgroups. A finitely generated subgroup Γ < G
is called θ-Anosov if there exist constants C,C ′ > 0 such that for all α ∈ θ
and γ ∈ Γ,

α(µ(γ)) ≥ C|γ| − C ′

where |γ| is the word length of γ with respect to a fixed finite generating
set of Γ ([24], [16], [19], [15], [7]). By the work of Kapovich-Leeb-Porti [19],
a θ-transverse subgroup Γ < G is θ-Anosov if Λθ is equal to the θ-conical
set Λcon

θ of Γ (see (5.3) for definition). If Γ is a θ-Anosov subgroup, then for
each unit vector u in the interior of the limit cone Lθ, there exists a unique
linear form ψu ∈ a∗θ tangent to the growth indicator ψθΓ at u and a unique
(Γ, ψu)-conformal measure νu on Λθ. Moreover u 7→ ψu and u 7→ νu give
bijections among the directions in intLθ, the space of tangent linear forms
to ψθΓ, and the space of Γ-conformal measures supported on Λθ ([26], [34],
[22]). Let

(1.4) mu = m(νu, νi(u))

denote the Bowen-Margulis-Sullivan measure on Ωθ associated with the pair
(νu, νi(u)). We deduce the following codimension dichotomy from Theorem
1.3:

Theorem 1.6 (Codimension dichotomy). Let Γ < G be a Zariski dense θ-
Anosov subgroup. Let u ∈ intLθ and W < aθ be a linear subspace containing
u. The following are equivalent:

(1) codimW ≤ 2 (resp. codimW ≥ 3);
(2) νu(Λ

W
θ ) = 1 (resp. νu(Λ

W
θ ) = 0);

(3) (Ωθ, AW ,mu) is ergodic and completely conservative (resp. non-
ergodic and completely dissipative);

(4)
∑

γ∈ΓW,R
e−ψu(µθ(γ)) =∞ for some R > 0 (resp.

∑
γ∈ΓW,R

e−ψu(µθ(γ)) <

∞ for all R > 0).

We can view this dichotomy phenomenon depending on codimW as con-
sistent with a classical theorem about random walks in Zd (or Brownian
motions in Rd), which are transient if and only if d ≥ 3. Since codimW =
#θ − dimW , we have the following corollary:

Corollary 1.7 (θ-rank dichotomy). Let Γ < G be a Zariski dense θ-Anosov
subgroup and let u ∈ intLθ. Then #θ ≤ 3 if and only if the directional flow
Au on (Ωθ,mu) is ergodic.
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For a θ-Anosov subgroup Γ, Ωψu is a compact metric space ([33] and [11,
Appendix]), and hence ΩW ⋄ is a vector bundle over a compact space Ωψu

with fiber RcodimW . Moreover, we have the following local mixing result due
to Sambarino [34, Thm. 2.5.2] (see also [12]) that for any f1, f2 ∈ Cc(ΩW ⋄),2

(1.5) lim
t→∞

t
codimW

2

∫
ΩW⋄

f1(x)f2(xatu)dm
′
u(x) = κum

′
u(f1)m

′
u(f2)

where κu > 0 is a constant depending only on u. In particular, m′
u satisfies

the u-balanced hypothesis. The key part of our proof lies in establishing the
inequalities (Propositions 10.3 and 10.6) that for all large enough R > 0,3Ç∫ T

1
t−

codimW
2 dt

å1/2

≪
∑

γ∈ΓW,R

ψu(µθ(γ))≤δT

e−ψu(µθ(γ)) ≪
∫ T

1
t−

codimW
2 dt

for T > 2 where δ = ψu(u) > 0. Therefore,
∑

γ∈ΓW,R
e−ψu(µθ(γ)) =∞ if and

only if codimW ≤ 2.

Remark 1.8. (1) When θ = Π and dimW = 1, Theorem 1.6 and hence
Corollary 1.7 were obtained in [9]; in this case, codimW ≤ 2 trans-
lates into rankG ≤ 3.

(2) For a general θ, when dimW = 1 and codimW ̸= 2, Sambarino
proved the equivalence (1)-(3) of Theorem 1.6 using a different ap-
proach [34]; for instance, the directional Poincaré series was not dis-
cussed in his work. This was extended by Pozzetti-Sambarino [28]
for subspace flows, but still under the hypothesis codimW ̸= 2, us-
ing an approach similar to [34]. Thus, Theorem 1.6 settles the open
case of codimW = 2.

(3) We mention that in ([20], [21], [28]), the sizes of directional/subspace
conical limit sets were used as a key input in estimating Hausdorff
dimensions of certain subsets of the limit sets.

(4) Theorem 1.6 and Corollary 1.7 are not true for a general θ-transverse
subgroup, e.g., there are discrete subgroups in a rank one Lie group
which are not of divergence type. Consider a normal subgroup Γ of
a non-elementary convex cocompact subgroup Γ0 of a rank one Lie
group G with Γ0/Γ ≃ Zd for d ≥ 0. In this case, by a theorem of
Rees [31, Thm. 4.7], d ≤ 2 if and only if Γ is of divergence type, i.e.,
its Poincaré series diverges at the critical exponent of Γ. Using the
local mixing result [27, Thm. 4.7] which is of the form as (1.5) with

tcodimW/2 replaced by td/2 and Corollary 7.14, the approach of our
paper gives an alternative proof of Rees’ theorem.

2The notation Cc(X) for a topological space X means the space of all continuous
functions on X with compact supports.

3The notation f(T ) ≪ g(T ) means that there is a constant c > 0 such that f(T ) ≤
cg(T ) for all T in a given range.
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(5) Corollaries 7.14 and 9.10 reduce the divergence of the u-directional
Poincaré series to the local mixing rate for the Au-flow. For example,
we expect the local mixing rate of relatively θ-Anosov subgroups
to be same as that of Anosov subgroups, which would then imply
Theorem 1.6 and Corollary 1.7 for those subgroups.

Examples of ergodic actions on Γ\G/Sθ. By the work of Guéritaud-
Guichard-Kassel-Wienhard [15], there are examples of Borel Anosov sub-
groups which act properly discontinuously on G/Sθ for some θ ̸= Π ([15,
Coro. 1.10, Coro. 1.11]), in which case our rank dichotomy theorem can
be stated for the one-parameter subgroup action on Γ\G/Sθ. We discuss
one example where G = SLd(R), d ≥ 3. For 2 ≤ k ≤ d − 2, let Hk be

the block diagonal subgroup

Å
Ik

SLd−k(R)

ã
≃ SLd−k(R) where Ik de-

notes the (k × k)-identity matrix. Set αi(diag(v1, · · · , vd)) = vi − vi+1 for
1 ≤ i ≤ d − 1; so Π = {αi : 1 ≤ i ≤ d − 1} is the set of all simple roots for
G. For θ = {α1, · · · , αk}, we have Sθ = Hk. Let Γ < G be a Π-Anosov sub-
group. Then Γ acts properly discontinuously on SLd(R)/ SLd−k(R) by [15,
Coro. 1.9, Coro. 1.10]. Hence any Radon measure on Ωθ can be considered
as a Radon measure on Γ\SLd(R)/ SLd−k(R). Then Theorem 1.6 implies
the following:

Corollary 1.9. Let Γ < SLd(R) be a Zariski dense Π-Anosov subgroup (e.g.,
Hitchin subgroups), 2 ≤ k ≤ d − 2 and θ = {α1, · · · , αk}. Let u ∈ intLθ
and mu be as in (1.4). We have k = 2, 3 if and only if the Au-action on
(Γ\ SLd(R)/ SLd−k(R),mu) is ergodic.

Acknowledgements. We would like to thank Blayac-Canary-Zhu-Zimmer
for telling us that an admissible metric can be used to prove Proposition
8.5.

2. Preliminaries

Throughout the paper, let G be a connected semisimple real algebraic
group. In this section, we review some basic facts about the Lie group
structure of G and the notion of convergence of elements of G to boundaries,
following [22, Sec. 2] to which we refer for more details.

Let P < G be a minimal parabolic subgroup with a fixed Langlands
decomposition P = MAN where A is a maximal real split torus of G, M
is the maximal compact subgroup of P commuting with A and N is the
unipotent radical of P . Let g and a respectively denote the Lie algebras of
G and A. Fix a positive Weyl chamber a+ < a so that logN consists of
positive root subspaces and set A+ = exp a+. We fix a maximal compact
subgroup K < G such that the Cartan decomposition G = KA+K holds.
We denote by

µ : G→ a+
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the Cartan projection defined by the condition g ∈ K expµ(g)K for g ∈ G.
Let X = G/K be the associated Riemannian symmetric space, and set
o = [K] ∈ X. Fix a K-invariant norm ∥ · ∥ on g and a Riemanian metric
d on X, induced from the Killing form on g. The Weyl group W is given
by NK(A)/CK(A), where NK(A) and CK(A) denote the normalizer and the
centralizer of A in K respectively. Oftentimes,we will identify W with the
chosen set of representatives from NK(A), and hence treat W as a subset of
G.

Lemma 2.1. [3, Lem. 4.6] For any compact subset Q ⊂ G, there exists
C = C(Q) > 0 such that for all g ∈ G,

sup
q1,q2∈Q

∥µ(q1gq2)− µ(g)∥ ≤ C.

Let Φ = Φ(g, a) denote the set of all roots, Φ+ ⊂ Φ the set of all positive
roots, and Π ⊂ Φ+ the set of all simple roots. Fix an element w0 ∈ K of
order 2 in the normalizer of A representing the longest Weyl element so that
Adw0 a

+ = −a+. The map

(2.1) i = −Adw0 : a→ a

is called the opposition involution. It induces an involution Φ→ Φ preserv-
ing Π, for which we use the same notation i, such that i(α) ◦Adw0 = −α for
all α ∈ Φ. We have µ(g−1) = i(µ(g)) for all g ∈ G.

Henceforth, we fix a non-empty subset θ ⊂ Π. Let Pθ denote a standard
parabolic subgroup of G corresponding to θ; that is, Pθ is generated by MA
and all root subgroups Uα, where α ranges over all positive roots and any
negative root which is a Z-linear combination of Π− θ. Hence PΠ = P . Let

aθ =
⋂

α∈Π−θ
kerα, a+θ = aθ ∩ a+,

Aθ = exp aθ, and A+
θ = exp a+θ .

Let pθ : a → aθ denote the projection invariant under w ∈ W fixing aθ
pointwise. We also write

µθ := pθ ◦ µ : G→ a+θ .

Definition 2.2. For a discrete subgroup Γ < G, its θ-limit cone Lθ = Lθ(Γ)
is defined as the the asymptotic cone of µθ(Γ) in aθ, that is, u ∈ Lθ if and
only if u = limi→∞ tiµθ(γi) for some sequences ti → 0 and γi ∈ Γ. If Γ is
Zariski dense, Lθ is a convex cone with non-empty interior by [3]. Setting
L = LΠ, we have pθ(L) = Lθ.

We have the Levi-decomposition Pθ = LθNθ where Lθ is the centralizer of
Aθ and Nθ = Ru(Pθ) is the unipotent radical of Pθ. We set Mθ = K ∩Pθ ⊂
Lθ. We may then write Lθ = AθSθ where Sθ is an almost direct product
of a connected semisimple real algebraic subgroup and a compact center.
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Letting Bθ = Sθ ∩A and B+
θ = {b ∈ Bθ : α(log b) ≥ 0 for all α ∈ Π− θ}, we

have the Cartan decomposition of Sθ:

Sθ =MθB
+
θ Mθ.

Note that A = AθBθ and A+ ⊂ A+
θ B

+
θ . The space a∗θ = Hom(aθ,R) can

be identified with the subspace of a∗ which is pθ-invariant: a∗θ = {ψ ∈ a∗ :
ψ ◦ pθ = ψ}; so for θ1 ⊂ θ2, we have a∗θ1 ⊂ a∗θ2 .

The θ-boundary Fθ and convergence to Fθ. We set

Fθ = G/Pθ and F = G/P.

Let

πθ : F → Fθ
denote the canonical projection map given by gP 7→ gPθ, g ∈ G. We set

(2.2) ξθ = [Pθ] ∈ Fθ.

By the Iwasawa decomposition G = KP = KAN , the subgroup K acts
transitively on Fθ, and hence Fθ ≃ K/Mθ.

We consider the following notion of convergence of a sequence in G to
an element of Fθ. For a sequence gi ∈ G, we say gi → ∞ θ-regularly if
minα∈θ α(µ(gi))→∞ as i→∞.

Definition 2.3. For a sequence gi ∈ G and ξ ∈ Fθ, we write limi→∞ gi =
limi→∞ gio = ξ and say gi (or gio ∈ X) converges to ξ if

• gi →∞ θ-regularly; and
• limi→∞ κiξθ = ξ in Fθ for some κi ∈ K such that gi ∈ κiA+K.

Definition 2.4. The θ-limit set of a discrete subgroup Γ can be defined as
follows:

Λθ = Λθ(Γ) := {ξ ∈ Fθ : ξ = lim
i→∞

γi, γi ∈ Γ}

where limi→∞ γi is defined as in Definition 2.3. If Γ is Zariski dense, this
is the unique Γ-minimal subset of Fθ ([3], [30]). If we set Λ = ΛΠ, then
πθ(Λ) = Λθ.

Lemma 2.5 ([22, Lem. 2.6-7], see also [26] for θ = Π). Let gi ∈ G be an
infinite sequence.

(1) If gi converges to ξ ∈ Fθ and pi ∈ X is a bounded sequence, then

lim
i→∞

gipi = ξ.

(2) If a sequence ai → ∞ in A+ θ-regularly, and gi → g ∈ G, then for
any p ∈ X, we have

lim
i→∞

giaip = gξθ.
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Jordan projections. A loxodromic element g ∈ G is of the form g =
hagmh

−1 for h ∈ G, ag ∈ intA+ and m ∈ M ; moreover ag ∈ intA+ is
uniquely determined. We set

(2.3) λ(g) := log ag ∈ a+ and yg := hP ∈ F ,
called the Jordan projection and the attracting fixed point of g respectively.

Theorem 2.6. [4] For any Zariski dense subgroup Γ < G, the subgroup
generated by {λ(γ) : γ is a loxodromic element of Γ} is dense in a.

Busemann maps. The a-valued Busemann map β : F × G × G → a is
defined as follows: for ξ ∈ F and g, h ∈ G,

βξ(g, h) := σ(g−1, ξ)− σ(h−1, ξ)

where σ(g−1, ξ) ∈ a is the unique element such that g−1k ∈ K exp(σ(g−1, ξ))N
for any k ∈ K with ξ = kP . For (ξ, g, h) ∈ Fθ ×G×G, we define

(2.4) βθξ (g, h) := pθ(βξ0(g, h)) for ξ0 ∈ π−1
θ (ξ);

this is well-defined independent of the choice of ξ0 [30, Lem. 6.1]. For
p, q ∈ X and ξ ∈ Fθ, we set βθξ (p, q) := βθξ (g, h) where g, h ∈ G satisfies
go = p and ho = q. It is easy to check this is well-defined.

Points in general position. Let P̌θ be the standard parabolic subgroup
of G opposite to Pθ such that Pθ ∩ P̌θ = Lθ. We have P̌θ = w0Pi(θ)w

−1
0 and

hence

Fi(θ) = G/P̌θ.

For g ∈ G, we set

g+θ := gPθ and g−θ := gw0Pi(θ);

as we fix θ in the entire paper, we write g± = g±θ for simplicity when there is

no room for confusion. Hence for the identity e ∈ G, (e+, e−) = (Pθ, P̌θ) =
(ξθ, w0ξi(θ)), where ξθ is as in (2.2). The G-orbit of (e+, e−) is the unique

open G-orbit in G/Pθ ×G/P̌θ under the diagonal G-action. We set

(2.5) F (2)
θ = {(g+θ , g

−
θ ) : g ∈ G}.

Two elements ξ ∈ Fθ and η ∈ Fi(θ) are said to be in general position if

(ξ, η) ∈ F (2)
θ . Since P̌θ = LθŇθ where Ňθ is the unipotent radical of P̌θ, we

have

(2.6) (g+θ , e
−
θ ) ∈ F

(2)
θ if and only if g ∈ ŇθPθ.

The following lemma will be useful:

Lemma 2.7. [22, Coro. 2.5] If w ∈ W is such that mw ∈ ŇθPθ for some

m ∈ Mθ, then w ∈ Mθ. In particular, if (wξθ, w0ξi(θ)) = (w+
θ , e

−
θ ) ∈ F

(2)
θ ,

then w ∈Mθ.
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Gromov products. The map g 7→ (g+, g−) for g ∈ G induces a homeo-

morphism G/Lθ ≃ F
(2)
θ . For (ξ, η) ∈ F (2)

θ , we define the θ-Gromov product
as

Gθ(ξ, η) = βθξ (e, g) + i(βi(θ)η (e, g))

where g ∈ G satisfies (g+, g−) = (ξ, η). This does not depend on the choice
of g [22, Lem. 9.13].

Although the Gromov product is defined differently in [7], it coincides
with ours (see [26, Lem. 3.11, Rmk. 3.13]); hence we have:

Proposition 2.8. [7, Prop. 8.12] There exists c > 1 and c′ > 0 such that
for all g ∈ G,

c−1∥Gθ(g+, g−)∥ ≤ d(o, gLθo) ≤ c∥Gθ(g+, g−)∥+ c′.

3. Continuity of shadows

The notion of shadows plays a crucial role in studying recurrence of diag-
onal flows. In this section, we recall the definition of θ-shadows and prove
some basic properties. In particular, we prove that shadows vary continu-
ously on viewpoints, which are of independent interests.

p

gao

q = go R

OθR(q, p)

g+

p

go
η = g−

R

OθR(η, p)

g+

Figure 1. Shadows

For p ∈ X and R > 0, let B(p,R) denote the metric ball {x ∈ X :
d(x, p) < R}. For q ∈ X, the θ-shadow OθR(q, p) ⊂ Fθ of B(p,R) viewed
from q is defined as

(3.1) OθR(q, p) = {gPθ ∈ Fθ : g ∈ G, go = q, gA+o ∩B(p,R) ̸= ∅}

We also define the θ-shadow OθR(η, p) ⊂ Fθ viewed from η ∈ Fi(θ) as follows:

OθR(η, p) = {gPθ ∈ Fθ : g ∈ G, gw0Pi(θ) = η, go ∈ B(p,R)}.

For any η̃ ∈ π−1
i(θ)(η), we have

(3.2) OθR(q, p) = πθ(O
Π
R(q, p)) and OθR(η, p) = πθ(O

Π
R(η̃, p)).

Note that for all g ∈ G and η ∈ X ∪ Fi(θ),

(3.3) gOθR(η, p) = OθR(gη, gp).
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We define the aθ-valued distance aθ : X ×X → aθ by

aθ(q, p) := µθ(g
−1h)

where q = go and p = ho for g, h ∈ G. The following was shown for θ = Π
in [26, Lem. 5.7] which directly implies the statement for general θ by (3.2).

Lemma 3.1. There exists κ > 0 such that for any q, p ∈ X and R > 0, we
have

sup
ξ∈Oθ

R(q,p)

∥βθξ (q, p)− aθ(q, p)∥ ≤ κR.

Lemma 3.2. For any compact subset Q ⊂ G and R > 0, we have that for
any h ∈ G and g ∈ Q,

OθR(go, ho) ⊂ OθR+DQ
(o, ho) and OθR(hgo, o) ⊂ OθR+DQ

(ho, o)

where DQ := maxg∈Q d(go, o).

Proof. Note that d(ao, pao) ≤ d(o, po) for all a ∈ A+ and p ∈ P . Let
g ∈ Q and ξ ∈ OθR(go, ho). Then for some k ∈ K and a ∈ A+, we have
ξ = gkPθ and d(gkao, ho) < R. Write gk = ℓp ∈ KP for ℓ ∈ K and
p ∈ P by the Iwasawa decomposition G = KP . Since d(ℓao, ℓpao) ≤ DQ,
we have d(ℓao, ho) ≤ d(ℓao, ℓpao) + d(gkao, ho) < DQ + R. Therefore ξ ∈
OθR+DQ

(o, ho), proving the first claim. The second claim follows from the

first by (3.3). □

Lemma 3.3. Let p ∈ X, η ∈ Fi(θ) and r > 0. If a sequence ηi ∈ Fi(θ)

converges to η ∈ Fi(θ), then for any 0 < ε < r, we have

(3.4) Oθr−ε(ηi, p) ⊂ Oθr(η, p) ⊂ Oθr+ε(ηi, p) for all large i ≥ 1.

Proof. We first prove the second inclusion. Let g ∈ G be such that g+ ∈
Oθr(η, p), g

− = η and d(go, p) < r. Since ηi → η, we have (g+, ηi) ∈ F (2)
θ for

all large i ≥ 1, and hence (g+, ηi) = (h+i , h
−
i ) for some hi ∈ G. In particular,

g = hiqini for qini ∈ LθNθ = Pθ. By replacing hi with hiqi, we may assume
that g = hini. Since h−i → g−, we have n−i → e−, and hence ni → e as
i → ∞. Therefore for all i ≥ 1 large enough so that d(nio, o) ≤ ε, we have
d(hio, p) ≤ d(hio, hinio)+d(go, p) < ε+r, and hence g+ = h+i ∈ Oθr+ε(ηi, p).

To prove the first inclusion, fix ki ∈ StabG(p) such that kiηi = η for each
i ≥ 1. After passing to a subsequence, we may assume that the sequence ki
converges to some k ∈ StabG(p) as i→∞. Since ηi → η, we have kη = η. In
particular, the sequence kiη converges to η. Applying the second inclusion
of (3.4) to a sequence kiη, we have

Oθr−ε(kiηi, p) = Oθr−ε(η, p) ⊂ Oθr(kiη, p) for all large i ≥ 1.

Since ki ∈ StabG(p), it follows from (3.3) that Oθr−ε(kiηi, p) = kiO
θ
r−ε(ηi, p)

and Oθr(kiη, p) = kiO
θ
r(η, p). This proves the first inclusion. □
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We show that for a fixed p ∈ X and η ∈ Fi(θ), shadows O
θ
r(η, p) vary

continuously on a small neighborhood of η in G ∪ Fi(θ) (see [26, Lem. 5.6]
for θ = Π):

Proposition 3.4 (Continuity of shadows on viewpoints). Let p ∈ X, η ∈
Fi(θ) and r > 0. If a sequence qi ∈ X converges to η as i→∞, then for any
0 < ε < r, we have

(3.5) Oθr−ε(qi, p) ⊂ Oθr(η, p) ⊂ Oθr+ε(qi, p) for all large i ≥ 1.

Proof. We first prove the second inclusion which requires more delicate ar-
guments. By (3.3) and the fact that K acts transtively on Fi(θ), we may

assume without loss of generality that η = Pi(θ) = w−
0 and p = o. Write

qi = k′iaio with k′i ∈ K and ai ∈ A+ using Cartan decomposition. Since
qi → w−

0 , we have k′iw
−
0 → w−

0 and ai →∞ i(θ)-regularly.
By Lemma 3.3, we may assume k′i = e without loss of generality. By (3.2),

the claim follows if we replace θ by any subset containing θ. Therefore we
may assume without loss of generality that α(log ai) is uniformly bounded
for all α ∈ Π− i(θ).

Let ξ ∈ Oθr(Pi(θ), o), i.e., ξ = hPθ for some h ∈ G such that d(ho, o) < r

and hw0Pi(θ) = Pi(θ). Since Pi(θ) = PMi(θ) and w
−1
0 Mi(θ)w0 = Mθ, we may

assume hw0 ∈ P by replacing h with hm for some m ∈ Mθ. We need to
show that for some pi ∈ Pθ such that hpio = aio, d(piA

+o, o) < ε; this then
implies d(hpiA

+o, o) < r + ε, and hence ξ ∈ Oθr+ε(aio, o).
We start by writing

a−1
i h = kiãini ∈ KAN, ãi = cidi ∈ AθBθ and ni = uivi ∈ (Sθ ∩N)Nθ.

As hw0 ∈ P and ai ∈ A+, the sequence a−1
i hw0ai is bounded. Since

a−1
i hw0ai = (kiw0)(w

−1
0 ãiw0ai)(a

−1
i w−1

0 niw0ai) ∈ KAN+,

it follows that both sequences w−1
0 ãiw0ai and a

−1
i w−1

0 niw0ai are bounded.

Since w−1
0 niw0 = (w−1

0 uiw0)(w
−1
0 viw0) ∈ Si(θ)N

+
i(θ) and ai ∈ A+ with

ai →∞ i(θ)-regularly, the boundedness of a−1
i w−1

0 niw0ai implies that vi → e
as i → ∞ and ui is bounded. On the other hand, the boundedness of
w−1
0 ãiw0ai implies that ãi ∈ w0a

−1
i w−1

0 AC for some C > 0. As ai →∞ i(θ)-

regularly, it follows that ci ∈ A+
θ and ci → ∞ θ-regularly. Moreover, since

maxα∈Π−i(θ) α(log ai) is uniformly bounded, the sequence di is bounded.
As diui ∈ Sθ, we may write its Cartan decomposition diui = mibim

′
i ∈

MθB
+
θ Mθ. Since ci → ∞ θ-regularly and diui, and hence bi ∈ B+

θ , is
uniformly bounded, we have cibi ∈ A+ for all large i ≥ 1. Set pi =
(m−1

i ãini)
−1 ∈ Pθ. Recalling a−1

i h = kiãini, we have hpio = hn−1
i ã−1

i o =
aio. Moreover, we have

pi(cibi)o = n−1
i ã−1

i micibim
′
io = n−1

i ã−1
i cidiuio = v−1

i o

using the commutativity ofMθ and Aθ as well as the identitymibim
′
i = diui.

Since vi → e, we have d(pi(cibi)o, o)→ 0. This proves the second inclusion.



ERGODIC DICHOTOMY 17

We now prove the first inclusion. Similarly, as in the previous case, we
may assume that qi = aio for ai ∈ A+ and η = Pi(θ). Let ηi ∈ Oθr−ε(aio, o),
i.e., ηi = aikiPθ and d(aikibio, o) < r − ε for some ki ∈ K and bi ∈ A+. Set
gi = aikibi, which is a bounded sequence. We will find ni ∈ Nθ such that
(gini)

− = Pi(θ) and d(ginio, o) < r from which ηi ∈ Oθr(η, o) follows.
We may assume that gi converges to some g ∈ G. Since ai → ∞ i(θ)-

regularly, the boundedness of gi = aikibi together with Lemma 2.1 implies
that bi →∞ θ-regularly. Since aiki → Pi(θ) and aiki = giw0(w

−1
0 b−1

i w0)w
−1
0 →

gw0Pi(θ) as i→∞ by Lemma 2.5, we have

gw0Pi(θ) = Pi(θ).

On the other hand, as i→∞, we have

gi(Pθ, w0Pi(θ))→ g(Pθ, w0Pi(θ)) = (gPθ, Pi(θ)).

Hence for all large i ≥ 1, giPθ is in general position with Pi(θ) and thus we
have a sequence hi ∈ G such that

(giPθ, Pi(θ)) = hi(Pθ, w0Pi(θ)).

As giPθ = hiPθ, we write hi = giniℓi for some ni ∈ Nθ and ℓi ∈ Lθ.
Note that (gini)

− = h−i = Pi(θ). We now claim that ni → e, from which
d(ginio, o) ≤ d(ginio, gio) + d(gio, o) < r follows for all large i.

Since hi(Pθ, w0Pi(θ)) = (giPθ, Pi(θ)) → (gPθ, Pi(θ)) = g(Pθ, w0Pi(θ)), we
have hiLθ = giniLθ → gLθ. Since gi → g and ni ∈ Nθ, we have ni → e as
i→∞. This finishes the proof. □

Lemma 3.5. Let S > 0. For any sequence gi → ∞ in G θ-regularly, the

product OθS(o, gio) × O
i(θ)
S (gio, o) is precompact in F (2)

θ for all sufficiently
large i ≥ 1.

Proof. Consider an infinite sequence (ξi, ηi) ∈ OθS(o, gio)× O
i(θ)
S (gio, o). By

the θ-regularity of gi → ∞, we have gio → ξ as i → ∞ for some ξ ∈ Fθ,
after passing to a subsequence. For each i, we write ξi = kiPθ for ki ∈ K
such that d(kiaio, gio) < S for some ai ∈ A+. In particular, ai → ∞ θ-
regularly. After passing to a subsequence, we may assume that ki → k ∈ K
so that kiaio → kPθ as i → ∞. On the other hand, the boundedness
of d(kiaio, gio) < S implies that kiaio → ξ by Lemma 2.5. Therefore,
ξ = kPθ = limi ξi. By passing to a subsequence, we may assume that ηi → η

for some η ∈ Fi(θ). Since gio → ξ, and ηi ∈ O
i(θ)
S (gio, o), it follows from

Proposition 3.4 that η ∈ Oi(θ)
2S (ξ, o). In particular, (ξ, η) ∈ F (2)

θ . □

4. Growth indicators and conformal measures on Fθ
In this section, we review the notion of θ-growth indicators and discuss

their influence on conformal measures on the θ-boundary.

Let Γ < G be a Zariski dense discrete subgroup. We say that Γ is θ-
discrete if the restriction µθ|Γ : Γ → a+θ is a proper map. Observe that
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Γ is θ-discrete if and only if the counting measure on µθ(Γ) weighted with
multiplicity is locally finite i.e., finite on compact subsets. Following Quint’s
notion of growth indicators [29], we have introduced the following in [22]:

Definition 4.1 (θ-growth indicator). For a θ-discrete subgroup Γ < G, we
define the θ-growth indicator ψθΓ : aθ → [−∞,∞] as follows: if u ∈ aθ is
non-zero,

(4.1) ψθΓ(u) = ∥u∥ inf
u∈C

τ θC

where C ⊂ aθ ranges over all open cones containing u, and ψθΓ(0) = 0. Here

−∞ ≤ τ θC ≤ ∞ is the abscissa of convergence of s 7→
∑

γ∈Γ,µθ(γ)∈C e
−s∥µθ(γ)∥.

We showed ([22, Thm. 3.3]):

• ψθΓ <∞;

• ψθΓ is upper semi-continuous and concave;

• Lθ = {ψθΓ ≥ 0} = {ψθΓ > −∞}, and ψθΓ > 0 on intLθ .

Let ψ ∈ a∗θ. Recall that a (Γ, ψ)-conformal measure ν is a Borel probabil-
ity measure on Fθ such that

dγ∗ν

dν
(ξ) = eψ(β

θ
ξ (e,γ)) for all γ ∈ Γ and ξ ∈ Fθ.

A linear form ψ ∈ a∗θ is said to be tangent to ψθΓ at v ∈ aθ − {0} if ψ ≥ ψθΓ
and ψ(v) = ψθΓ(v).

Proposition 4.2 ([30, Thm. 8.4], [22, Prop. 5.8]). For any ψ ∈ a∗θ which is

tangent to ψθΓ at an interior direction of a+θ , there exists a (Γ, ψ)-conformal
measure supported on Λθ.

Recall that Γ is called θ-transverse, if

• Γ is θ-regular, i.e., lim infγ∈Γ α(µ(γ)) =∞ for all α ∈ θ; and
• Γ is θ-antipodal, i.e., any distinct ξ, η ∈ Λθ∪i(θ) are in general posi-
tion.

Recall also that ψ ∈ a∗θ is (Γ, θ)-proper if ψ ◦ µθ|Γ is a proper map into
[−ε,∞) for some ε > 0.

Theorem 4.3 ([30, Thm. 8.1] for θ = Π, [22, Thm. 7.1] in general). Let
Γ be a Zariski dense θ-transverse subgroup of G. If there exists a (Γ, ψ)-
conformal measure ν on Fθ for a (Γ, θ)-proper ψ ∈ a∗θ, then

ψ ≥ ψθΓ.

Moreover, if
∑

γ∈Γ e
−ψ(µθ(γ)) =∞ in addition, then the abscissa of conver-

gence of s 7→
∑

γ∈Γ e
−sψ(µθ(γ)) is equal to one.
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Shadow lemma. The following is an analog of Sullivan’s shadow lemma
for Γ-conformal measures on Fθ which was proved in [22, Lem. 7.2].

Lemma 4.4 (Shadow lemma). Let ν be a (Γ, ψ)-conformal measure on Fθ.
We have the following:

(1) for some R = R(ν) > 0, we have c := infγ∈Γ ν(O
θ
R(γo, o)) > 0; and

(2) for all r ≥ R and for all γ ∈ Γ,

(4.2) ce−∥ψ∥κre−ψ(µθ(γ)) ≤ ν(Oθr(o, γo)) ≤ e∥ψ∥κre−ψ(µθ(γ))

where κ > 0 is the constant given in Lemma 3.1.

If Γ is a θ-transverse subgroup with #Λθ ≥ 3 (which is not necessarily
Zariski dense), then (4.2) holds for any (Γ, ψ)-conformal measure supported
on Λθ.

5. Directional recurrence for transverse subgroups

In this section, we recall the flow space Ωθ for each θ-transverse subgroup
Γ. We then define the directional conical set of Γ and give a characterization
in terms of the recurrence set for directional flows on Ωθ.

We suppose that Γ is a Zariski dense θ-transverse subgroup unless men-
tioned otherwise. The Γ-action on G/Sθ by left translations is not properly

discontinuous in general, but there is a closed subspace Ω̃θ ⊂ G/Sθ on which
Γ acts properly discontinuously.

We first describe a parametrization of G/Sθ as F (2)
θ × aθ, which can be

thought as a generalized Hopf-parametrization. For g ∈ G, let

[g] := (g+, g−, βθg+(e, g)) ∈ F
(2)
θ × aθ.

Consider the action of G on the space F (2)
θ × aθ by

(5.1) g.(ξ, η, b) = (gξ, gη, b+ βθξ (g
−1, e))

where g ∈ G and (ξ, η, b) ∈ F (2)
θ ×aθ. Then the map G→ F (2)

θ ×aθ given by
g 7→ [g] factors through G/Sθ and defines a G-equivariant homeomorphism

G/Sθ ≃ F
(2)
θ × aθ.

The subgroup Aθ acts on G/Sθ on the right by [g]a := [ga] for g ∈ G and
a ∈ Aθ; this is well-defined as Aθ commutes with Sθ. The corresponding

Aθ-action on F (2)
θ × aθ is given by

(ξ, η, b).a = (ξ, η, b+ log a)

for a ∈ Aθ and (ξ, η, b) ∈ F (2)
θ × aθ. For θ = Π, this homeomorphism is

called the Hopf parametrization of G/M .

Set Λ
(2)
θ := (Λθ × Λi(θ)) ∩ F

(2)
θ , and define

(5.2) Ω̃θ = Λ
(2)
θ × aθ

which is a closed left Γ-invariant and right Aθ-invariant subspace of F
(2)
θ ×aθ.
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Theorem 5.1. [22, Thm. 9.1] If Γ is θ-transverse, then Γ acts properly

discontinuously on Ω̃θ and hence

Ωθ := Γ\Ω̃θ
is a second countable locally compact Hausdorff space.

By [3], the set {(yγ , yγ−1) ∈ Λ(2) : γ ∈ Γ loxodromic} is dense in Λ(2) (see

(2.3) for the notation yγ). Hence the projection {(πθ(yγ), πi(θ)(yγ−1) ∈ Λ
(2)
θ :

γ ∈ Γ loxodromic} is dense in Λ
(2)
θ . This implies that Ωθ is a non-wandering

set for Aθ, that is, for any open subset O ⊂ Ωθ, the intersection O ∩Oai is
non-empty for some sequence ai ∈ Aθ going to ∞.

Fix u ∈ a+θ − {0} and set

atu = exp tu for t ∈ R.

We describe the recurrent dynamics of the one-parameter subgroup Au =
{atu : t ∈ R} on Ωθ. That is, for a given compact subset Q0 ⊂ Ωθ, we
describe when the translate Q0atu comes back to Q0 and what the intersec-
tion Q0atu ∩Q0 looks like for t large enough. This is equivalent to studying
Qatu ∩ ΓQ for a compact subset Q ⊂ Ω̃θ ⊂ G/Sθ. Difficulties arise because
Sθ is not compact, and the θ-transverse hypothesis on Γ is crucial in the
following discussions.

We will repeatedly use the following lemma: note that the product A+
θ B

+
θ

is not contained in A+ in general.

Lemma 5.2. Suppose that γi ∈ Γ and di ∈ A+
θ B

+
θ are sequences such

that the sequence γihimidi is uniformly bounded for some bounded sequences
hi ∈ G with hiP ∈ Λ and mi ∈ Mθ. Then there exists w ∈ W ∩Mθ such
that after passing to a subsequence,

di ∈ wA+w−1 for all i ≥ 1.

Proof. Since di ∈ A, by passing to a subsequence, there exists w ∈ W such
that di = wciw

−1 for some ci ∈ A+. We will show that w ∈ Mθ. We may
assume without loss of generality that as i → ∞, hi and mi converge to
some h ∈ G and m ∈ Mθ respectively. The θ-regularity of Γ implies that
γ−1
i →∞ θ∪ i(θ)-regularly. Since h′i := γihimiwciw

−1 is bounded, it follows
that ci →∞ in A+ θ ∪ i(θ)-regularly as well by Lemma 2.1.

By Lemma 2.5(1)-(2), we have that γ−1
i h′i converges to a point in Λθ∪i(θ)

and himiwciw
−1 → hmwPθ∪i(θ) as i→∞. Therefore, we have hmwPθ∪i(θ) ∈

Λθ∪i(θ). Since hPθ∪i(θ) ∈ Λθ∪i(θ) by the hypothesis, it follows from the

θ ∪ i(θ)-antipodality of Γ that either wPθ∪i(θ) = m−1Pθ∪i(θ) or wPθ∪i(θ)
is in general position with m−1Pθ∪i(θ). In the former case, by consider-

ing the projection to Fθ, we get wPθ = m−1Pθ and hence w ∈ Mθ as
desired. It remains to show that the latter case does not happen. The lat-
ter case would mean that wPi(θ) is in general position with m−1Pθ = Pθ.
By Lemma 2.7, this implies w ∈ w0Mi(θ) = Mθw0. Writing di = aibi ∈
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A+
θ B

+
θ and w = m0w0 with m0 ∈ Mθ ∩ NK(A), we get ci = w−1diw =

w−1
0 aiw0(w

−1
0 m−1

0 bim0w0) ∈ Ai(θ)(Si(θ) ∩ A) = Ai(θ)Bi(θ). As ci ∈ A+ ⊂
A+

i(θ)B
+
i(θ), we must have w−1

0 aiw0 ∈ A+
i(θ), which is a contradiction since

ai ∈ A+
θ . This finishes the proof. □

Proposition 5.3. Let Q ⊂ Ω̃θ be a compact subset and u ∈ a+θ −{0}. There
are positive constants C1 = C1(Q), C2 = C2(Q) and R = R(Q) such that if
[h] ∈ Q∩ γQa−tu for some h ∈ G, γ ∈ Γ and t > 0, then the following hold:

(1) ∥µθ(γ)− tu∥ < C1;

(2) (h+, h−) ∈ OθR(o, γo)×O
i(θ)
R (γo, o);

(3) ∥Gθ(h+, h−)∥ < C2.

Proof. Let Q′ ⊂ G be a compact subset such that Q′Mθ = Q′ and Q ⊂
Q′Sθ/Sθ.

To prove (1), suppose not. Then there exist sequences γi ∈ Γ, hi ∈ G and
a sequence ti → +∞ such that ∥µθ(γi) − tiu∥ ≥ i and [hi] ∈ Q ∩ γiQa−tiu
for all i ≥ 1. By replacing hi by an element in hiSθ, we may assume that
hi ∈ Q′ and there exist h′i ∈ Q′ and si ∈ Sθ such that hisiatiu = γih

′
i.

Since Q ⊂ Ω̃θ, we have hiPθ ∈ Λθ. By replacing hi with an element of
hiMθ, we may assume that hiP ∈ Λ as well. Since ti → +∞, γi → ∞ in
Γ. Writing si = mibim

′
i ∈ MθB

+
θ Mθ in the Cartan decomposition of Sθ,

we have himiatiubim
′
i = γih

′
i. By Lemma 5.2, by passing to a subsequence,

there exists w ∈ W ∩Mθ such that atiubi = wciw
−1 for some ci ∈ A+. Since

ci = atiu(w
−1biw) ∈ A+ ∩AθBθ, It follows that

µθ(ci) = pθ(log ci) = tiu.

Since himiwciw
−1m′

i = γih
′
i, we get that the sequence ∥µθ(γi) − µθ(ci)∥

is uniformly bounded by Lemma 2.1. Hence ∥µθ(γi) − tiu∥ is uniformly
bounded, yielding a contradiction.

To prove (2), suppose not. Then there exist sequences hi ∈ Q, γi ∈ Γ and

ti > 0 such that [hi] ∈ Q∩γiQa−tiu and h+i /∈ Oθi (o, γio) or h
−
i /∈ Oi(θ)

i (γio, o)
for all i ≥ 1. As before, we may assume hi ∈ Q′, hiP ∈ Λ and for some
h′i ∈ Q′ and si ∈ Sθ, we have hisiatiu = γih

′
i. If γi were a bounded sequence,

Oθi (o, γio) → Fθ and O
i(θ)
i (o, γio) → Fi(θ) as i → ∞, which cannot be the

case by the hypothesis on h±i . Hence γi →∞ in Γ. As in the proof of Item

(1), there exist w ∈ W ∩Mθ, bi ∈ B+
θ , mi,m

′
i ∈Mθ and ci ∈ A+ such that

himiwciw
−1m′

i = γih
′
i

and atiubi = wciw
−1. Then we have himiwPθ = hiPθ and himiwci =

γih
′
im

′−1
i w. Since h′im

′−1
i w ∈ Q′, it follows that

h+i ∈ O
θ
R0

(hio, γio) for all i ≥ 1

where R0 = 1 +maxq∈Q′∪Q′w0 d(qo, o) > 0. On the other hand, we have

himiww
−1
0 = γih

′
im

′−1
i ww−1

0 (w0c
−1
i w−1

0 ),
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which is a bounded sequence. Since γih
′
im

′−1
i ww−1

0 Pi(θ) = himiww
−1
0 Pi(θ) =

hiw0Pi(θ), we have

h−i ∈ O
i(θ)
R0

(γih
′
io, o) for all i ≥ 1.

Therefore, by Lemma 3.2, we have

(h+i , h
−
i ) ∈ O

θ
2R0

(o, γio)×Oi(θ)
2R0

(γio, o) for all i ≥ 1,

yielding a contradiction.
To prove (3), as before, we may assume h ∈ Q′ and h = γh1a−tus for

some h1 ∈ Q′ and s ∈ Sθ. Then we have

βθh+(e, h) = βθh+(e, γ) + βθe+(h
−1
1 , e) + βθe+(e, a−tus)

β
i(θ)
h− (e, h) = β

i(θ)
h− (e, γ) + β

i(θ)
e− (h−1

1 , e) + β
i(θ)
e− (e, a−tus).

Since βθe+(e, a−tus) + i(β
i(θ)
e− (e, a−tus)) = Gθ(e+, e−) = 0, we deduce that

Gθ(h+, h−) = βθh+(e, γ) + i(β
i(θ)
h− (e, γ)) + βθe+(h

−1
1 , e) + i(β

i(θ)
e− (h−1

1 , e)).

Observe that ∥βθe+(h
−1
1 , e) + i(β

i(θ)
e− (h−1

1 , e))∥ ≤ 2maxq∈Q′ d(qo, o). Since

(h+, h−) ∈ OθR(o, γo) × O
i(θ)
R (γo, o) by Item (2), it follows from Lemma 3.1

that

∥βθh+(e, γ)− µθ(γ)∥ ≤ κR and ∥ i(βi(θ)
h− (γ, e)))− i(µi(θ)(γ

−1))∥ < κR.

Since µθ(γ) = i(µi(θ)(γ
−1)), we get ∥βθh+(e, γ) + i(β

i(θ)
h− (e, γ))∥ ≤ 2κR, and

hence

∥Gθ(h+, h−)∥ ≤ 2κR+ 2max
q∈Q′

d(qo, o).

This finishes the proof. □

Directional conical sets. A point ξ ∈ Fθ is called a θ-conical point of Γ
if and only if there exist R > 0 and a sequence γi → ∞ in Γ such that ξ ∈
OθR(o, γio), that is, ξ = kiPθ for some ki ∈ K such that d(kiA

+o, γio) < R,
for all i ≥ 1. Using the identification Fθ = K/Mθ, the θ-conical set of Γ is
equal to

(5.3) Λcon
θ =

{
kMθ ∈ Fθ : k ∈ K and lim supΓkMθA

+ ̸= ∅
}
.

For r > 0, we set

Γu,r := {γ ∈ Γ : ∥µθ(γ)− Ru∥ < r}.

Definition 5.4 (Directional conical sets). For u ∈ a+θ − {0}, we say ξ ∈ Fθ
is a u-directional conical point of Γ if there exist R, r > 0 and a sequence
γi →∞ in Γu,r such that for all i ≥ 1,

ξ ∈ OθR(o, γio),
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that is, ξ = kiPθ for some ki ∈ K such that d(kiA
+o, γio) < R. In other

words, the u-directional conical set is given by
(5.4)
Λuθ = {kMθ ∈ Fθ : k ∈ K and lim supΓ−1

u,rkMθA
+ ̸= ∅ for some r > 0}.

We note that Γ−1
u,r = {γ ∈ Γ : ∥µi(θ)(γ)− R i(u)∥ < r}.

Clearly, Λuθ ⊂ Λcon
θ for all u ∈ a+θ − {0} and Λuθ = ∅ if u /∈ Lθ. These

notions of conical and directional conical sets can be defined for any discrete
subgroup. On the other hand, for θ-transverse subgroups, these notions can
also be defined in terms of recurrence of Aθ and Au-actions on Ωθ respec-
tively: we emphasize that for a sequence gi ∈ G, the sequence [gi] ∈ Ω̃θ
is precompact if and only if there exists si ∈ Sθ (which is not necessarily
bounded) such that the sequence gisi is bounded in G.

Lemma 5.5 (Conical points and recurrence). Let Γ be θ-transverse. Then

(1) ξ ∈ Λcon
θ if and only if ξ = gPθ for some g ∈ G such that [g] ∈ Ω̃θ

and γi[g]ai is precompact in Ω̃θ for infinite sequences γi ∈ Γ and
ai ∈ A+

θ .

(2) ξ ∈ Λuθ if and only if ξ = gPθ for some g ∈ G such that [g] ∈ Ω̃θ
and γi[g]atiu is precompact in Ω̃θ for infinite sequences γi ∈ Γ and
ti > 0.

Proof. Item (1): Let ξ ∈ Λcon
θ ; so there exist k ∈ K, γi ∈ Γ, mi ∈ Mθ

and ci ∈ A+ so that ξ = kPθ and γikmici is a bounded sequence in G.
By the θ-regularity of Γ, we have Λcon

θ ⊂ Λθ [22, Prop. 5.6(1)], and hence
k+ = kPθ ∈ Λθ. Since Λi(θ) is Zariski dense and kNθw0Pi(θ) is a Zariski

open subset of Fi(θ), we have (kn)− ∈ Λi(θ) for some n ∈ Nθ. Since (kn)+ =

k+ = ξ, we have [kn] ∈ Ω̃θ. Note that γiknmici = (γikmici)(c
−1
i n′ici) where

n′i := m−1
i nmi ∈ Nθ is a bounded sequence. Since ci ∈ A+, the sequence

c−1
i n′ici is bounded as well and hence γiknmici is bounded. Write ci = biai ∈
B+
θ A

+
θ ; so the sequence γi(knmibi)ai is contained in some compact subset of

G and mibi ∈ Sθ. Since the map g 7→ [g] ∈ Ω̃θ is continuous, and hence the
image of a compact subset is compact, the sequence γi[kn]ai = [γiknmibiai]

is precompact in Ω̃θ, as desired.
Conversely, suppose that ξ = gPθ for some g ∈ G such that [g] ∈ Ω̃θ

and γi[g]ai is precompact for infinite sequences γi ∈ Γ and ai ∈ A+
θ . We

can replace g with an element in gMθ so that gP ∈ Λ. Since the sequence
γi[g]ai = [γigai] is precompact, there exists a bounded sequence hi ∈ G such

that for all i ≥ 1, [hi] = γi[g]ai ∈ Ω̃θ, that is, gaisi = γ−1
i hi for some si ∈

Sθ. Writing the Cartan decomposition si = mibim
′
i ∈ MθB

+
θ Mθ, we have

gmiaibim
′
i = γ−1

i hi. Since the sequence γigmiaibi = him
′−1
i is bounded,

it follows from Lemma 5.2 that aibi = wciw
−1 for some w ∈ W ∩ Mθ

and ci ∈ A+, after passing to a subsequence. Hence we have gmiwci =
γ−1
i him

′−1
i w, which implies that ξ = gPθ ∈ OθR(go, γ

−1
i o) for all i where
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R = 1 +maxi d(hio, o). By Lemma 3.2, we have ξ ∈ OθR+d(go,o)(o, γ
−1
i o) for

all i ≥ 1, completing the proof.

Item (2): Let ξ ∈ Λuθ . Then ξ = kPθ for some k ∈ K and γikmiai is a
bounded sequence in G for some infinite sequences γi ∈ Γ−1

u,r, mi ∈ Mθ and

ai ∈ A+. Since ξ = kPθ ∈ Λuθ and Λuθ ⊂ Λcon
θ ⊂ Λθ by the θ-regularity of Γ

[22, Prop. 5.6(1)], we have k+ ∈ Λθ. As in the proof of Item (1) above, there
exists n ∈ Nθ so that (kn)− ∈ Λi(θ) and γiknmiai is bounded. In particular,

[kn] ∈ Ω̃θ.
Since γiknmiai is a bounded sequence in G and γ−1

i ∈ Γu,r, we have
ai = atiubi for some ti > 0 and a bounded sequence bi ∈ A by Lemma 2.1.
Hence the sequence γiknmiatiu is bounded as well. Therefore, γi[kn]atiu =

[γiknmiatiu] is precompact in Ω̃θ. Since (kn)+ = k+ = ξ, this shows the
only if direction in (2).

To show the converse implication, suppose that the sequence γi[g]atiu is

contained in some compact subset Q of Ω̃θ which we also assume contains [g].
Since [g] ∈ Q ∩ γ−1

i Qa−tiu, it follows from Proposition 5.3 that γ−1
i ∈ Γu,C1

and g+ = gPθ ∈ OθR(o, γ
−1
i o) for all i ≥ 1 where C1 = C1(Q) and R = R(Q)

are given in Proposition 5.3. Therefore, g+ ∈ Λuθ . □

Theorem 5.6. Let Γ < G be a Zariski dense discrete subgroup. Let u ∈
a+θ − {0} and ψ ∈ a∗θ be (Γ, θ)-proper. Suppose that

∑
γ∈Γu,r

e−ψ(µθ(γ)) <∞
for all r > 0. For any (Γ, ψ)-conformal measure ν on Fθ, we have

ν(Λuθ ) = 0.

Proof. For each r > 0, we set Λuθ,r = lim supγ∈Γu,r
Oθr(o, γo). In other words,

ξ ∈ Λuθ,r if and only if there exists a sequence γi → ∞ in Γu,r such that

ξ ∈ Oθr(o, γio) for all i ≥ 1. Then Λuθ =
⋃
r>0 Λ

u
θ,r. Let ν be a (Γ, ψ)-

conformal measure on Fθ. Since

Λuθ,r ⊂
⋃

γ∈Γu,r,∥µθ(γ)∥>t

Oθr(o, γo) for all t > 0,

it follows from Lemma 4.4 that

(5.5) ν(Λuθ,r)≪
∑

γ∈Γu,r,∥µθ(γ)∥>t

e−ψ(µθ(γ)) for all t > 0.

Since
∑

γ∈Γu,r
e−ψ(µθ(γ)) < ∞, taking t → ∞ in (5.5) implies ν(Λuθ,r) = 0.

Therefore, ν(Λuθ ) = lim supr→∞ ν(Λuθ,r) = 0. □

Lemma 5.7. If
∑

γ∈Γu,r
e−ψ(µθ(γ)) = ∞ for some r > 0, then ψ(u) > 0. If

there exists a (Γ, ψ)-conformal measure on Fθ in addition, then

ψ(u) = ψθΓ(u).

Moreover the abscissa of convergence of the series s 7→
∑

γ∈Γu,r
e−sψ(µθ(γ))

is equal to one.



ERGODIC DICHOTOMY 25

Proof. Suppose that
∑

γ∈Γu,r
e−ψ(µθ(γ)) = ∞. Then #Γu,r = ∞. If ψ(u)

were not positive, then (ψ◦µθ)(Γu,r) is contained in the interval (−∞, ∥ψ∥r].
Therefore it contradicts the (Γ, θ)-proper hypothesis on ψ. Hence ψ(u) > 0.

Now suppose that there exists a (Γ, ψ)-conformal measure on Fθ. We
then have ψ ≥ ψθΓ by Theorem 4.3. Now suppose that ψ(u) > ψθΓ(u). We

may assume that u is a unit vector as both ψ and ψθΓ are homogeneous of

degree one. By the definition of ψθΓ, there exists an open cone C containing

u so that
∑

γ∈Γ,µθ(γ)∈C e
−ψ(u)∥µθ(γ)∥ < ∞. Since µθ(Γu,r) is contained in C

possibly except for finitely many elements, we have∑
γ∈Γu,r

e−ψ(µθ(γ)) ≪
∑
γ∈Γu,r

e−ψ(u)∥µθ(γ)∥ <∞,

which is a contradiction. Therefore, ψ(u) = ψθΓ(u).

We now show the last claim. Since
∑

γ∈Γ e
−ψ(µθ(γ)) ≥

∑
γ∈Γu,r

e−ψ(µθ(γ)) =

∞, the abscissa of convergence of s 7→
∑

γ∈Γ e
−sψ(µθ(γ)) is equal to one by

Theorem 4.3. Hence the abscissa of convergence of s 7→
∑

γ∈Γu,r
e−sψ(µθ(γ))

is at most one. Since
∑

γ∈Γu,r
e−ψ(µθ(γ)) =∞, it must be exactly one. □

6. Bowen-Margulis-Sullivan measures

In this short section, we recall the definition of Bowen-Margulis-Sullivan
measures on Ωθ. We also recall one-dimensional flow space Ωψ and the
corresponding Bowen-Margulis-Sullivan measures on it.

Let Γ < G be a Zariski dense θ-transverse subgroup. Recall our flow
space from the previous section:

Ωθ = Γ\Λ(2)
θ × aθ

where the action is given by (5.1).

Bowen-Margulis-Sullivan measures on Ωθ. We may identify a∗θ with
{ψ ∈ a∗ : ψ ◦ pθ = ψ}. Hence for ψ ∈ a∗θ, we have ψ ◦ i ∈ a∗i(θ). For a pair

of a (Γ, ψ)-conformal measure ν on Λθ and a (Γ, ψ ◦ i)-conformal measure νi

on Λi(θ), we define a Radon measure dm̃ν,νi on Λ
(2)
θ × aθ as follows:

(6.1) dm̃ν,νi(ξ, η, b) = eψ(G
θ(ξ,η))dν(ξ)dνi(η)db

where db is the Lebesgue measure on aθ. It is easy to check that m̃ν,νi is left
Γ-invariant, and hence induces a Aθ-invariant Radon measure on Ωθ which
we denote by

(6.2) mν,νi .

We call it the Bowen-Margulis-Sullivan measure (or simply BMS measure)
associated with the pair (ν, νi).
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Bowen-Margulis-Sullivan measures on Ωψ. Let ψ ∈ a∗θ be a (Γ, θ)-
proper form. We remark that this implies that ψ ≥ 0 on Lθ and ψ > 0 on

intLθ [22, Lem. 4.3]. Consider the Γ-action on Ω̃ψ := Λ
(2)
θ × R given by

(6.3) γ.(ξ.η, s) = (γξ, γη, s+ ψ(βθξ (γ
−1, e)))

for γ ∈ Γ and (ξ, η, s) ∈ Λ
(2)
θ × R.

Theorem 6.1. [22, Thm. 9.2] If Γ is Zariski dense θ-transverse and ψ ∈ a∗θ
is (Γ, θ)-proper, then Γ acts properly discontinuously on Ω̃ψ and hence

(6.4) Ωψ := Γ\Ω̃ψ

is a second countable locally compact Hausdorff space.

The map Λ
(2)
θ ×aθ → Λ

(2)
θ ×R given by (ξ, η, v) 7→ (ξ, η, ψ(v)) is a principal

kerψ-bundle which is trivial since kerψ is a vector space. Therefore it
induces a kerψ-equivariant homeomorphism between

(6.5) Ωθ ≃ Ωψ × kerψ.

Let

(6.6) mψ
ν,νi

be the Radon measure on Ωψ induced from the Γ-invariant measure on Ω̃ψ:

dm̃ψ
ν,νi

(ξ, η, s) := eψ(G
θ(ξ,η))dν(ξ)dν(η)ds.

We then have

mν,νi = mψ
ν,νi
⊗ Lebkerψ .

7. Directional conical sets and Poincaré series

In this section, we relate the divergence of the directional ψ-Poincaré
series with the size of the directional conical set with respect to a (Γ, ψ)-
conformal measure on Fθ. The main theorem of this section (Theorem 7.2)
is the most significant part of Theorem 1.1.

Let Γ < G be a Zariski dense θ-transverse subgroup. We fix

u ∈ a+θ − {0} and a (Γ, θ)-proper ψ ∈ a∗θ.

We also fix a pair ν, νi of (Γ, ψ) and (Γ, ψ ◦ i)-conformal measures on Λθ and
Λi(θ) respectively. Denote by m̃ = m̃ν,νi and m = mν,νi the associated BMS

measures on Ω̃θ and Ωθ respectively.
Our dichotomy theorem is stated under a hypothesis on m which we call

a u-balanced condition:



ERGODIC DICHOTOMY 27

Definition 7.1 (u-balanced condition). A Borel measure space (X,m) with
{atu}-action is called u-balanced or simply m is u-balanced, if for any
bounded Borel subset Oi ⊂ X with m(Oi) > 0 for i = 1, 2, for all T > 1,∫ T

0
m(O1 ∩O1atu)dt ≍ 4

∫ T

0
m(O2 ∩O2atu)dt.

The main goal of this section is to prove the following:

Theorem 7.2. Suppose that m is u-balanced. If
∑

γ∈Γu,r
e−ψ(µθ(γ)) =∞ for

some r > 0, then

ν(Λuθ ) > 0 and νi(Λ
i(u)
i(θ)) > 0.

Remark 7.3. When
∑

γ∈Γ e
−ψ(µθ(γ)) = ∞, there exists at most one (Γ, ψ)-

conformal measure on Fθ ([22, Thm. 1.5]). Furthermore, the existence of a
(Γ, ψ)-conformal measure on Λθ implies the existence of (Γ, ψ ◦ i)-conformal
measure on Λi(θ) as well. Indeed, it follows from [22, Thm. 7.1] that δψ =
1 where δψ is the abscissa of the convergence of the Poincaré series s 7→∑

γ∈Γ e
−sψ(µθ(γ)). In particular, δψ◦i = δψ = 1. By [10] and [22, Lem. 9.5],

there exists a (Γ, ψ ◦ i)-conformal measure νi on Λi(θ) which is the unique

(Γ, ψ◦i)-conformal measure on Fi(θ), since
∑

γ∈Γ e
−(ψ◦i)(µi(θ)(γ)) =∞ as well.

For simplicity, we set for all t ∈ R
at = atu = exp tu.

The following proposition is the key ingredient of the proof of Theorem 7.2:

Proposition 7.4. Set δ = ψ(u), which is positive by Lemma 5.7.

(1) For any compact subset Q ⊂ Ω̃θ, there exists r = r(Q) > 0 such that
for any T > 1, we have

∫ T

0

∫ T

0

∑
γ,γ′∈Γ

m̃(Q∩γQa−t∩γ′Qa−t−s)dtds≪

Ü ∑
γ∈Γu,r

ψ(µθ(γ))≤δT

e−ψ(µθ(γ))

ê2

.

(2) For any r > 0, there exists a compact subset Q′ = Q′(r) ⊂ Ω̃θ such
that for any T > 1,∫ T

0

∑
γ∈Γ

m̃(Q′ ∩ γQ′a−t)dt≫
∑
γ∈Γu,r

ψ(µθ(γ))≤δT

e−ψ(µθ(γ)).

To prove this proposition, we relate the integrals on the left hand sides
to shadows and apply the shadow lemma. Together with results obtained in
Section 5, the following proposition on the multiplicity bound on shadows
for transverse subgroups is crucial.

4The notation f(T ) ≍ g(T ) means that f(T ), g(T ) → ∞ as T → ∞ and f(T ) ≪ g(T )
and g(T ) ≪ f(T ).
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Proposition 7.5. [22, Prop. 6.2] For any R,D > 0, there exists q =
q(ψ,R,D) > 0 such that for any T > 0, the collection of shadows¶

OθR(o, γo) ⊂ Fθ : T ≤ ψ(µθ(γ)) ≤ T +D
©

has multiplicity at most q.

Lemma 7.6. Let Q ⊂ Ω̃θ be a compact subset. For any t > 1, we have

m̃(Q ∩ γQa−t)≪ e−ψ(µθ(γ))

where the implied constant is independent of t.

Proof. There exists c0 = c0(Q) > 0 such that if Q∩Qa ̸= ∅ for some a ∈ Aθ,
then ∥ log a∥ < c0. By Proposition 5.3(2) and the compactness of Q, we
have for large enough R > 0 that

m̃(Q ∩ γQa−t)

≪
∫
Oθ

R(o,γo)×Oi(θ)
R (γo,o)

∫
aθ

1Q∩γQa−t(ξ, η, b)e
ψ(Gθ(ξ,η))dν(ξ)dνi(η)db

≪
∫
Oθ

R(o,γo)×Oi(θ)
R (γo,o)

1Q∩γQa−t(ξ, η)e
ψ(Gθ(ξ,η))dν(ξ)dνi(η).

Since Gθ(ξ, η) in the above integrand is uniformly bounded by Proposition
5.3(3), we obtain

m̃(Q ∩ γQa−t)≪ ν(OθR(o, γo))νi(O
i(θ)
R (γo, o)).

By Lemma 4.4, we have

m̃(Q ∩ γQa−t)≪ ν(OθR(o, γo))≪ e−ψ(µθ(γ)).

□

The following is immediate from Proposition 5.3(1).

Lemma 7.7. Let Q ⊂ Ω̃θ be a compact subset. If Q∩γQa−t∩γ′Qa−t−s ̸= ∅
for some γ, γ′ ∈ Γ and t, s > 0, then we have

(1) ∥µθ(γ)− tu∥ , ∥µθ(γ−1γ′)− su∥, ∥µθ(γ′)− (t+ s)u∥ < C1;
(2) ψ(µθ(γ)) + ψ(µθ(γ

−1γ′)) < ψ(µθ(γ
′)) + 3C1∥ψ∥

where C1 = C1(Q) is given as in Proposition 5.3.

Proof of Proposition 7.4(1). Let Q ⊂ Ω̃θ be a compact subset. Fix
s, t > 0. For γ, γ′ ∈ Γ such that Q ∩ γQa−t ∩ γ′Qa−t−s ̸= ∅, it follows from
Lemma 7.6 that

m̃(Q ∩ γQa−t ∩ γ′Qa−t−s)≪ e−ψ(µθ(γ
′)).

By Lemma 7.7(2), we have ψ(µθ(γ)) + ψ(µθ(γ
−1γ′)) < ψ(µθ(γ

′)) + 3C1∥ψ∥
and hence

m̃(Q ∩ γQa−t ∩ γ′Qa−t−s)≪ e−ψ(µθ(γ))e−ψ(µθ(γ
−1γ′)).
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Since we also have ∥µθ(γ)−tu∥, ∥µθ(γ−1γ′)−su∥ < C1 by Lemma 7.7 where
C1 is given in Proposition 5.3(1), we deduce by replacing γ−1γ′ with γ̂ that∑
γ,γ′∈Γ

m̃(Q ∩ γQa−t ∩ γ′Qa−t−s)

≪

á
∑

γ∈Γu,C1
ψ(µθ(γ))∈(δt−c,δt+c)

e−ψ(µθ(γ))

ëá
∑

γ̂∈Γu,C1
ψ(µθ(γ̂))∈(δs−c,δs+c)

e−ψ(µθ(γ̂))

ë
where c := C1∥ψ∥.

We observe that if ψ(µθ(γ)) ∈ (δt − c, δt + c) for some t ∈ [0, T ], then
ψ(µθ(γ)) ≤ δT + c. Hence we have

∫ T

0

á
∑

γ∈Γu,C1
ψ(µθ(γ))∈(δt−c,δt+c)

e−ψ(µθ(γ))

ë
dt≪

∑
γ∈Γu,C1

ψ(µθ(γ))≤δT+c

e−ψ(µθ(γ)).

Similarly we also have

∫ T

0

á
∑

γ̂∈Γu,C1
ψ(µθ(γ̂))∈(δs−c,δs+c)

e−ψ(µθ(γ̂))

ë
ds≪

∑
γ̂∈Γu,C1

ψ(µθ(γ̂))≤δT+c

e−ψ(µθ(γ̂)).

Therefore, we have

∫ T

0

∫ T

0

∑
γ,γ′∈Γ

m̃(Q∩γQa−t∩γ′Qa−t−s)dtds≪

á
∑

γ∈Γu,C1
ψ(µθ(γ))≤δT+c

e−ψ(µθ(γ))

ë2

.

Since ∑
γ∈Γu,C1

δT<ψ(µθ(γ))≤δT+c

e−ψ(µθ(γ)) ≪
∑

γ∈Γu,C1
δT<ψ(µθ(γ))≤δT+c

ν(OθR(o, γo))≪ 1

for large R = R(ν) by Lemma 4.4 and Proposition 7.5, setting r(Q) = C1(Q)
completes the proof. □

Lemma 7.8. For any R > 0, there exists 0 < ℓR < ∞ such that any

(ξ, η) ∈
⋃
γ∈Γ,∥µθ(γ)∥>ℓR O

θ
R(o, γo)×O

i(θ)
R (γo, o) satisfies ∥Gθ(ξ, η)∥ < ℓR.

Proof. Suppose not. Then there exist sequences γi →∞ in Γ and (ξi, ηi) ∈
OθR(o, γio) × O

i(θ)
R (γio, o) such that ∥Gθ(ξi, ηi)∥ → ∞ as i → ∞. We may

assume that ξi → ξ and ηi → η by passing to subsequences. As γi → ∞
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θ-regularly, Lemma 3.5 implies that (ξ, η) ∈ F (2)
θ . Since ∥Gθ(ξi, ηi)∥ →

∥Gθ(ξ, η)∥ <∞, this is a contradiction. □

Lemma 7.9. Let u ∈ a+θ − {0}. For any r,R > 0, there exists a compact

subset Q = Q(r,R) ⊂ Ω̃θ such that for any γ ∈ Γu,r with ∥µθ(γ)∥ > ℓR and

(ξ, η) ∈
Ä
OθR(o, γo)×O

i(θ)
R (γo, o)

ä
∩ Λ

(2)
θ ,

there exists v ∈ aθ and t ≥ 0 such that

(ξ, η, v) ∈ Q and (ξ, η, v)a[t−1,t+1] ⊂ γQ.

Proof. Let (ξ, η) ∈ (OθR(o, γo) × O
i(θ)
R (γo, o)) ∩ Λ

(2)
θ for some γ ∈ Γu,r with

∥µθ(γ)∥ > ℓR. Then there exists k ∈ K such that ξ = kPθ and d(ka0o, γo) <
R for some a0 ∈ A+. Write a0 = ab ∈ A+

θ B
+
θ .

By Lemma 2.1, we have ∥µ(γ) − log a0∥ < D for some D = D(R), and
hence ∥µθ(γ)− log a∥ < D.We also obtain from γ ∈ Γu,r that ∥µθ(γ)−tu∥ <
r for some t ≥ 0 and hence we have ∥tu− log a∥ < D+r. Therefore, we have

(7.1)

d(katubo, γo) ≤ d(katubo, ka0o) + d(ka0o, γo)

= d(atuo, ao) + d(ka0o, γo)

< D + r +R.

We also note that

∥tu+ log b− log a0∥ = ∥tu− log a∥ < D + r.

Hence there exists ã ∈ A such that

∥ log ã∥ < D + r and atubã ∈ A+.

Let g0 ∈ G such that (g0Pθ, g0w0Pi(θ)) = (ξ, η). Since (ξ, η) ∈ OθR(o, γo) ×
O

i(θ)
R (γo, o) and ∥µθ(γ)∥ > ℓR, we have ∥Gθ(ξ, η)∥ < ℓR. By Proposition 2.8,

we can replace g0 by an element of g0Lθ so that we may assume that

d(o, g0o) ≤ c∥Gθ(ξ, η)∥+ c′ < cℓR + c′.

Since ξ = kPθ = g0Pθ, we have g−1
0 k ∈ Pθ. We write the Iwasawa decompo-

sition

g−1
0 k = mân̂ ∈ KAN.

Then we have m = g−1
0 kn̂−1â−1 ∈ Pθn̂−1â−1 = Pθ. In particular, we have

m ∈ Pθ ∩ K = Mθ. We let g = g0m. Since m ∈ Mθ ⊂ Lθ, we still have
(gPθ, gw0Pi(θ)) = (ξ, η) and d(o, go) = d(o, g0o) < cℓR + c′. Moreover, we

have g−1k = ân̂ ∈ P . Now for s ∈ [t− 1, t+ 1], we have

d(gbasuo, kbatuo) ≤ d(gbasuo, gbatuo) + d(gbatuo, kbatuo)

≤ 1 + d(gbatuo, gbatuão) + d(gbatuão, kbatuão) + d(kbatuão, kbatuo)

= 1 + 2d(o, ão) + d(gbatuão, kbatuão).
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Since g−1k ∈ P and batuã ∈ A+, we get d(gbatuão, kbatuão) ≤ d(go, ko) =
d(go, o) < cℓR + c′. Together with ∥ log ã∥ < D + r, we have

d(gbasuo, kbatuo) < 1 + 2(D + r) + cℓR + c′.

Since d(kbatuo, γo) < D + r +R, we finally have

d(gbasuo, γo) < 1 + 3(D + r) +R+ cℓR + c′.

We set R′ = 1+3(D+ r)+R+ cℓR+ c′ and Q := {[h] ∈ Ω̃θ : d(ho, o) ≤ R′}
which is a compact subset of Ω̃θ.

Now the image of g under the projection G → F (2)
θ × aθ is of the form

(ξ, η, v) for some v ∈ aθ. Since b ∈ Sθ, the product gb also projects to
the same element (ξ, η, v). It follows from d(o, go) < cℓR + c′ ≤ R′ that
(ξ, η, v) ∈ Q. Moreover, since d(γ−1gbasuo, o) < R′ for all s ∈ [t − 1, t + 1],
we have γ−1(ξ, η, v)asu ∈ Q and hence (ξ, η, v)a[t−1,t+1] ⊂ γQ. This finishes
the proof. □

Recall the notation δ = ψ(u) > 0.

Lemma 7.10. Fix r,R > 0, and let Q = Q(r,R) ⊂ Ω̃θ and C1 = C1(Q) > 0
be as in Lemma 7.9 and Proposition 5.3 respectively. Let T > 0 and γ ∈ Γu,r
be such that

∥µθ(γ)∥ > ℓR and C1∥ψ∥+ δ < ψ(µθ(γ)) < δT − C1∥ψ∥ − δ.

If
∑

γ0∈Γu,r
e−ψ(µθ(γ0)) =∞, then, for any (ξ, η) ∈ (OθR(o, γo)×O

i(θ)
R (γo, o))∩

Λ
(2)
θ , we have ∫ T

0

∫
aθ

1Q′∩γQ′a−t(ξ, η, b)dbdt ≥ 2Vol(Aθ,2)

where Aθ,2 = {a ∈ Aθ : ∥ log a∥ ≤ 2} and Q′ := QAθ,2 ⊂ Ω̃θ.

Proof. By Lemma 7.9, there exist v ∈ aθ and t0 ≥ 0 such that (ξ, η, v) ∈ Q
and (ξ, η, v)a[t0−1,t0+1] ⊂ γQ. In other words, (ξ, η, v) ∈ Q ∩ γQa−t for all
t ∈ [t0 − 1, t0 + 1]. Since ∥µθ(γ)− t0u∥ < C1 by Proposition 5.3(1), we have
|ψ(µθ(γ))− t0δ| < C1∥ψ∥. In particular, we have [t0 − 1, t0 + 1] ⊂ [0, T ] by
the hypothesis.

We set Q′ := QAθ,2 which is a compact subset of Ω̃θ. We then have for
each t ∈ [t0 − 1, t0 + 1] that∫

Aθ

1Q′∩γQ′a−t((ξ, η, v)b)db ≥
∫
Aθ,2

1γQ′((ξ, η, v)bat)db ≥ Vol(Aθ,2)
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where the last inequality follows from (ξ, η, v)at ∈ γQ. Therefore, we have

∫ T

0

∫
aθ

1Q′∩γQ′a−t(ξ, η, b)dbdt =

∫ T

0

∫
Aθ

1Q′∩γQ′a−t((ξ, η, v)b)dbdt

≥
∫ t0+1

t0−1

∫
Aθ

1Q′∩γQ′a−t((ξ, η, v)b)dbdt

≥ 2Vol(Aθ,2)

as desired. □

Proof of Proposition 7.4(2). FixR > max(R(ν), R(νi)) whereR(ν), R(νi)
are defined as in Lemma 4.4. Let Q′ = Q(r,R)Aθ,2 where Q(r,R) is given
in Lemma 7.9, so that Q′ satisfies the conclusion of Lemma 7.10. For any
γ ∈ Γ and t > 0, we have

m̃(Q′ ∩ γQ′a−t)

=

∫
F(2)

θ

Ç∫
aθ

1Q′∩γQ′a−t(ξ, η, b)db

å
eψ(G

θ(ξ,η))dν(ξ)dνi(η)

≥
∫
Oθ

R(o,γo)×Oi(θ)
R (γo,o)

Ç∫
aθ

1Q′∩γQ′a−t(ξ, η, b)db

å
eψ(G

θ(ξ,η))dν(ξ)dνi(η).

By Lemma 7.10, if γ ∈ Γu,r, ∥µθ(γ)∥ > ℓR and C1∥ψ∥ + δ < ψ(µθ(γ)) <
δT − C1∥ψ∥ − δ where C1 = C1(Q), then

∫ T

0
m̃(Q′ ∩ γQ′a−t)dt

≥ 2Vol(Aθ,2)

∫
Oθ

R(o,γo)×Oi(θ)
R (γo,o)

eψ(G
θ(ξ,η))dν(ξ)dνi(η)

≥ 2Vol(Aθ,2)e
−∥ψ∥ℓRν(OθR(o, γo))νi(O

i(θ)
R (γo, o))

where the last inequality follows from ∥Gθ(ξ, η)∥ < ℓR. By Lemma 4.4, we
conclude ∫ T

0
m̃(Q′ ∩ γQ′a−t)dt≫ e−ψ(µθ(γ)).

For each T ≥ 1, we define

ΓT = {γ ∈ Γ : ∥µθ(γ)∥ > ℓR, C1∥ψ∥+ δ < ψ(µθ(γ)) < δT − (C1∥ψ∥+ δ)}.
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Since both {γ ∈ Γ : ∥µθ(γ)∥ ≤ ℓR} and {γ ∈ Γ : ψ(µθ(γ)) ≤ C1∥ψ∥+ δ} are
finite sets, we have∫ T

0

∑
γ∈Γ

m̃(Q′ ∩ γQ′a−t)dt ≥
∫ T

0

∑
γ∈Γu,r∩ΓT

m̃(Q′ ∩ γQ′a−t)dt

≫
∑

γ∈Γu,r∩ΓT

e−ψ(µθ(γ))

≫
∑
γ∈Γu,r

ψ(µθ(γ))<δT−(C1∥ψ∥+δ)

e−ψ(µθ(γ)).

By Lemma 4.4 and Proposition 7.5,∑
γ∈Γu,r

δT−(C1∥ψ∥+δ)≤ψ(µθ(γ))≤δT

e−ψ(µθ(γ)) ≪
∑
γ∈Γu,r

δT−(C1∥ψ∥+δ)≤ψ(µθ(γ))≤δT

ν(OθR(o, γo))≪ 1.

Therefore, we obtain∫ T

0

∑
γ∈Γ

m̃(Q′ ∩ γQ′a−t)dt≫
∑
γ∈Γu,r

ψ(µθ(γ))≤δT

e−ψ(µθ(γ)).

□

We will apply the following version of Borel-Cantelli lemma.

Lemma 7.11. [1, Lem. 2] Let (Ω,M) be a finite Borel measure space and
{Pt : t ≥ 0} be a collection of subsets of Ω such that the map (t, ω) 7→ 1Pt(ω)
is measurable on R+ × Ω. Suppose that

(1)
∫∞
0 M(Pt)dt =∞, and

(2) for all large enough T ,∫ T

0

∫ T

0
M(Pt ∩ Ps)dtds≪

Ç∫ T

0
M(Pt)dt

å2

where the implied constant is independent of T .

Then we have

M

Åß
ω ∈ Ω :

∫ ∞

0
1Pt(ω)dt =∞

™ã
> 0.

Proof of Theorem 7.2. Let Q ⊂ Ω̃θ be a compact subset with m̃(Q) > 0.

Let r = r(Q) > 1 be large enough so that
∑

γ∈Γu,r
e−ψ(µθ(γ)) =∞ and that

Proposition 7.4(1) holds. Let Q′ = Q′(r) be a compact subset of Ω̃θ given by
Proposition 7.4(2). Replacing Q′ with a larger compact subset if necessary,
we may assume that m̃(Q′) > 0.

Since m is u-balanced, we have for T > 1 that

(7.2)

∫ T

0

∑
γ∈Γ

m̃(Q ∩ γQa−t)dt ≍
∫ T

0

∑
γ∈Γ

m̃(Q′ ∩ γQ′a−t)dt
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with the implied constant independent of T . Since we already have

∫ T

0

∫ T

0

∑
γ,γ′∈Γ

m̃(Q ∩ γQa−t ∩ γ′Qa−t−s)dtds≪

Ü ∑
γ∈Γu,r

ψ(µθ(γ))≤δT

e−ψ(µθ(γ))

ê2

and

(7.3)
∑
γ∈Γu,r

ψ(µθ(γ))≤δT

e−ψ(µθ(γ)) ≪
∫ T

0

∑
γ∈Γ

m̃(Q′ ∩ γQ′a−t)dt

by Proposition 7.4, it follows from (7.2) that
(7.4)∫ T

0

∫ T

0

∑
γ,γ′∈Γ

m̃(Q∩γQa−t∩γ′Qa−t−s)dtds≪

Ñ∫ T

0

∑
γ∈Γ

m̃(Q ∩ γQa−t)dt

é2

.

By abusing notation, for a subset U ⊂ Ω̃θ, we denote by [U ] the image

of U under the projection Ω̃θ → Ωθ, i.e., [U ] = Γ\ΓU . We set M = m|[Q]

which is a finite Borel measure. We let Pt = [Q ∩ ΓQa−t] for t ≥ 0. Since
#{γ ∈ Γ : Qa−t ∩ γQa−t ̸= ∅} is uniformly bounded independent of t, we
have M(Pt) ≍

∑
γ∈Γ m̃(Q ∩ γQa−t) with the implied constant independent

of t. Noting that
∑

γ∈Γu,r
e−ψ(µθ(γ)) = ∞, it follows from (7.2) and (7.3)

that ∫ ∞

0
M(Pt)dt =∞

and hence the condition (1) in Lemma 7.11 is satisfied.
The following is a rephrase of (7.4):∫ T

0

∫ T

0
M(Pt ∩ Pt+s)dsdt≪

Ç∫ T

0
M(Pt)dt

å2

.

It implies ∫ T

0

∫ T

0
M(Pt ∩ Ps)dsdt = 2

∫ T

0

∫ T

t
M(Pt ∩ Ps)dsdt

≤ 2

∫ T

0

∫ T

0
M(Pt ∩ Pt+s)dsdt

≪
Ç∫ T

0
M(Pt)dt

å2

,

showing that the condition (2) in Lemma 7.11 is satisfied.
Hence, by Lemma 7.11, we have

M

Åß
[(ξ, η, v)] ∈ [Q] :

∫ ∞

0
1[Q]([(ξ, η, v)]at)dt =∞

™ã
> 0.
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In particular, there exists a subset Q0 ⊂ Q such that m̃(Q0) > 0 and for
all (ξ, η, v) ∈ Q0, there exist sequences γi ∈ Γ and ti → ∞ such that
γ−1
i (ξ, η, v)ati ∈ Q for all i ≥ 1. In particular,

(ξ, η, v) ∈ Q ∩ γiQa−ti for all i ≥ 1,

which implies ξ ∈ Λuθ by Lemma 5.5. Since this holds for all (ξ, η, v) ∈ Q0,
we have that

ξ ∈ Λuθ for all (ξ, η, v) ∈ Q0.

Since m̃(Q0) > 0 and m̃ is equivalent to the product measure ν ⊗ νi ⊗
db, it follows that ν(Λuθ ) > 0 as desired. Since m is Au-invariant, the u-
balanced condition remains same after changing the sign of T . Then the

same argument with the negative T gives νi(Λ
i(u)
i(θ)) > 0. □

Lemma 7.12. We have either

ν(Λuθ ) = 0 or ν(Λuθ ) = 1.

Proof. Suppose that ν(Λuθ ) > 0. Then by Theorem 5.6, we must have∑
γ∈Γu,r

e−ψ(µθ(γ)) = ∞ for some r > 0. This implies that ν is the unique

(Γ, ψ)-conformal measure on Fθ ([10], [22, Thm. 1.5]). On the other hand, if
0 < ν(Λuθ ) < 1, then ν̃ := 1

ν(Fθ−Λu
θ )
ν|Fθ−Λu

θ
defines another (Γ, ψ)-conformal

measure, which would contradict the uniqueness of the (Γ, ψ)-conformal
measure. Therefore, ν(Λuθ ) must be either 0 or 1. □

Corollary 7.13. If m is u-balanced, the following are equivalent:

(1)
∑

γ∈Γu,r
e−ψ(µθ(γ)) =∞ for some r > 0;

(2) ν(Λuθ ) = 1 = νi(Λ
i(u)
i(θ)).

Similarly, if m is u-balanced, the following are also equivalent:

(1)
∑

γ∈Γu,r
e−ψ(µθ(γ)) <∞ for all r > 0;

(2) ν(Λuθ ) = 0 = νi(Λ
i(u)
i(θ)).

Proof. By Lemma 7.12, we have ν(Λuθ ) = 0 or ν(Λuθ ) = 1. Similarly, noting

that ψ◦i ∈ a∗i(θ) is (Γ, i(θ))-proper as well, we also have either νi(Λ
i(u)
i(θ)) = 0 or

νi(Λ
i(u)
i(θ)) = 1. Therefore Theorem 7.2 implies that if

∑
γ∈Γu,r

e−ψ(µθ(γ)) =∞

for some r > 0, then ν(Λuθ ) = 1 = νi(Λ
i(u)
i(θ)). On the other hand Theorem

5.6 implies that if
∑

γ∈Γu,r
e−ψ(µθ(γ)) < ∞ for all r > 0, then ν(Λuθ ) = 0 =

νi(Λ
i(u)
i(θ)). This proves the corollary. □

We finish the section with the following corollary of Proposition 7.4, which
will be used later. The following estimate reduces the divergence of the series∑

γ∈Γu,r
e−ψ(µθ(γ)) to the local mixing rate for the at-flow:
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Corollary 7.14. For all sufficiently large r > 0, there exist compact subsets
Q1, Q2 of Ωθ with non-empty interior such that for all T ≥ 1,Ç∫ T

0
m(Q1 ∩Q1a−t)dt

å1/2

≪
∑
γ∈Γu,r

ψ(µθ(γ))≤δT

e−ψ(µθ(γ)) ≪
∫ T

0
m(Q2∩Q2a−t)dt.

Proof. Let Q ⊂ Ω̃θ be a compact subset with non-empty interior. By Propo-
sition 7.4(1), there exists r0 = r0(Q) > 0 such that for all T ≥ 1 and for all
r ≥ r0,
(7.5)∫ T

0

∫ T

0

∑
γ,γ′∈Γ

m̃(Q∩γQa−t∩γ′Qa−t−s)dtds≪

Ü ∑
γ∈Γu,r

ψ(µθ(γ))≤δT

e−ψ(µθ(γ))

ê2

.

Fix a small ε > 0 so that Q− :=
⋂

0≤s≤εQa−s has non-empty interior. Since
we have

ε

∫ T

0

∑
γ∈Γ

m̃(Q− ∩ γQ−a−t)dt ≤
∫ T

0

∫ ε

0

∑
γ∈Γ

m̃(Q ∩ γ(Q ∩Qa−s)a−t)dsdt,

it follows from (7.5) that for all r ≥ r0,

∫ T

0

∑
γ∈Γ

m̃(Q− ∩ γQ−a−t)dt≪

Ü ∑
γ∈Γu,r

ψ(µθ(γ))≤δT

e−ψ(µθ(γ))

ê2

.

Now let Q′ = Q′(r) ⊂ Ω̃θ be a compact subset given in Proposition 7.4(2)
such that for any T > 1,

(7.6)

∫ T

0

∑
γ∈Γ

m̃(Q′ ∩ γQ′a−t)dt≫
∑
γ∈Γu,r

ψ(µθ(γ))≤δT

e−ψ(µθ(γ)).

Replacing Q′ with a larger compact subset, we may assume that intQ′ ̸= ∅.
Hence it suffices to set Q1 = Γ\ΓQ− and Q2 = Γ\ΓQ′ to finish the proof. □

Remark 7.15. For θ = Π, Corollary 7.14 was established in [9] for any
Zariski dense discrete subgroup of G (see [9, Proof of Thm. 6.3]). If Γ is
a lattice of G, then, together with the Howe-Moore mixing property of the
(finite) Haar measure [18], it implies that for any non-zero u ∈ a+, we have∑

γ∈Γu,r
e−2ρ(µ(γ)) =∞ for all r > 1 large enough where 2ρ denotes the sum

of all positive roots counted with multiplicity.
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8. Transitivity subgroup and ergodicity of directional flows

In this section, we complete the proof of Theorem 1.1, by establishing
the equivalence between co-nullity of directional conical sets and conser-
vativity/ergodicity of directional flows. We use the notion of transitivity
subgroup to carry out the Hopf argument in our setting.

Let Γ < G be a Zariski dense θ-transverse subgroup. We fix a non-zero
vector u ∈ a+θ and a (Γ, θ)-proper linear form ψ ∈ a∗θ. We also fix a pair
ν, νi of (Γ, ψ) and (Γ, ψ◦ i)-conformal measures on Λθ and Λi(θ) respectively.
Denote by m = m(ν, νi) the associated BMS measure on Ωθ. In this section,
we discuss the ergodicity and conservativity of the directional flow

Au = {at := exp(tu) : t ∈ R}
on Ωθ with respect to m. We emphasize that the notion of a transitivity
subgroup plays a key role in showing the Au-ergodicity.

Conservativity of directional flows. Recall the following definitions:

(1) A Borel subset B ⊂ Ωθ is called a wandering set for m if for m-a.e.
x ∈ B, we have

∫∞
−∞ 1B(xat)dt <∞.

(2) We say that (Ωθ, Au,m) is completely conservative if there is no
wandering set B ⊂ Ωθ with m(B) > 0.

(3) We say that (Ωθ, Au,m) is completely dissipative if Ωθ is a countable
union of wandering sets modulo m.

The following is proved for θ = Π in [9, Prop. 4.2] and a similar proof
works for general θ:

Proposition 8.1. The flow (Ωθ, Au,m) is completely conservative (resp.

completely dissipative) if and only if max
Ä
ν(Λuθ ), νi(Λ

i(u)
i(θ))
ä
> 0 (resp. ν(Λuθ ) =

0 = νi(Λ
i(u)
i(θ))).

Proof. Suppose that there exists a non-wandering subset B with m(B) > 0.
Setting B± := {x ∈ B : lim supt→±∞ xat∩B ̸= ∅}, we have m(B+∪B−) > 0.
Since m is locally equivalent to ν ⊗ νi ⊗ db, if we have m(B+) > 0, then

ν(Λuθ ) > 0 by Lemma 5.5. Otherwise, if m(B−) > 0, then νi(Λ
i(u)
i(θ)) > 0. It

shows the following two implications:

(Ωθ, Au,m) is completely conservative⇒ max
Ä
ν(Λuθ ), νi(Λ

i(u)
i(θ))
ä
> 0;

(Ωθ, Au,m) is completely dissipative⇐ ν(Λuθ ) = 0 = νi(Λ
i(u)
i(θ))

where the second implication is due to the σ-compactness of Ωθ.

Now suppose that ν(Λuθ ) > 0 (resp. νi(Λ
i(u)
i(θ) > 0). By Theorem 5.6,∑

γ∈Γu,r
e−ψ(µθ(γ)) =∞ (resp.

∑
γ∈Γ−1

u,r
e−(ψ◦i)(µi(θ)(γ)) =∞) for some r > 0.

Note that γ ∈ Γ−1
u,r if and only if ∥µi(θ)(γ) − t i(u)∥ < r for some t ≥ 0.

Hence it follows from (7.12) that ν(Λuθ ) = 1 (resp. νi(Λ
i(u)
i(θ)) = 1). It implies
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that for m-a.e. Γ[g] ∈ Ωθ, we have g+ ∈ Λuθ (resp. g− ∈ Λ
i(u)
i(θ)) and hence

Γ[g]atiu is a convergent sequence for some sequence ti → ∞ (resp. ti →
−∞). Hence, for m-a.e. x ∈ Ωθ, there exists a compact subset B such that∫∞
−∞ 1B(xat)dt = ∞. This implies the conservativity of (Ωθ, Au,m) by [25,

Lem. 6.1]. □

Density of θ-transitivity subgroups.

Definition 8.2 (θ-transitivity subgroup). For g ∈ G with (g+, g−) ∈ Λ
(2)
θ ,

define HθΓ(g) to be the set of all elements a ∈ Aθ such that there exist γ ∈ Γ,

s ∈ Sθ and a sequence n1, · · · , nk ∈ Nθ ∪ Ňθ such that

(1) ((gn1 · · ·nr)+, (gn1 · · ·nr)−) ∈ Λ
(2)
θ for all 1 ≤ r ≤ k; and

(2) γgn1 · · ·nk = gas.

It is not hard to see that HθΓ(g) is a subgroup (cf. [38, Lem. 3.1]).

We deduce the density of transitive subgroups from Theorem 2.6:

Proposition 8.3. For any g ∈ G with (g+, g−) ∈ Λ
(2)
θ , the subgroup HθΓ(g)

is dense in Aθ.

Proof. Note that we have a Zariski dense open subset gŇθPθ/P ⊂ F ; this
is well-defined since P ⊂ Pθ. Hence there exists a Zariski dense Schottky
subgroup Γ0 < Γ so that for any loxodromic element γ ∈ Γ0, its attracting
fixed point yγ belongs to gŇθPθ (cf. [14, Lem. 7.3], [3]). Note that any non-
trivial element of Γ0 is loxodromic. By Theorem 2.6, it suffices to prove:

(8.1) {pθ(λ(γ)) : γ ∈ Γ0} ⊂ logHθΓ(g).
Fixing any non-trivial element γ ∈ Γ0, write γ = haγmh

−1 ∈ hA+Mh−1

for some h ∈ G. Then λ(γ) = log aγ and yγ = hP ∈ Λ; hence yθγ := hPθ ∈
gŇθPθ. Using Pθ = NθAθSθ, we can write h ∈ gňnAθSθ for some ň ∈ Ňθ

and n ∈ Nθ. By replacing h with gňn, we may assume that

h = gňn ∈ gŇθNθ and γ = hash−1

for some s ∈ Sθ where a is the Aθ-component of aγ in the decomposition

aγ ∈ A+
θ B

+
θ so that pθ(log aγ) = log a. It remains to show that a ∈ HθΓ(g).

We first note from γ = hash−1 and h = gňn that

γ = (gas)
(
(as)−1ň(as)

) (
(as)−1n(as)

)
n−1ň−1g−1

and hence

(8.2) γgňn
(
(as)−1n−1(as)

) (
(as)−1ň−1(as)

)
= gas.

Writing n1 = ň, n2 = n, n3 = (as)−1n−1(as) and n4 = (as)−1ň−1(as), we
have n1, n4 ∈ Ňθ and n2, n3 ∈ Nθ. By (8.2), the elements ni, 1 ≤ i ≤ 4,
satisfy the second condition for a ∈ HθΓ(g). We now check the first condition:

• gn1Pθ = gňPθ = hPθ = yθγ ∈ Λθ and gn1w0Pi(θ) = gw0Pi(θ) ∈ Λi(θ);

• gn1n2Pθ = hPθ ∈ Λθ and gn1n2w0Pi(θ) = hw0Pi(θ) = y
i(θ)
γ−1 ∈ Λi(θ);
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• gn1n2n3Pθ = gn1n2Pθ ∈ Λθ and gn1n2n3w0Pi(θ) = γ−1gasn−1
4 w0Pi(θ) =

γ−1gasw0Pi(θ) = γ−1gw0Pi(θ) ∈ Λi(θ) by (8.2);

• gn1n2n3n4Pθ = γ−1gasPθ = γ−1gPθ ∈ Λθ and gn1n2n3n4w0Pi(θ) =
gn1n2n3w0Pi(θ) ∈ Λi(θ).

This proves that a ∈ HθΓ(g) and completes the proof. □

Stable and unstable foliations for directional flows. Recall the nota-
tion that for g ∈ G, we set

[g] = (g+, g−, βθg+(e, g)) ∈ F
(2)
θ × aθ.

Lemma 8.4. Let g ∈ G, n ∈ Nθ and ň ∈ Ňθ. Then

[gn] = (g+, (gn)−, βθg+(e, g));

[gň] = ((gň)+, g−, βθg+(e, g) + G
θ((gň)+, g−)− Gθ(g+, g−)).

Proof. Since (gn)+ = gnPθ = gPθ, we have

βθ(gn)+(e, gn)− β
θ
g+(e, g) = βθe+(e, n) = 0

and therefore [gn] = (g+, (gn)−, βθg+(e, g)). To see the second identity, we

first note that gňw0Pi(θ) = gw0Pi(θ), that is, (gň)
− = g−. Since β

i(θ)
e− (e, ň) =

0, we have

Gθ((gň)+, g−) = βθ(gň)+(e, gň) + i(β
i(θ)
g− (e, g)) + i(β

i(θ)
e− (e, ň))

= βθ(gň)+(e, gň) + i(β
i(θ)
g− (e, g)).

Since Gθ(g+, g−) = βθg+(e, g) + i(β
i(θ)
g− (e, g)), we get

βθ(gň)+(e, gň) = βθg+(e, g) + G
θ((gň)+, g−)− Gθ(g+, g−)

proving the second identity. □

We say a metric d on Ωθ admissible if it extends to a metric of the one-
point compactification of Ωθ (if Ωθ is compact, any metric is admissible).
Since Ωθ is a second countable locally compact Hausdorff space (Theorem
5.1), there exists an admissible metric.

For x ∈ Ωθ, we define W ss(x) (resp. W su(x)) to be the set of all y ∈ Ωθ
such that d(xat, yat)→ 0 as t→ +∞ (resp. t→ −∞). They form strongly
stable and unstable foliations in Ωθ with respect to the flow {at} respectively.

In turns out that with respect to any admissible metric d on Ωθ, the
Nθ and Ňθ-orbits are contained in the stable and unstable foliations of the
directional flow {at} on Ωθ respectively. The following proposition is impor-
tant in applying Hopf-type arguments; the observation that one can use an
admissible metric in this context is due to Blayac-Canary-Zhu-Zimmer [5].
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Proposition 8.5. Let g ∈ G be such that [g] ∈ Ω̃θ. For any compact subsets
U ⊂ Nθ and Ǔ ⊂ Ňθ, we have, as t→ +∞

diam ({Γ[gn] ∈ Ωθ : n ∈ U} · at)→ 0;

diam
(
{Γ[gň] ∈ Ωθ : ň ∈ Ǔ} · a−t

)
→ 0

where the diameter is computed with respect to an admissible metric d on
Ωθ. In particular,

(1) {Γ[gn] ∈ Ωθ : n ∈ Nθ} ⊂W ss(Γ[g]);
(2) {Γ[gň] ∈ Ωθ : ň ∈ Ňθ} ⊂W su(Γ[g]).

Proof. Let ♠ be the point at infinity in the one-point compactification of
Ωθ. For each ε > 0, set Qε = Ωθ if Ωθ is compact and Qε = {x ∈ Ωθ :

d(x,♠) ≥ ε/2} otherwise, and choose a compact lift Q̃ε ⊂ Ω̃θ of Qε. Let

[g] = (ξ, η, v) ∈ Ω̃θ. To show the first claim, suppose not. Then there exist
ε > 0, a sequence ti → ∞ and convergent sequences ni, n

′
i ∈ Nθ such that

[gni], [gn
′
i] ∈ Ω̃θ and d(Γ[gni]ati ,Γ[gn

′
i]ati) > ε for all i ≥ 1. By passing to a

subsequence and switching ni and n
′
i if necessary, we may assume that for

all i ≥ 1, γi[gni]ati ∈ Q̃ε for some γi ∈ Γ. After passing to a subsequence,
we have the convergence
(8.3)

γi[gni]ati = (γiξ, γi(gni)
−, v + βθξ (γ

−1
i , e) + tiu)→ (ξ0, η0, v0) as i→∞,

for some (ξ0, η0, v0) ∈ Q̃ε. In particular, for any linear form ϕ ∈ a∗θ positive

on a+θ , we must have ϕ(βθξ (γ
−1
i , e))→ −∞ as i→∞ and the sequence γi is

unbounded.
Since the sequence ni ∈ Nθ converges, the sequence (ξ, (gni)

−) ∈ Λ
(2)
θ is

convergent as well. Moreover, (8.3) implies that the sequence γi(ξ, (gni)
−) ∈

Λ
(2)
θ is precompact. By the argument as in the proof of [22, Lem. 9.10,

Prop. 9.11], for any compact subset C ⊂ Λi(θ) with {ξ} × C ⊂ Λ
(2)
θ , we

have γiC → η0 as i → ∞. Since n′i ∈ Nθ is a convergent sequence and

(ξ, {(gn′i)−}) ⊂ Λ
(2)
θ , we have γi(gn

′
i)
− → η0. Since [gn′i] = (ξ, (gn′i)

−, v) by
Lemma 8.4, we deduce from (8.3) that

γi[gn
′
i]ati = (γiξ, γi(gn

′
i)
−, v + βθξ (γ

−1
i , e) + tiu)→ (ξ0, η0, v0) as i→∞.

Therefore, two sequences γi[gni]ati and γi[gn
′
i]ati converge to the same limit,

which is a contradiction to the assumption d(Γ[gni]ati ,Γ[gn
′
i]ati) > ε for all

i ≥ 1. Hence the first claim is proved.
For the second claim, suppose to the contrary that for some ε > 0, there

exist a sequence ti → ∞ and convergent sequences ňi, ň
′
i ∈ Ňθ such that

[gňi], [gň
′
i] ∈ Ω̃θ and d(Γ[gňi]a−ti ,Γ[gň

′
i]a−ti) > ε for all i ≥ 1. As above,

we may then assume that for all i ≥ 1, γi[gňi]a−ti ∈ Q̃ε for some sequence
γi ∈ Γ. By passing to a subsequence, we have the convergence

γi[gňi]a−ti → (ξ1, η1, v1) as i→∞
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for some (ξ1, η1, v1) ∈ Q̃ε. By Lemma 8.4, we have for each i ≥ 1 that

γi[gňi] = γi
Ä
(gňi)

+, η, v + Gθ((gňi)+, η)− Gθ(ξ, η)
ä

=
Ä
γi(gňi)

+, γiη, v + Gθ((gňi)+, η)− Gθ(ξ, η) + βθ(gňi)+
(γ−1
i , e)

ä
,

and therefore we have that as i→∞,

(8.4)

γi(gňi)
+ → ξ1;

γiη → η1;

v + Gθ((gňi)+, η)− Gθ(ξ, η) + βθ(gňi)+
(γ−1
i , e)− tiu→ v1.

Since the sequence ňi ∈ Ňθ converges, the sequence ((gňi)
+, η) ∈ Λ

(2)
θ is

convergent as well. Hence Gθ((gňi)+, η) is a bounded sequence in aθ. It
then follows from (8.4) that for any linear form ϕ ∈ a∗θ positive on a+θ , we
have

ϕ(βθ(gňi)+
(γ−1
i , e))→∞ as i→∞

and the sequence γi is unbounded.
Again, by the same argument as in the proof of [22, Lem. 9.10, Prop.

9.11], we obtain that for any compact subset C ⊂ Λθ such that C × {η} ⊂
Λ
(2)
θ , we have γiC → ξ1 as i → ∞. Since the sequence ((gň′i)

+, η) ∈ Λ
(2)
θ is

convergent as mentioned above, we also have γi(gň
′
i)
+ → ξ1 as i → ∞. It

then follows from Lemma 8.4 that

γi[gňi] =
Ä
γi(gňi)

+, γiη, v + βθξ (γ
−1
i , e) + Gθ(γi(gňi)+, γiη)− Gθ(γiξ, γiη)

ä
;

γi[gň
′
i] =
Ä
γi(gň

′
i)
+, γiη, v + βθξ (γ

−1
i , e) + Gθ(γi(gň′i)+, γiη)− Gθ(γiξ, γiη)

ä
.

Since both sequences (γi(gňi)
+, γiη) and (γi(gň

′
i)
+, γiη) converge to (ξ1, η1)

and γi[gňi]a−ti → (ξ1, η1, v1) as i→∞, it follows that

γi[gň
′
i]a−ti → (ξ1, η1, v1) as i→∞.

Again, two sequences γi[gňi]a−ti and γi[gň
′
i]a−ti converge to the same limit,

contradicting the assumption that d(Γ[gňi]a−ti ,Γ[gň
′
i]a−ti) > ε for all i ≥ 1.

This proves (2). □

For a (Γ, θ)-proper form ϕ ∈ a∗θ, the action of Au = {at : t ∈ R} on
Ωθ induces a right Au-action on Ωϕ via the projection Ωθ → Ωϕ where Ωϕ
is defined in (6.4). Note that when u ∈ intLθ, the condition ϕ(u) > 0 is
satisfied for any (Γ, θ)-proper ϕ ∈ a∗θ [22, Lem. 4.3].

Proposition 8.6. Let ϕ ∈ a∗θ be a (Γ, θ)-proper form such that ϕ(u) > 0

and g ∈ G be such that [g]ϕ ∈ Ω̃ϕ. For any compact subsets U ⊂ Nθ and

Ǔ ⊂ Ňθ, we have, as t→ +∞,

diam ({Γ[gn]ϕ ∈ Ωϕ : n ∈ U} · at)→ 0;

diam
(
{Γ[gň]ϕ ∈ Ωϕ : ň ∈ Ǔ} · a−t

)
→ 0
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where the diameter is computed with respect to an admissible5 metric d on
Ωϕ. In particular, we have

{Γ[gn]ϕ ∈ Ωϕ : n ∈ Nθ} ⊂W ss(Γ[g]ϕ);

{Γ[gň]ϕ ∈ Ωϕ : ň ∈ Ňθ} ⊂W su(Γ[g]ϕ),

whereW ss(x) (resp. W su(x)) is the set of all y ∈ Ωϕ such that d(xat, yat)→
0 as t→ +∞ (resp. t→ −∞) for x ∈ Ωϕ.

Proof. The condition ϕ(u) > 0 ensures that the convergence of the sequences
ϕ(βθξ (γ

−1
i , e))+tiϕ(u) in (8.3) and ϕ(βθ(gňi)+

(γ−1
i , e))−tiϕ(u) in (8.4) implies

that ϕ(βθξ (γ
−1
i , e))→ −∞ and ϕ(βθ(gňi)+

(γ−1
i , e))→ +∞ respectively. Given

this, we can proceed exactly as in the proof of Proposition 8.5, replacing Ωθ
by Ωϕ. □

Conservativity of general actions. Let H be a connected subgroup of
A. Denote by dh the Haar measure on H. Consider the dynamical system
(H,Ω, λ) where Ω is a separable, locally compact and σ-compact topological
space on whichH acts continuously and preserving a Radon measure λ on Ω.
A Borel subset B ⊂ Ω is called wandering if

∫
H 1B(h.w)dh <∞ for λ-almost

all w ∈ B. If there is no wandering subset of positive measure, the system
is called completely conservative. If Ω is a countable union of wandering
subsets, then the system is called completely dissipative. An ergodic system
(H,Ω, λ) is either completely conservative or completely dissipative by the
Hopf decomposition theorem.

Lemma 8.7. If (Ωθ, Aθ,m) is completely conservative, then it is Aθ-ergodic.

Proof. Choose any ϕ ∈ a∗θ which is positive on a+θ ; in particular, ϕ is (Γ, θ)-

proper. Consider Ω̃ϕ, Ωϕ and mϕ = mϕ
ν,νi as defined in (6.4) and (6.6). The

conservativity of the Aθ-action on (Ωθ,m) then implies the conservativity
of the R-action on (Ωϕ,m

ϕ), and the Aθ-ergodicity on (Ωθ,m) follows if we

show the ergodicity of (Ωϕ,R,mϕ).

Let f be a bounded mϕ-measurable R-invariant function on Ωϕ. We need

to show that f is constantmϕ-a.e. Choose any admissible metric on Ωϕ which
exists by Theorem 6.1 and apply Proposition 8.6. By a theorem of Coudéne
[13, Sec. 2], it follows that there exists an mϕ-conull subset W0 ⊂ Ωϕ such

that if Γ[g]ϕ,Γ[gn]ϕ ∈W0 for g ∈ G and n ∈ Nθ ∪ Ňθ, then

f(Γ[g]ϕ) = f(Γ[gn]ϕ).

Let f̃ : Ω̃ϕ → R and W̃0 ⊂ Ω̃ϕ be Γ-invariant lifts of f and W0 respectively.

Since f is R-invariant, we may assume that W̃0 is R-invariant as well. For
any [g]ϕ, [h]ϕ ∈ Ω̃ϕ with g+ = h+, we can find n ∈ Nθ and a ∈ Aθ such

that [gna]ϕ = [h]ϕ by (2.6). Similarly, if g− = h−, we can find n ∈ Ňθ and
a ∈ Aθ such that [gna]ϕ = [h]ϕ. Hence, by the R-invariance of f and hence

5I.e., it extends to a metric on the one-point compactification of Ωϕ
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of f̃ , for any (ξ, η, s), (ξ′, η′, s′) ∈ W̃0 such that ξ = ξ′ or η = η′, we have

f̃(ξ, η, s) = f̃(ξ′, η′, s′).
Let

W+ := {ξ ∈ Λθ : (ξ, η
′, s) ∈ W̃0 for all s ∈ R and νi-a.e. η

′};

W− := {η ∈ Λi(θ) : (ξ
′, η, s) ∈ W̃0 for all s ∈ R and ν-a.e. ξ′}.

Then ν(W+) = νi(W
−) = 1 by Fubini’s theorem. Hence the set W ′ :=

(W+×W−)∩Λ(2)
θ has full ν⊗ νi-measure. We choose a ν⊗ νi-conull subset

W ⊂W ′ such that W × R ⊂ W̃0. Let (ξ, η), (ξ
′, η′) ∈W . Then there exists

η1 ∈ Λi(θ) so that (ξ, η1), (ξ
′, η1) ∈W . Hence for any s ∈ R, we get

f̃(ξ, η, s) = f̃(ξ, η1, s) = f̃(ξ′, η1, s) = f̃(ξ′, η′, s).

Therefore, f̃ is constant on W × R, and hence f is constant mϕ-a.e., com-
pleting the proof. □

Ergodicity of directional flows. We now prove the following analog of
the Hopf dichotomy:

Proposition 8.8. The directional flow (Ωθ, Au,m) is completely conserva-
tive if and only if (Ωθ, Au,m) is ergodic.

Proof. Suppose that (Ωθ, Au,m) is completely conservative. Since this im-
plies that (Ωθ, Aθ,m) is completely conservative, we have (Ωθ, Aθ,m) is er-
godic by Lemma 8.7. Let f : Ωθ → R be a bounded measurable function
which is Au-invariant. By the Aθ-ergodicity, it suffices to prove that f is
Aθ-invariant.

Choose any admissible metric on Ωθ which exists by Theorem 5.1. Sim-
ilarly to the proof of Lemma 8.7, Proposition 8.5 and [13] imply that there
exists an m-conull subset W0 ⊂ Ωθ such that if Γ[g],Γ[gn] ∈ W0 for g ∈ G
and n ∈ Nθ ∪ Ňθ, then

f(Γ[g]) = f(Γ[gn]).

Consider the Γ-invariant lifts f̃ : Ω̃θ → R and the m̃-conull subset W̃0 ⊂ Ω̃θ
of f and W0 respectively. Let

W1 := {(ξ, η) ∈ Λ
(2)
θ : (ξ, η, b) ∈ W̃0 for db-a.e. b ∈ aθ};

W := {(ξ, η) ∈W1 : (ξ, η
′), (ξ′, η) ∈W1 for ν-a.e. ξ′ ∈ Λθ, νi-a.e. η

′ ∈ Λi(θ)}.
By Fubini’s theorem, W has the full ν⊗νi-measure and we may assume that
W is Γ-invariant as well. For all small ε > 0, we define f̃ε : Ω̃→ R by

f̃ε([g]) =
1

Vol(Aθ,ε)

∫
Aθ,ε

f̃([g]b)db

where Aθ,ε = {a ∈ Aθ : ∥ log a∥ ≤ ε}. Then for g ∈ G and n ∈ Nθ ∪ Ňθ

such that (g+, g−), ((gn)+, (gn)−) ∈W , we have f̃ε([g]) = f̃ε([gn]) and f̃ε is
continuous on [g]Aθ.
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Since f̃ = limε→0 f̃ε m̃-a.e., it suffices to show that f̃ε is Aθ-invariant.
Fix g ∈ G such that (g+, g−) ∈ W . By Proposition 8.3 and the continuity

of f̃ε on each Aθ-orbit, it is again sufficient to show that f̃ε is invariant
under HθΓ(g). Let a ∈ HθΓ(g). Then there exist γ ∈ Γ and a sequence

n1, · · · , nk ∈ Nθ ∪ Ňθ such that

(1) (gn1 · · ·nr)+ ∈ Λθ and (gn1 · · ·nr)− ∈ Λi(θ) for all 1 ≤ r ≤ k; and
(2) gn1 · · ·nk = γgas for some s ∈ Sθ.

For each i = 1, · · · , k, we denote by Ni = Nθ if ni ∈ Nθ and Ni = Ňθ if
ni ∈ Ňθ. We may assume that Ni ̸= Ni+1 for all 1 ≤ i ≤ k − 1. Noting
that W is Γ-invariant, we consider a sequence of k-tuples (n1,j , · · · , nk,j) ∈
N1 × · · · ×Nk as follows:

Case 1: Nk = Ňθ. In this case, we have

(γg)+ = (gn1 · · ·nk)+ and (γg)− = (gn1 · · ·nk−1)
−.

Take a sequence of k-tuples (n1,j , · · · , nk,j) ∈ N1 × · · · × Nk converging to
(n1, · · · , nk) as j →∞ so that for each j, we have

(1) ((gn1,j · · ·nr,j)+, (gn1,j · · ·nr,j)−) ∈W for all 1 ≤ r ≤ k;
(2) (γg)− = (gn1,j · · ·nk−1,j)

−; and
(3) (γg)+ = (gn1,j · · ·nk,j)+.

This is possible since (g+, g−), ((γg)+, (γg)−) ∈W andW has the full ν⊗νi-
measure. Since nk,j ∈ Ňθ, we indeed have (γg)− = (gn1,j · · ·nk,j)− as well,
and therefore gn1,j · · ·nk,j = γgajsj for some aj ∈ Aθ and sj ∈ Sθ. In
particular, we have

[gn1,j · · ·nk,j ] = [γgaj ] ∈ Ω̃θ for all j ≥ 1.

Case 2: Nk = Nθ. In this case, we have

(γg)+ = (gn1 · · ·nk−1)
+ and (γg)− = (gn1 · · ·nk)−.

We then take a sequence of k-tuples (n1,j , · · · , nk,j) ∈ N1 × · · · × Nk con-
verging to (n1, · · · , nk) as j →∞ so that for each j, we have

(1) ((gn1,j · · ·nr,j)+, (gn1,j · · ·nr,j)−) ∈W for all 1 ≤ r ≤ k;
(2) (γg)+ = (gn1,j · · ·nk−1,j)

+; and
(3) (γg)− = (gn1,j · · ·nk,j)−.

Since nk,j ∈ Nθ, we have (γg)+ = (gn1,j · · ·nk,j)+ as well, and therefore
gn1,j · · ·nk,j = γgajsj for some aj ∈ Aθ and sj ∈ Sθ. In particular, we have

[gn1,j · · ·nk,j ] = [γgaj ] ∈ Ω̃θ for all j ≥ 1.

In either case, we have that for each j ≥ 1,

f̃ε([γgaj ]) = f̃ε([gn1,j · · ·nk,j ]) = f̃ε([gn1,j · · ·nk−1,j ]) = · · · = f̃ε([g]).

Since f̃ε is Γ-invariant, it implies

f̃ε([gaj ]) = f̃ε([g]) for all j ≥ 1.
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Since aj converges to a as j →∞, we get f̃ε([ga]) = f̃ε([g]) by the continuity

of f̃ε on gAθ. This shows that f̃ε is invariant underHθΓ(g), finishing the proof
of ergodicity.

Now suppose that the flow (Ωθ, Au,m) is ergodic. Then by the Hopf
decomposition theorem, it is either completely conservative or completely
dissipative. Suppose to the contrary that (Ωθ, Au,m) is completely dissi-
pative. Then it is isomorphic to a translation on R with respect to the
Lebesgue measure. This yields a contradiction as in proof of [22, Thm.
10.2], as we recall for readers’ convenience. Since (Ωθ, Au,m) is isomorphic
to a translation on R, (ν×νi)|Λ(2)

θ

is supported on the single Γ-orbit Γ(ξ0, η0)

by the ergodicity of (Γ,Λ
(2)
θ , ν × νi). Since ν and νi also have atoms on ξ0

and η0 respectively, we have

(Γξ0 × Γη0) ∩ Λ
(2)
θ ⊂ Γ(ξ0, η0).

We deduce from the θ-antipodality of Γ that Γξ0 ⊂ Γη0ξ0∪{η′0} where Γη0 =
StabΓ(η0) and η

′
0 is the image of η0 under the Γ-equivariant homeomorphism

Λi(θ) → Λθ obtained in [22, Lem. 9.5]. Since Γη0 = Γη′0 , we have

(8.5) Γξ0 ⊂ Γη′0ξ0 ∪ {η
′
0}.

Recall that the Γ-action on Λθ is a non-elementary convergence group action
[19, Thm. 4.16] and hence there must be infintely many accumulation points
of Γξ0. On the other hand, as Γη′0 is an elementary subgroup, the orbit

Γη′0ξ0 accumulates at most at two points of Λθ ([37], [8]). This yields a

contradiction, and therefore (Ωθ, Au,m) is completely conservative. □

Proof of Theorem 1.1. The equivalences between (1)-(3) follow from
Proposition 8.1 and Proposition 8.8. Suppose that m is u-balanced. Corol-
lary 7.13 implies that (1)⇔ (4)⇔ (5). That the first case occurs only when
ψ(u) = ψθΓ(u) > 0 is a consequence of Lemma 5.7.

9. Ergodic dichotomy for subspace flows

In this section, we extend our ergodic dichotomy to the action of any
connected subgroup of Aθ of arbitrary dimension. In fact, we deduce this
from the ergodic dichotomy for directional flows.

Let Γ be a Zariski dense θ-transverse subgroup of G. Let W < aθ be a
non-zero linear subspace and set AW = expW . We consider the subspace
flow AW on Ωθ and explain how the proof of Theorem 1.1 extends to this
setting so that we obtain Theorem 1.3, adapting the argument of Pozzetti-
Sambarino [28] on relating the subspace flows with directional flows.

For R > 0, we set

ΓW,R = {γ ∈ Γ : ∥µθ(γ)−W∥ < R}.

If W = aθ, then ΓW,R = Γ for all R > 0.
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Definition 9.1 (W -conical points). We say that ξ ∈ Fθ is aW -conical point
of Γ if there exist R > 0 and a sequence γi ∈ ΓW,R such that ξ ∈ OθR(o, γio)
for all i ≥ 1. We denote by ΛWθ the set of all W -conical points of Γ.

Fix a (Γ, θ)-proper linear form ψ ∈ a∗θ. Let ν, νi be a pair of (Γ, ψ) and
(Γ, ψ ◦ i)-conformal measures on Λθ and Λi(θ) respectively, and let m = mν,νi

denote the associated BMS measure on Ωθ.
If W ∩ Lθ = {0} or W ⊂ kerψ, then the (Γ, θ)-proper hypothesis on ψ

implies that ΓW,R is finite for all R > 0, and hence ΛWθ = Λ
i(W )
i(θ) = ∅ and

(Ωθ, AW ,m) is completely dissipative and non-ergodic.
The rest of this section is now devoted to proving Theorem 1.3, assuming

that

• W ∩ Lθ ̸= {0};
• W ̸⊂ kerψ.

Recalling that ψ ≥ 0 on Lθ by [22, Lem. 4.3], the intersection W ∩ kerψ
has codimension one in W and intersects intLθ only at 0.

Set

W ⋄ = aθ/(W ∩ kerψ) and Ω̃W ⋄ := Λ
(2)
θ ×W

⋄.

Recalling the spaces Ω̃ψ and Ωψ defined in (6.4), the projection Ω̃θ → Ω̃ψ
factors through Ω̃W ⋄ in a Γ-equivariant way. Since the Γ-action on Ω̃ψ is

properly discontinuous (Theorem 6.1), the induced Γ-action on Ω̃W ⋄ is also
properly discontinuous. Moreover, the trivial vector bundle Ωθ → Ωψ in
(6.5) factors through

(9.1) ΩW ⋄ := Γ\Ω̃W ⋄ .

Hence we have a W ∩ kerψ-equivariant homeomorphism:

Ωθ ≃ ΩW ⋄ × (W ∩ kerψ).

Denote by m′ the Aθ-invariant Radon measure on ΩW ⋄ such that m =
m′ ⊗ LebW∩kerψ.

The main point of the proof of Theorem 1.3 is to relate the action of AW
on Ωθ with that of a directional flow on ΩW ⋄ . Once we do that, we can
proceed similarly to the proof of Theorem 1.1.

Since W ̸⊂ kerψ, there exists u ∈ W with ψ(u) ̸= 0. By replacing u by
−u if necessary, we fix u ∈W such that

ψ(u) > 0.

Set Au = ARu = {atu = exp(tu) : t ∈ R} and consider the Au-action on
(ΩW ⋄ ,m′). Since W = Ru+ (W ∩ kerψ), we have:

Lemma 9.2. The AW -action on (Ωθ,m) is ergodic (resp. completely con-
servative, non-ergodic, completely dissipative) if and only if the Au-action
on (ΩW ⋄ ,m′) ergodic (resp. completely conservative, non-ergodic, completely
dissipative).
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Among the ingredients for the proof of Theorem 1.1, Lemma 5.2 and
Proposition 5.3 were repeatedly used and played basic roles in the proof.
The following analogue of Lemma 5.2 can be proved by a similar argument
as in the proof of Lemma 5.2:

Lemma 9.3. Suppose that di ∈ atiu exp(W∩kerψ)B+
θ , ti > 0 and γi ∈ Γ are

sequences such that γihimidi is bounded for some bounded sequence hi ∈ G
with hiP ∈ Λ and mi ∈Mθ. Then there exists w ∈ W ∩Mθ such that, after
passing to a subsequence, we have that for all i ≥ 1,

di ∈ wA+w−1.

Proof. As in the proof of Lemma 5.2, there exists a Weyl element w ∈
W such that di ∈ wA+w−1 for all i ≥ 1 after passing to a subsequence,
and moreover w ∈ Mθ or w ∈ Mθw0. We claim that the latter case w ∈
Mθw0 cannot happen. Suppose that w ∈ Mθw0 and write di = atiuaibi for
ai ∈ exp(W ∩ kerψ) and bi ∈ B+

θ . Since w ∈ Mθw0, we get µi(θ)(di) =

log(w−1
0 atiuaiw0) for all i ≥ 1. In particular, tiu+ log ai ∈ −a+θ .

Since the sequence γihimidi is bounded by the hypothesis, the sequence
µi(θ)(γ

−1
i ) − µi(θ)(di) is bounded as well by Lemma 2.1. Since µi(θ)(γ

−1
i ) =

−Adw0(µθ(γi)) and µi(θ)(di) = Adw0(tiu + log ai), it follows that µθ(γi) =
−(tiu+ log ai) + qi for some bounded sequence qi ∈ aθ. Applying ψ, we get
ψ(µθ(γi)) = −tiψ(u) + ψ(qi) since log ai ∈ kerψ. Since ψ(u) > 0, ψ(µθ(γi))
is uniformly bounded. The (Γ, θ)-properness of ψ implies that γi is a finite
sequence, yielding a contradiction. Therefore, the case w ∈ Mθw0 cannot
occur; so w ∈Mθ. □

Let p : aθ → W ⋄ denote the natural projection map. Choosing a norm
∥ · ∥ on W ⋄, the map p is Lipschitz. Then for a constant c > 1 depending
on the Lipschitz constant of p as well as norms on aθ and W ⋄, we have for
all R > 0,

{γ ∈ Γ : ∥p(µθ(γ))−Ru∥ < R/c} ⊂ ΓW,R ⊂ {γ ∈ Γ : ∥p(µθ(γ))−Ru∥ < cR}.
Note also that ψ(p(µθ(γ))) = ψ(µθ(γ)) for all γ ∈ Γ.

Using this relation and Lemma 9.3, similar arguments as in Sections 5
and 7 apply to the Au-flow on ΩW ⋄ , replacing Γu,r with ΓW,R. In partic-
ular, applying Lemma 9.3 in place of Lemma 5.2, the following analogs of
Proposition 5.3 and Lemma 5.5(2) respectively can be proved similarly.

Proposition 9.4. Let Q ⊂ Ω̃W ⋄ be a compact subset. There are positive
constants C1 = C1(Q), C2 = C2(Q) and R = R(Q) such that if [h] ∈ Q ∩
γQa−tu for some h ∈ G, γ ∈ Γ and t > 0, then the following hold:

(1) ∥p(µθ(γ))− tu∥ < C1;

(2) (h+, h−) ∈ OθR(o, γo)×O
i(θ)
R (γo, o);

(3) ∥Gθ(h+, h−)∥ < C2.

Lemma 9.5. The following are equivalent for any ξ ∈ Λθ:

(1) ξ ∈ ΛWθ ;
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(2) ξ = gPθ ∈ Fθ for some g ∈ G such that [g] ∈ Ωθ and lim sup[g](AW ∩
A+) ̸= ∅;

(3) the sequence [(ξ, η, v)]atiu is precompact in ΩW ⋄ for some η ∈ Λi(θ),
v ∈W ⋄ and ti →∞.

In particular, a W -conical point of Γ is a u-conical point for the action of
Au on ΩW ⋄ and vice versa.

Since the recurrence of the Au-flow on ΩW ⋄ is related to the W -conical
set as stated in Lemma 9.5, the arguments in Section 8 for the directional
flow (ΩW ⋄ , Au,m

′) yield the following equivalences:
(9.2)

max
Ä
ν(ΛWθ ), νi(Λ

i(W )
i(θ) )

ä
> 0⇔ (ΩW ⋄ , Au,m

′) is completely conservative

⇔ (ΩW ⋄ , Au,m
′) is ergodic;

max
Ä
ν(ΛWθ ), νi(Λ

i(W )
i(θ) )

ä
= 0⇔ (ΩW ⋄ , Au,m

′) is completely dissipative

⇔ (ΩW ⋄ , Au,m
′) is non-ergodic.

This proves the equivalence (1)⇔ (2)⇔ (3) of Theorem 1.3.

Definition 9.6. We say that m is W -balanced if there exists u ∈ W with
ψ(u) > 0 such that (ΩW ⋄ ,m′) is u-balanced.

To complete the proof of Theorem 1.3, it remains to prove the following:

Theorem 9.7. Suppose that m is W -balanced. The following are equivalent:

(1)
∑

γ∈ΓW,R
e−ψ(µθ(γ)) =∞ for some R > 0;

(2) ν(ΛWθ ) = 1 = νi(Λ
i(W )
i(θ) ).

Similarly, the following are also equivalent:

(1)
∑

γ∈ΓW,R
e−ψ(µθ(γ)) <∞ for all R > 0;

(2) ν(ΛWθ ) = 0 = νi(Λ
i(W )
i(θ) ).

In the rest of this section, we assume that m is W -balanced, and choose
u ∈ W with ψ(u) > 0 so that m′ is u-balanced. Following the proof of
Proposition 7.4 while applying Proposition 9.4 in the place of Proposition
5.3, we get:

Proposition 9.8. Suppose that
∑

γ∈ΓW,R
e−ψ(µθ(γ)) = ∞ for some R > 0.

Set δ = ψ(u) > 0.

(1) For any compact subset Q ⊂ Ω̃W ⋄, there exists R = R(Q) > 0 such
that for any T > 1, we have

∫ T

0

∫ T

0

∑
γ,γ′∈Γ

m̃′(Q∩γQa−tu∩γ′Qa−(t+s)u)dtds≪

Ü ∑
γ∈ΓW,R

ψ(µθ(γ))≤δT

e−ψ(µθ(γ))

ê2

.
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(2) For any R > 0, there exists a compact subset Q′ = Q′(R) ⊂ Ω̃W ⋄

such that∫ T

0

∑
γ∈Γ

m̃′(Q′ ∩ γQ′a−tu)dt≫
∑

γ∈ΓW,R

ψ(µθ(γ))≤δT

e−ψ(µθ(γ)).

The proof of Theorem 5.6 works verbatim for ΛWθ so that the convergence∑
γ∈ΓW,R

e−ψ(µθ(γ)) < ∞ for all R > 0 implies that ν(ΛWθ ) = 0. Using

Proposition 9.8 together with the W -balanced condition, Theorem 9.7 can
now be proved by the same argument as in the proof of Corollary 7.13.

Remark 9.9. TheW -balanced condition on m was needed because Q and Q′

in Proposition 9.8 may not be the same in principle. However whenW = aθ,
we have ΓW,R = Γ for any R > 0 and Q and Q′ in Proposition 9.8 can be
taken to be the same set, and hence theW -balanced condition is not needed
in the proof of Theorem 1.3.

Similarly to Corollary 7.14, we have the following estimates which reduce
the divergence of the series

∑
γ∈ΓW,R

e−ψ(µθ(γ)) to the local mixing rate for

the at-flow:

Corollary 9.10. For all sufficiently large R > 0, there exist compact subsets
Q1, Q2 of ΩW ⋄ with non-empty interior such that for all T ≥ 1,Ç∫ T

0
m′(Q1 ∩Q1a−t)dt

å1/2

≪
∑

γ∈ΓW,R

ψ(µθ(γ))≤δT

e−ψ(µθ(γ)) ≪
∫ T

0
m′(Q2∩Q2a−t)dt.

10. Dichotomy theorems for Anosov subgroups

In this last section, we focus on Anosov subgroups and establish the codi-
mension dichotomy for ergodicity of the subspace flow given by expW , for
a linear subspace W < aθ. Using the local mixing theorem for directional
flows for Anosov subgroups, we show that the Poincaré series associated to
W diverges if and only if the codimension of the subspaceW in aθ is at most
2.

Let Γ < G be a Zariski dense θ-Anosov subgroup defined as in the in-
troduction. Recall that Lθ ⊂ a+θ denotes the θ-limit cone of Γ. Denote

by T θΓ ⊂ a∗θ the set of all linear forms tangent to the growth indicator ψθΓ
and byMθ

Γ the set of all Γ-conformal measures on Λθ. There are one-to-one
correspondences between the following sets ([22, Coro. 1.12], [34, Thm. A]):

P(intLθ)←→ T θΓ ←→Mθ
Γ.

Namely, for each unit vector v ∈ intLθ, there exists a unique ψv ∈ a∗θ which

is tangent to ψθΓ at v and a unique (Γ, ψv)-conformal measure νv supported

on Λθ. The linear form ψv ◦ i ∈ a∗i(θ) is tangent to ψ
i(θ)
Γ at i(v) and the
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measure νi(v) is a (Γ, ψv ◦ i)-conformal measure on Λi(θ). Denote by mv the
BMS measure on Ωθ associated with the pair (νv, νi(v)).

What distinguishes θ-Anosov subgroups from general θ-transverse sub-
groups is that Ωψv is a compact metric space ([33] and [11, Appendix]) and
hence Ωθ is a vector bundle over a compact space Ωψv with fiber kerψv ≃
R#θ−1. We use the the following local mixing for directional flows due to
Sambarino.

Theorem 10.1 ([34, Thm. 2.5.2], see also [12] for θ = Π). Let Γ < G be a
θ-Anosov subgroup and v ∈ intLθ. Then there exists κv > 0 such that for
any f1, f2 ∈ Cc(Ωθ),

lim
t→∞

t
#θ−1

2

∫
Ωθ

f1(x)f2(x exp(tv))dmv(x) = κvmv(f1)mv(f2).

In particular, for any v ∈ intLθ, mv is v-balanced.

Corollary 10.2. For any v ∈ intLθ and any bounded Borel subset Q ⊂ Ω̃θ
with non-empty interior, we have for any T > 2,∫ T

0

∑
γ∈Γ

m̃v(Q ∩ γQ exp(−tv))dt ≍
∫ T

1
t
1−#θ

2 dt.

Proof. Given a bounded Borel subset Q ⊂ Ω̃θ with non-empty interior, we
choose f̃1, f̃2 ∈ Cc(Ω̃θ) so that 0 ≤ f̃1 ≤ 1Q ≤ f̃2 and m̃v(f̃1) > 0. For each

i = 1, 2, we define the function fi ∈ Cc(Ωθ) by fi(Γ[g]) =
∑

γ∈Γ f̃i(γg). By
Theorem 10.1, for each i = 1, 2, we have that for all t ≥ 1,∫

Ω̃θ

∑
γ∈Γ

f̃i(γ[g] exp(tv))f̃i([g])dm̃v([g]) =

∫
Ωθ

fi(x exp(tv))fi(x)dmv(x)

≍ t
1−#θ

2 .

□

By Corollary 7.14 and Corollary 10.2, we get:

Proposition 10.3. Let v ∈ intLθ and δ = ψv(v). For all sufficiently large
r > 0, we have that for all T > 2,

(10.1)

Ç∫ T

1
t
1−#θ

2 dt

å1/2

≪
∑
γ∈Γv,r

ψv(µθ(γ))≤δT

e−ψv(µθ(γ)) ≪
∫ T

1
t
1−#θ

2 dt.

Theorem 10.4. For any v ∈ intLθ and u ∈ a+θ − {0}, the following are
equivalent:

(1) #θ ≤ 3 and Ru = Rv;
(2)

∑
γ∈Γu,r

e−ψv(µθ(γ)) =∞ for some r > 0.
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Proof. Note that
∫∞
1 t

1−#θ
2 dt =∞ if and only if #θ ≤ 3. Hence (1) implies

(2) by Proposition 10.3. To show the implication (2) ⇒ (1), suppose that∑
γ∈Γu,r

e−ψv(µθ(γ)) = ∞ for some r > 0. By Lemma 5.7, ψv(u) = ψθΓ(u).

It follows from the strict concavity of ψθΓ [22, Thm. 12.2] that ψv can be

tangent to ψθΓ only in the direction Rv. Therefore Ru = Rv. Now #θ ≤ 3
follows from Proposition 10.3. □

Here is the special case of Theorem 1.6 for dimW = 1:

Theorem 10.5. Let Γ < G be a Zariski dense θ-Anosov subgroup. For any
u ∈ intLθ, the following are equivalent:

(1) #θ ≤ 3 (resp. #θ ≥ 4);
(2) νu(Λ

u
θ ) = 1 (resp. νu(Λ

u
θ ) = 0);

(3) (Ωθ, Au,mu) is ergodic and completely conservative (resp. non-ergodic
and completely dissipative);

(4)
∑

γ∈Γu,R
e−ψu(µθ(γ)) =∞ for some R > 0 (resp.

∑
γ∈Γu,R

e−ψu(µθ(γ)) <

∞ for all R > 0).

Proof. Since mu is u-balanced by Theorem 10.1, the equivalences between
(2)-(4) follow from Theorem 1.1. By Theorem 10.4, we have (1)⇔ (4). □

Codimension dichotomy for Anosov subgroups. We now deduce The-
orem 1.6. We use the notation from Theorem 1.6 and set ψ = ψu. As in
Section 9, we consider the quotient space W ⋄ = aθ/(W ∩ kerψ) and set

ΩW ⋄ = Γ\Λ(2)
θ ×W

⋄ (see (9.1)). We denote by m′
u the Aθ-invariant Radon

measure on ΩW ⋄ such that mu = m′
u ⊗ LebW∩kerψ. As before, ΩW ⋄ is a

vector bundle over a compact metric space Ωψ with fiber RdimW ⋄−1, and the
local mixing theorem for the {atu}-flow on ΩW ⋄ [34, Thm. 2.5.2] says that
there exists κu > 0 such that for any f1, f2 ∈ Cc(ΩW ⋄),

(10.2) lim
t→∞

t
dimW⋄−1

2

∫
ΩW⋄

f1(x)f2(xatu)dm
′
u(x) = κum

′
u(f1)m

′
u(f2).

We then obtain the following version of Proposition 10.3, using Corollary
9.10 and 10.2:

Proposition 10.6. For δ = ψ(u) > 0 and all sufficiently large R > 0, we
have that

(10.3)

Ç∫ T

1
t
1−dimW⋄

2 dt

å1/2

≪
∑

γ∈ΓW,R

ψ(µθ(γ))≤δT

e−ψ(µθ(γ)) ≪
∫ T

1
t
1−dimW⋄

2 dt

where the implied constants are independent of T > 2.

Since dimW ⋄ − 1 = codimW and hence dimW ⋄ ≤ 3 ⇔ codimW ≤ 2,
the following is immediate from Proposition 10.6:
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Proposition 10.7. If Γ is a Zariski dense θ-Anosov subgroup of G, then

codimW ≤ 2⇐⇒
∑

γ∈ΓW,R

e−ψ(µθ(γ)) =∞ for some R > 0.

Hence the equivalence (1) ⇔ (4) in Theorem 1.6 follows. Since the local
mixing for (ΩW ⋄ , {atu},m′

u) implies that m′
u is u-balanced, and hence mu is

W -balanced, we can apply Theorem 1.3 to obtain the equivalences (2)-(4)
in Theorem 1.6. Therefore Theorem 1.6 follows.
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[32] T. Roblin. Ergodicité et équidistribution en courbure négative. Mém. Soc. Math. Fr.
(N.S.), (95):vi+96, 2003.

[33] A. Sambarino. The orbital counting problem for hyperconvex representations. Ann.
Inst. Fourier (Grenoble), 65(4):1755–1797, 2015.

[34] A. Sambarino. A report on an ergodic dichotomy. Ergodic Theory Dynam. Systems,
44(1):236–289, 2024.

[35] D. Sullivan. The density at infinity of a discrete group of hyperbolic motions. Inst.

Hautes Études Sci. Publ. Math., (50):171–202, 1979.
[36] M. Tsuji. Potential theory in modern function theory. Maruzen Co. Ltd., Tokyo, 1959.
[37] P. Tukia. Convergence groups and Gromov’s metric hyperbolic spaces. New Zealand

J. Math., 23(2):157–187, 1994.
[38] D. Winter. Mixing of frame flow for rank one locally symmetric spaces and measure

classification. Israel J. Math., 210(1):467–507, 2015.

Department of Mathematics, Yale University, New Haven, CT 06511
Email address: dongryul.kim@yale.edu

Department of Mathematics, Yale University, New Haven, CT 06511.
Email address: hee.oh@yale.edu

Department of Mathematics, Yale University, New Haven, CT 06511
Email address: amy.wang.yw735@yale.edu


	1. Introduction
	2. Preliminaries
	3. Continuity of shadows
	4. Growth indicators and conformal measures on F
	5. Directional recurrence for transverse subgroups
	6. Bowen-Margulis-Sullivan measures
	7. Directional conical sets and Poincaré series
	8. Transitivity subgroup and ergodicity of directional flows
	9. Ergodic dichotomy for subspace flows
	10. Dichotomy theorems for Anosov subgroups
	References

