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Abstract. Let n,m ≥ 2. Let Γ < SO◦(n + 1, 1) be a Zariski dense
convex cocompact subgroup and Λ ⊂ Sn be its limit set. Let ρ : Γ →
SO◦(m+ 1, 1) be a Zariski dense convex cocompact faithful representa-
tion and f : Λ → Sm the ρ-boundary map. Let

Λf :=
⋃ß

C ∩ Λ :
C ⊂ Sn is a circle such that

f(C ∩ Λ) is contained in a proper sphere in Sm

™
.

When there exists at least one Λ-doubly stable circle in Sn (e.g., Ω =
Sn − Λ is disconnected), we prove the following dichotomy:

either Λf = Λ or Hδ(Λf ) = 0,

where Hδ is the Hausdorff measure of dimension δ = dimH Λ. Moreover,
in the former case, we have n = m and ρ is a conjugation by a Möbius
transformation on Sn. Our proof uses ergodic theory for directional
diagonal flows and conformal measure theory of discrete subgroups of
higher rank semisimple Lie groups, applied to the self-joining subgroup
Γρ = (id×ρ)(Γ) < SO◦(n + 1, 1) × SO◦(m + 1, 1). We also obtain an
analogous theorem for any divergence-type subgroup.

1. Introduction

Let Hn+1 denote the (n+1)-dimensional real hyperbolic space for n ≥ 2.
The group of its orientation-preserving isometries is given by the identity
component SO◦(n + 1, 1) of the special orthogonal group. A discrete sub-
group Γ < SO◦(n+1, 1) is called convex cocompact if the convex core1 of the
associated hyperbolic manifold Γ\Hn+1 is compact. Let Γ < SO◦(n + 1, 1)
be a Zariski dense convex cocompact subgroup for n ≥ 2, and

ρ : Γ → SO◦(m+ 1, 1)

be a faithful representation such that ρ(Γ) is a Zariski dense convex cocom-
pact cocompact subgroup of SO◦(m+1, 1) where m ≥ 2. For simplicity, we
will call a discrete faithful representation ρ : Γ → SO◦(m+ 1, 1) a deforma-
tion of Γ into SO◦(m + 1, 1) and a (resp. Zariski dense) convex cocompact
deformation of Γ if the image of ρ is a (resp. Zariski dense) convex cocom-
pact subgroup. If Γ < SO◦(n + 1, 1) is cocompact and n = m, the Mostow
strong rigidity theorem [22] says that ρ is always algebraic, more precisely,
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1The convex core of Γ\Hn+1 is the smallest convex submanifold containing all closed
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it is given by a conjugation by a Möbius transformation on Sn. However in
other cases, Marden’s isomorphism theorem and the Teichmüller theory im-
ply that there exists a continuous family of convex cocompact deformations,
modulo the conjugations by Möbius transformation on Sm (cf. [20, Section
5]).

Let Λ ⊂ Sn denote the limit set of Γ, which is the set of all accumulation
points of Γ(o) in Sn, o ∈ Hn+1. Let Hδ be the δ-dimensional Hausdorff
measure on Sn, where δ is the Hausdorff dimension of Λ with respect to the
spherical metric on Sn. Sullivan [23, Theorem 7] showed that for Γ convex
cocompact, we have

0 < Hδ(Λ) <∞.

The main aim of this paper is to present a criterion on when ρ is algebraic,
in terms of the Hausdorff measure of the union of all circular slices of Λ that
are mapped into circles, or more generally into some proper spheres in Sm
by the ρ-boundary map. More precisely, by Tukia [26], there is a unique
ρ-equivariant continuous embedding

f : Λ → Sm,

called the ρ-boundary map. We consider all circular slices of Λ which are
mapped into some proper spheres in Sm by f :

Λf :=
⋃ß

C ∩ Λ :
C ⊂ Sn is a circle such that

f(C ∩ Λ) is contained in a proper sphere in Sm
™
.

Figure 1. f(C ∩ Λ) is contained in a circle

We emphasize that the boundary map f is defined only on Λ and therefore
our definition of Λf involves the image of the intersection C ∩ Λ under f ,
but not the whole circle C (see Figure 1). If n = m and f is a Möbius
transformation of Sn, then f clearly maps all circles to circles and hence
Λf = Λ. The following main theorem of this paper says that in all other

cases, Λf has zero Hδ-measure. In other words, if Hδ(Λf ) > 0, then f is the
restriction of a Möbius transformation of Sn and ρ is algebraic.

Theorem 1.1. Let n,m ≥ 2. Let Γ < SO◦(n + 1, 1) be a Zariski dense
convex cocompact subgroup such that the ordinary set Ω = Sn − Λ has at
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least two components. Let ρ : Γ → SO◦(m+ 1, 1) be a Zariski dense convex
cocompact deformation and f : Λ → Sm the ρ-boundary map. Then

either Λf = Λ or Hδ(Λf ) = 0.

In the former case, we have n = m, f extends to some g ∈ Möb(Sn) and
ρ is a conjugation by g.

When n = m = 2, the topological version of the above theorem that
either Λf = Λ or Λf has empty interior was obtained in our earlier paper
[14] for all finitely generated discrete subgroups. Theorem 1.1 provides its
measure theoretic version. See Theorem 5.3 for the topological version for
general n,m ≥ 2.

Remark 1.2. If Γ < SO◦(3, 1) is convex cocompact with Λ connected, then
Ω is disconnected [19, Chapter IX]; hence Theorem 1.1 applies.

Indeed, we prove Theorem 1.1 under a weaker condition that there exists
a Λ-doubly stable circle (Theorem 5.1).

Definition 1.3. We say that a circle C ⊂ Sn is Λ-doubly stable if for any
sequence of circles Ck converging to C,

# lim sup(Ck ∩ Λ) ≥ 2,

where lim supEk is defined as
⋂
n∈N

⋃
k≥nEk for a sequence Ek ⊂ Sn.

If Ω is disconnected, there exists a Λ-doubly stable circle (Lemma 4.2).
If Ω = ∅, i.e., Λ = Sn, then every circle is Sn-doubly stable. In particular,
Theorem 5.1 applies to any uniform lattice Γ of SO◦(n + 1, 1): either f :
Sn → Sm preserves Lebesgue-almost none of the circles, or n = m and f is
induced by a Möbius transformation on Sn.

Remark 1.4. It is an interesting question whether there exists a Zariski
dense convex cocompact subgroup of SO◦(3, 1) whose limit set Λ is totally
disconnected and there is no Λ-doubly stable circle.

In terms of the quasiconformal deformation indicated in Figure 2, our
theorem implies that the union of circular slices of the left limit set which
are mapped into circles has zero Hδ-measure.

Note that (n + 2)-distinct points on Sn form the set of vertices of a
unique ideal hyperbolic (n+ 1)-simplex of Hn+1. Gromov-Thurston’s proof
of Mostow rigidity theorem ([9], [25]) uses the fact that a homeomorphism
of Sn mapping vertices of every maximal volume (n+1)-simplex of Hn+1 to
vertices of a maximal volume (n+ 1)-simplex is a Möbius transformation.

Any (n+ 2)-distinct points on Sn form vertices of a zero-volume (n+ 1)-
simplex of Hn+1 if and only if they lie in some codimension one sphere in
Sn. We also prove the following higher dimensional version of [14, Theorem
1.3], which answered McMullen’s question for n = 2:

2Image credit: Curtis McMullen and Yongquan Zhang [27]
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Figure 2. Non-trivial quasiconformal deformation2

Theorem 1.5. Let Γ < SO◦(n+ 1, 1) be a Zariski dense discrete subgroup.
Suppose that there exists a Λ-doubly stable circle in Sn. If the ρ-boundary
map f : Λ → Sn maps vertices of every (n + 1)-simplex of zero-volume to
vertices of an (n + 1)-simplex of zero-volume, then f extends to a Möbius
transformation of Sn.

We obtain a stronger statement that unless f extends to a Möbius trans-
formation, the union of all vertices of (n+1)-simplexes of zero-volume whose
images under f form vertices of zero-volume (n + 1)-simplexes has empty
interior in Λ.

On the proof of Theorem 1.1. We use the theory of Anosov representa-
tions. Consider the following self-joining subgroup of G = SO◦(n + 1, 1) ×
SO◦(m+ 1, 1):

Γρ := (id×ρ)(Γ) = {(γ, ρ(γ)) : γ ∈ Γ}.
The crucial point is that, under the assumption that both Γ and ρ(Γ) are
Zariski dense and convex cocompact and not conjugate to each other, we
have that

Γρ is a Zariski dense Anosov subgroup of G

with respect to a minimal parabolic subgroup

(see the discussion around (2.3)). Hence the recent classification theorem
on higher rank conformal measures by Lee-Oh [18] (Theorem 2.3) and the
ergodicity theorem of Burger-Landesberg-Lee-Oh [4] (Theorem 2.4) apply to
our setting, yielding that for any Γρ-conformal measure on the limit set of
Γρ, the associated Bowen-Margulis-Sullivan measure on Γρ\G is ergodic and
conservative for a unique one-parameter diagonal flow Au = {exp tu : t ∈ R}
where u is a vector in the interior of the positive Weyl chamber.

A general higher rank conformal measure seems mysterious. However, the
graph structure of our self-joining group Γρ allows us to pin down a very
explicit Γρ-conformal measure, which we call the graph-conformal measure
[15]. Indeed, under the convex cocompactness hypothesis on Γ, the graph-
conformal measure is given by the pushforward measure (id×f)∗(Hδ|Λ),
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and this is the reason why we can relate the Hausdorff measure Hδ|Λ with
dynamics on the Anosov homogeneous space Γρ\G in the proof of Theorem
1.1.

The conclusion of Theorem 1.1 follows if we show that Γρ cannot be
Zariski dense in G (Lemma 2.2). We give a proof by contradiction. Suppose
that Γρ is Zariski dense. Considering the action of Γρ on the space Υρ of all
ordered pairs Y = (C, S) of a circle C ⊂ Sn and a codimension one sphere
S ⊂ Sm intersecting the limit set Λρ ⊂ Sn × Sm of Γρ, we are then able to
prove, together with the work of Guivarch-Raugi [11] and the aforementioned
ergodicity and conservativity result for the directional diagonal flows, that
for Hδ|Λ-almost all ξ ∈ Λ, the Γρ-orbit of Y ∈ Υρ containing (ξ, f(ξ)) is
dense in the space Υρ.

On the other hand, we show that the existence of a Λ-doubly stable circle
in Sn implies that for any Y0 = (C0, S0) ∈ Υρ with f(C0∩Λ) ⊂ S0, the orbit
ΓρY0 cannot be dense in Υρ (Theorem 4.1). This shows that Γρ cannot be

Zariski dense when Hδ(Λf ) > 0. We also show that when Ω is disconnected,
a Λ-doubly stable circle exists (Lemma 4.2).

Analogous question for rational maps. We close the introduction by
the following question which seems natural in view of Sullivan’s dictionary
between Kleinian groups and rational maps ([24], [21]).

Question 1.6. Let h1, h2 : Ĉ → Ĉ be rational maps of degree at least 2
whose Julia sets are not contained in circles. Suppose that h2 = F ◦h1 ◦F−1

for some quasiconformal homeomorphism F : Ĉ → Ĉ. Suppose that for the
Julia set J = Jh1 of h1, there exists a J-doubly stable circle in Ĉ. Let

JF :=
⋃ß

C ∩ J :
C ⊂ Ĉ is a circle such that

F (C ∩ J) is contained in a circle

™
.

(1) If JF = J , is F ∈ Möb(Ĉ)?
(2) Suppose that h1, h2 are hyperbolic. Let δ = dimHJ . Is it true that

either JF = J or Hδ(JF ) = 0?

Added in proofs: Using recent developments in the ergodic theory of
transverse subgroups ([5], [16], [13]), Theorem 1.1 can be extended to all
discrete subgroups Γ of divergence type and quasi-isometric deformations ρ,
provided Hδ is replaced by the unique δ-dimensional Γ-conformal measure
on Λ, where δ is the critical exponent of Γ [23]. This covers all geometrically
finite groups and type-preserving deformations. See Theorem 5.5.

Organization. The main goal of section 2 is to prove Theorem 2.6, which
we deduce from the classification of conformal measures in [18] and the er-
godicity and conservativity of directional diagonal flows in [4] with respect to
the Bowen-Margulis-Sullivan measure associated to the Γρ-conformal mea-
sure constructed from the δ-dimensional Hausdorff measure on Λ. The main
theorem of section 3 is Theorem 3.3 which we deduce from Theorem 2.6 and
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a theorem of Guivarch-Raugi (Theorem 3.2). In section 4, we discuss an ob-
struction to dense Γρ-orbits in the space Υρ when a Λ-doubly stable circle
exists. In section 5, we give a proof of Theorem 1.1. We also discuss a topo-
logical version of Theorem 1.1 without convex cocompactness assumption
(Theorem 5.3).

Acknowledgement. We would like to thank Curt McMullen for useful
comments on the preliminary version. We are also grateful to him and
Yongquan Zhang for allowing us to use the beautiful image of Figure 2.

2. Ergodicity and graph-conformal measure

Let (X1, d1) and (X2, d2) be rank one Riemannian symmetric spaces. Let
G be the product G1 × G2 where G1 = Isom◦(X1) and G2 = Isom◦(X2)
are connected simple real algebraic groups of rank one. Then G = Isom◦X
where X = X1×X2 is the Riemannian product. We fix a Cartan involution
θ of the Lie algebra g of G, and decompose g as g = k ⊕ p, where k and
p are the +1 and −1 eigenspaces of θ, respectively. We denote by K the
maximal compact subgroup of G and choose a maximal abelian subalgebra
a of p. Choosing a closed positive Weyl chamber a+ of a, let A := exp a and
A+ = exp a+. The centralizer of A in K is denoted by M , and we let N+

and N = N− be the horospherical subgroups so that logN+ and logN−

are the sum of all negative and positive root subspaces for our choice of A+

respectively. We set

P+ =MAN+, and P = P− =MAN ;

they are minimal parabolic subgroups of G that are opposite to each other.
The quotient F = G/P is known as the Furstenberg boundary of G, and
is isomorphic to K/M . Let NK(a) be the normalizer of a in K and let
W := NK(a)/M denote the Weyl group. Let w0 ∈ NK(a) be the unique
element in W such that w0Pw

−1
0 = P+. For each g ∈ G, we define

g+ := gP ∈ F and g− := gw0P ∈ F .

An element g ∈ G is loxodromic if g = hamh−1 for some a ∈ intA+,
m ∈ M and h ∈ G. The Jordan projection of g is defined to be λ(g) :=
log a ∈ int a+.

In the rest of the section, let ∆ be a Zariski dense discrete subgroup of G.
The limit cone L∆ ⊂ a+ is defined as the smallest closed cone containing all
Jordan projections of loxodromic elements of ∆. It is a convex subset of a+

with non-empty interior [1, Section 1.2]. Benoist showed that there exists a
unique ∆-minimal subset of F , which is called the limit set of ∆. We denote
it by Λ∆.

Bowen-Margulis-Sullivan measures. Let Fi be the Furstenberg bound-
ary of Gi, which is equal to the geometric boundary ∂Xi. For each i = 1, 2,
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the Busemann function βξi(xi, yi) is defined as

βξi(xi, yi) = lim
t→∞

di(ξi,t, xi)− di(ξi,t, yi) (2.1)

where ξi,t is a geodesic ray toward to ξi. For ξ = (ξ1, ξ2) ∈ F = F1×F2 and
x = (x1, x2), y = (y1, y2) ∈ X, the a-valued Busemann function is defined
componentwise:

βξ(x, y) = (βξ1(x1, y1), βξ2(x2, y2)) ∈ a

where we have identified a = a1 ⊕ a2 with R2.
In the following we fix o = (o1, o2) ∈ X so that the stabilizer of o is K.

Definition 2.1. For a linear form ψ ∈ a∗, a Borel probability measure ν on
F is called a (∆, ψ)-conformal measure (with respect to o) if for any g ∈ ∆
and ξ ∈ F ,

dg∗ν

dν
(ξ) = eψ(βξ(o,go))

where g∗ν(B) = ν(g−1B) for any Borel subset B ⊂ F . By a ∆-conformal
measure, we mean a (∆, ψ)-conformal measure for some ψ ∈ a∗.

Two points ξ = (ξ1, ξ2) and η = (η1, η2) are in general position if ξi ̸= ηi
for each i = 1, 2. Let F (2) be the set of all pairs (ξ, η) ∈ F × F which

are in general position. The map G → F (2) × a, g 7→ (g+, g−, βg+(o, go))

induces a G-equivariant homeomorphism G/M ≃ F (2) × a, called the Hopf-
parametrization.

For a (∆, ψ)-conformal measure ν supported on the limit set Λ∆ for some
ψ ∈ a∗, we can define the following Borel measure on G/M using the Hopf-
parametrization:

dm̃BMS
ν (gM) = eψ(βg+ (o,go)+βg− (o,go))dν(g+)dν(g−)db (2.2)

where db is the Haar measure on a. By integrating over the fiber of G →
G/M with respect to the Haar measure of M , we will consider m̃BMS

ν as
a Radon measure on G, which is then a left ∆-invariant and right AM -
invariant measure. We denote bymBMS

ν the Radon measure on ∆\G induced
by m̃BMS

ν . This measure is called the Bowen-Margulis-Sullivan measure as-
sociated to ν. Its support is

Ω∆ = {[g] ∈ ∆\G : g± ∈ Λ∆}.
We refer to [8] for a detailed discussion on the construction of this measure.

Self-joinings of convex cocompact groups. In the rest of the section,
we will consider the following special type of discrete subgroups of G. Let
Γ < G1 be a Zariski dense convex cocompact subgroup and ρ : Γ → G2

be a Zariski dense convex cocompact faithful representation. Define the
self-joining of Γ via ρ:

Γρ := (id×ρ)(Γ) = {(γ, ρ(γ)) : γ ∈ Γ}
which is a discrete subgroup of G.
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It follows from the convex cocompactness assumption for Γ and ρ(Γ) that
if we fix a word metric | · | on Γ for some finite generating set and fix o1 ∈ X1

and o2 ∈ X2, then there exist constants C,C ′ > 0 such that for all γ ∈ Γ,

min{d1(γo1, o1), d2(ρ(γ)o2, o2)} ≥ C|γ| − C ′. (2.3)

In other words, Γρ is an Anosov subgroup of G with respect to a minimal
parabolic subgroup ([17], [10], [12]). This enables us to use the general
theory developed for Anosov subgroups. We remark that ergodic theory for
self-joining groups of convex cocompact groups was first studied in [3].

Since both G1 and G2 are simple, we have the following equivalence be-
tween Zariski density of the self-joining and the rigidity of ρ, first observed
by Dal’Bo-Kim [7]:

Lemma 2.2. The subgroup Γρ is Zariski dense in G if and only if ρ does
not extend to a Lie group isomorphism G1 → G2.

Since Γ and ρ(Γ) are convex cocompact, there exists a unique ρ-equivariant
continuous embedding f : Λ → F2; this is a special case of a theorem of
Tukia [26], which can also be seen directly as follows. Since Γ < G1 is convex
cocompact, Γ is a hyperbolic group and an orbit map Γ → X1 is a quasi-
isometric embedding, where Γ is equipped with a word metric. Hence, it
follows from a standard result for Gromov hyperbolic spaces (e.g. [2, Chap-
ter III.H, Theorem 3.9]) that there exists a unique Γ-equivariant homeomor-
phism f1 : ∂Γ → ΛΓ = Λ where ∂Γ is the Gromov boundary of Γ. Similarly,
we obtain a unique ρ(Γ)-equivariant homeomorphism f2 : ∂ρ(Γ) → Λρ(Γ).
Since ρ : Γ → ρ(Γ) is an isomorphism, there exists a unique ρ-equivariant
homeomorphism f0 : ∂Γ → ∂ρ(Γ). Therefore, f := f2 ◦ f0 ◦ f−1

1 : Λ → Λρ(Γ)
is the unique ρ-equivariant homeomorphism into F2.

Hence, for Γρ Zariski dense, its limit set Λρ ⊂ F is of the form

Λρ = (id×f)(Λ)

where id×f : Λ → Λρ is the diagonal embedding. We denote by Lρ ⊂ a+

the limit cone of Γρ:

Lρ = LΓρ .

Since Γρ is Anosov, the following Theorems 2.3 and 2.4 are special cases
of theorems proved in those respective papers. Let a∗ denote the set of all
R-linear forms on a.

Theorem 2.3 (Classification of conformal measures, [18, Theorem 1.3,
Proposition 4.4]). Suppose that Γρ is Zariski dense in G. The space of unit
vectors in intLρ is in bijection with the space of all Γρ-conformal measures
on Λρ. Moreover, each Γρ-conformal measure on Λρ is a (Γρ, ψ)-conformal
measure for a unique linear form ψ ∈ a∗.

We will denote this bijection by

u 7→ νu. (2.4)
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For each unit vector u ∈ intLρ, we also denote by ψu ∈ a∗ the (unique)
linear form associated to νu, that is, νu is (Γρ, ψu)-conformal.

Ergodicity. For simplicity, we set

m̃BMS
u := m̃BMS

νu and mBMS
u := mBMS

νu

For any non-zero vector u ∈ a, we consider the following one-parameter
semigroup/subgroup:

A+
u := {atu : t ≥ 0} and Au := {atu : t ∈ R}.

where atu = exp tu. The following ergodicity result due to Burger-Landesberg-
Lee-Oh [4] is the main ingredient of our proof of Theorem 1.1:

Theorem 2.4 (Ergodicity of directional flows, [4]). Suppose that Γρ is
Zariski dense in G. For any unit vector u ∈ intLρ, (mBMS

u ,Γρ\G) is er-
godic and conservative for the Au-action. In particular, for mBMS

u -almost
all x, xA+

u is dense in ΩΓρ.

Graph-conformal measure. Let νΓ be the Γ-conformal measure sup-
ported on the limit set Λ of Γ; since Γ is convex cocompact, it exists uniquely
[23]. It turns out that the measure (id×f)∗νΓ is a Γρ-conformal measure,
where id×f : Λ → Λρ is the diagonal embedding. We called this measure
the graph-conformal measure in [15]. More precisely, we have the following
lemma, thanks to which we were able to apply Theorem 2.4 in the proof of
Theorem 1.1: we denote by δΓ the critical exponent of Γ.

Lemma 2.5. [15, Proposition 4.9] The measure

(id×f)∗νΓ
is a (Γρ, σ1)-conformal measure supported on Λρ, where σ1 ∈ a∗ is the linear
form given by σ1(t1, t2) = δΓt1 for (t1, t2) ∈ a.

We now deduce Theorem 2.6 from Theorems 2.3 and 2.4: first, there
exists a unique unit vector

uρ ∈ intLρ such that (id×f)∗νΓ = νuρ . (2.5)

Hence if we write Ωρ := ΩΓρ = {[g] ∈ Γρ\G : g± ∈ Λρ}, we get the following
main theorem of this section:

Theorem 2.6. Suppose that Γρ is Zariski dense. Then there exists an
(id×f)∗νΓ-conull subset

Λ′
ρ ⊂ Λρ

such that for any g ∈ G with g+ ∈ Λ′
ρ, the closure [g]A+

uρ contains Ωρ.

Proof. Since m̃BMS
uρ is equivalent to the product measure dνuρ×dνuρ×da×dm

where da and dm denote Haar measures on A and M respectively, it follows
from Theorem 2.4 that there exists a νuρ-conull subset Λ

′
ρ ⊂ Λρ such that for

all ξ ∈ Λ′
ρ, there exists g0 ∈ G with g+0 = ξ and g−0 ∈ Λρ such that [g0]A

+
uρ

is dense in Ωρ. Hence the claim follows by the following Lemma 2.7. □
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Lemma 2.7. Let u ∈ int a+ and ∆ < G be a Zariski dense discrete subgroup.

If [g0]A
+
u is dense in Ω∆, then for any g ∈ G with g+ = g+0 , the closure [g]A

+
u

contains Ω∆.

Proof. This can be deduced from the proof of [14, Corollary 2.3], which we
recall for readers’ convenience. Since g+ = g+0 , g = g0p for some p ∈ P .
Writing p = nam ∈ NAM , we claim that

(Ω∆ − [g0]A
+
u )ma ⊂ [g]A+

u .

Let x ∈ Ω∆ − [g0]A
+
u . Since [g0]A

+
u ⊃ Ω∆, there exists a sequence ti → +∞

such that x = limi→∞[g0]atiu. Since u ∈ int a+, we have a−tiunatiu → e as
i→ ∞. Therefore

lim
i→∞

[g]atiu = lim
i→∞

[g0]namatiu = lim
i→∞

[g0]atiu(a−tiunatiu)am = xam;

so xam ∈ [g]A+
u . This proves the claim.

Since Ω∆ is AM -invariant and Ω∆ − [g0]AM is dense in Ω∆ (as Λ∆ ⊂ F
is a perfect subset), it follows that

Ω∆ ⊂ [g]A+
u .

□

3. Orbits in the space of circle-sphere pairs

Let G1 = SO◦(n+ 1, 1), n ≥ 2 and G2 = SO◦(m+ 1, 1), m ≥ 2. We set

Υ = {Y = (C, S) : C ⊂ Sn a circle, S ⊂ Sm a codimension one sphere}.
Let G = G1 ×G2. The group G acts on Υ componentwise:

(g1, g2)(C, S) = (g1C, g2S)

for (g1, g2) ∈ G1×G2 and (C, S) ∈ Υ. Let ∆ < G be a Zariski dense discrete
subgroup. Then ∆ acts on the space

Υ∆ = {Y ∈ Υ : Y ∩ Λ∆ ̸= ∅},
which is a closed subset of Υ.

Denseness of Υ∗
∆. Let

Υ∗
∆ := {Y ∈ Υ∆ : #Y ∩ Λ∆ ≥ 2}.

Theorem 3.1. The subset Υ∗
∆ is dense in Υ∆.

Recalling that P = MAN and F = G/P ≃ K/M , we have G/AN ≃ K.
Consider the projection π : G/AN = K → G/P = K/M , and set

Λ̃∆ = π−1(Λ∆) ⊂ G/AN = K.

Since M ≃ SO(n)× SO(m) is connected, the following is a special case of a
theorem of Guivarch and Raugi [11]:
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Theorem 3.2 ([11, Theorem 2]). The action of ∆ on Λ̃∆ is minimal.

Indeed, this theorem is a key ingredient of the proof of Theorem 3.1,
which we now begin.

Proof of Theorem 3.1. For simplicity, we write Λ for Λ∆ in this proof.
Write K = K1 × K2 where K1 = K ∩ (G1 × {e}) = SO(n + 1) and K2 =
K ∩ ({e} × G2) = SO(m + 1), and similarly, we write M = M1 ×M2 =
SO(n) × SO(m). Via the projection Ki → Ki/Mi = Fi, we can think
of a point of Ki as an orthonormal frame fξ based at ξ ∈ Fi. Hence an
element of K is a pair of orthonormal frames (fξ1 , fξ2) ∈ K1 × K2. For an
infinite sequence (ξ1,j , ξ2,j) ∈ F1×F2 converging to (ξ1, ξ2), we say that the
convergence is (1, 1)-tangential to the frame (fξ1 , fξ2) if, for each i = 1, 2,

the sequence of unit vectors
−−−→
ξiξi,j

∥
−−−→
ξiξi,j∥

at ξi converges to the first vector of the

frame fξi as j → ∞.
Let

E =

ß
(fξ1 , fξ2) ∈ Λ̃ :

there exists a sequence (ξ1,j , ξ2,j) ∈ Λ
converging to (fξ1 , fξ2) (1, 1)-tangentially

™
.

We first note that E is non-empty. Since ∆ is Zariski dense in G , ∆ contains
a loxodromic element, say, g ∈ ∆. Denote by yg ∈ F the attracting fixed
point of g. Choose ζ ∈ Λ which is in general position with yg±1 . Then

the sequence gℓζ converges to yg as ℓ → +∞. The claim follows from the
compactness of the unit sphere in the tangent space of F at yg.

On the other hand, since the action of G on F is conformal and Λ is
∆-invariant, E is a ∆-invariant subset of Λ̃. Hence by Theorem 3.2,

E = Λ̃.

Let Y = (C, S) ∈ Υ∆. We will construct a sequence Yk ∈ Υ∗
∆ converging

to Y as k → ∞. Choose ξ = (ξ1, ξ2) ∈ Y ∩ Λ. Choose a unit vector v1 at
ξ1 tangent to C and a unit vector v2 at ξ2 tangent to S. For each i = 1, 2,
choose an orthonormal frame fξi in Fi based at ξi whose first vector is vi.

Since (fξ1 , fξ2) ∈ Λ̃ and E is dense in Λ̃, we can find a sequence (fη1,k , fη2,k) ∈ E
converging to (fξ1 , fξ2) as k → ∞. Hence, for each k, there exists a sequence

{(η(k)1,j , η
(k)
2,j ) ∈ Λ : j = 1, 2, · · · } converging (1, 1)-tangentially to (fη1,k , fη2,k)

as j → ∞. Since (fη1,k , fη2,k) → (fξ1 , fξ2) as k → ∞, we can choose large
enough jk for each k so that the following holds for each i = 1, 2:

(1) η
(k)
i,jk

→ ξi as k → ∞; and

(2) the unit tangent vector

−−−−−→
ηi,kη

(k)
i,jk

∥
−−−−−→
ηi,kη

(k)
i,jk

∥
at ηi,k converges to vi as k → ∞.

Now we are ready to construct a sequence Yk = (Ck, Sk) ∈ Υ∗
∆:

(1) Fix z1 ∈ C − {ξ1} and let Ck be the circle passing through z1, η1,k

and η
(k)
1,jk

.
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(2) Fix z2 ∈ S−{ξ2}. The tangent space Tξ2S of S at ξ2 is a codimension
one subspace of the tangent space Tξ2F2. Noting that v2 ∈ Tξ2S,
we can choose unit tangent vectors w1, · · · ,wm−2 ∈ Tξ2S so that
v2,w1, · · · ,wm−2 form a basis of Tξ2S. For each ℓ = 1, · · · ,m − 2,
we choose a sequence ζℓ,k ∈ F2 converging to ξ2 such that the unit

vectors
−−−−−→
η2,kζℓ,k

∥
−−−−−→
η2,kζℓ,k∥

converges to wℓ as k → ∞. Then for each k ≥ 1

large enough, the set

{z2, η2,k, η
(k)
2,jk

, ζ1,k, · · · , ζm−2,k}
has cardinality (m+ 1) and hence uniquely determines an (m− 1)-
dimensional sphere in F2 = Sm, which we set to be Sk.

Since (Ck, Sk) ∩ Λ contains two distinct points (η1,k, η2,k) and (η
(k)
1,jk

, η
(k)
2,jk

),
we have

(Ck, Sk) ∈ Υ∗
∆.

Moreover, as k → ∞, Ck converges to the unique circle passing through z1
and tangent to v1 which must be C, and Sk converges to the unique sphere
passing through z2 and whose tangent space at ξ2 is same as Tξ2S, which
must be S. Therefore (Ck, Sk) ∈ Υ∗

∆ converges to Y = (C, S). This finishes
the proof of Theorem 3.1.

Dense orbits. Let Γ < SO◦(n + 1, 1) be a convex cocompact subgroup
where n ≥ 2. Then νΓ is equal to δΓ-dimensional Hausdorff measure HδΓ |Λ
and δ := δΓ is equal to the Hausdorff dimension of Λ by [23]. Let ρ : Γ →
SO◦(m+ 1, 1) be a Zariski dense convex cocompact faithful representation.
Let Γρ := (id×ρ)(Γ) < G and

Υρ := ΥΓρ = {Y = (C, S) ∈ Υ : Y ∩ Λρ ̸= ∅}. (3.1)

Theorem 3.3. Suppose that Γρ is Zariski dense. Then there exists a Hδ|Λ-
conull Λ′ ⊂ Λ such that for any Y ∈ Υρ intersecting (id×f)(Λ′) non-
trivially,

ΓρY = Υρ.

Proof. Since G acts transitively on Υ as homeomorphisms, we have the
homeomorphism

Υ ≃ G/H

where H = Stab(Y0) is the stabilizer of some Y0 = (C0, S0) ∈ Υ. Noting
that H◦ is a semisimple real algebraic subgroup conjugate to (SO◦(2, 1) ×
SO(n− 1))× SO◦(m, 1), we may choose Y0 so that H ⊃ A and that H ∩ P
is a minimal parabolic subgroup of H.

Recall the subset Υ∗
ρ = {Y ∈ Υρ : #Y ∩ Λρ ≥ 2}. Let Ω̃ρ ⊂ G be

the preimage of Ωρ for the projection G → Γρ\G. Clearly, Υ∗
ρ ⊃ Ω̃ρY0.

In fact, we have Υ∗
ρ = Ω̃ρY0. Indeed, as Y0 corresponds to H, denoting by

e = (e1, e2) ∈ H the identity element, we have e±1 ∈ C0 and e
±
2 ∈ S0. For any
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Y = (C, S) ∈ Υ∗
ρ, there exist distinct ξ, η ∈ Λ ∩ C such that f(ξ), f(η) ∈ S.

We can then find g1 ∈ G1 such that g1(C0) = C and g1e
+
1 = ξ and g1e

−
1 = η.

Similarly, we can find g2 ∈ G2 such that g2(S0) = S and g2e
+
2 = f(ξ) and

g2e
−
2 = f(η). Then Y = gY0 for g = (g1, g2) ∈ G. Since g+ = (ξ, f(ξ)) and

g− = (η, f(η)), g ∈ Ω̃ρ. Therefore, Ω̃ρY0 = Υ∗
ρ.

Suppose that there exists g ∈ G such that the closure of [g]A+
u contains

Ωρ for some u ∈ int a+. Since A+
u ⊂ H, the closure of ΓρgH contains Ω̃ρH,

in other words, the closure of ΓρgY0 contains Ω̃ρY0 = Υ∗
ρ. Hence by Theorem

3.1,
ΓρgY0 = Υρ.

Since Γ < SO◦(n + 1, 1) is convex cocompact, we have that Hδ|Λ is the
unique Γ-conformal measure on Λ, up to a constant multiple [23]. Therefore
Theorem 3.3 follows from Theorem 2.6 and Lemma 2.5. □

4. Doubly stable condition

In this section, let Γ < SO◦(n+ 1, 1) be a discrete group, n ≥ 2, which is
not necessarily convex cocompact. Let Λ ⊂ Sn denote its limit set.

We say that a circle C ⊂ Sn is Λ-doubly stable if for any sequence of circles
Ck converging to C,

# lim sup(Ck ∩ Λ) ≥ 2.

If Ω is disconnected, there exists a Λ-doubly stable circle (Lemma 4.2).
Recall from (3.1) that Υρ = {Y ∈ Υ : Y ∩ Λρ ̸= ∅}.

Theorem 4.1. Let Γ < SO◦(n + 1, 1) be a discrete subgroup and ρ : Γ →
SO◦(m+ 1, 1), m ≥ 2, be a discrete faithful representation with a boundary
map f : Λ → Sm. Assume that there exists at least one Λ-doubly stable
circle. If (C0, S0) ∈ Υρ such that f(C0 ∩ Λ) ⊂ S0, then

Γρ(C0, S0) ̸= Υρ.

Proof. Let C ⊂ Sn be a Λ-doubly stable circle. Then for any sequence of
circles Ck ⊂ Sn converging to C as k → ∞, we have

# lim sup(Ck ∩ Λ) ≥ 2. (4.1)

It follows that #C ∩ Λ ≥ 2.
We first claim that there exists a codimension one sphere S ⊂ Sm such

that
#S ∩ f(C ∩ Λ) = 1. (4.2)

Since C ∩ Λ is not homemorphic to Sm, m ≥ 2, the image f(C ∩ Λ) is a
proper compact subset of Sm. Therefore we can find a minimal closed m-
ball B ⊂ Sm containing f(C ∩ Λ). By the minimality of B, there exists
ξ0 ∈ C ∩Λ such that f(ξ0) lies in the boundary of B. Now any codimension
one sphere S in Sm such that S ∩B = {f(ξ0)} satisfies (4.2).

Set Y = (C, S). Since (ξ0, f(ξ0)) ∈ (C, S), we have Y ∈ Υρ. We claim

that for any (C0, S0) ∈ Υρ such that f(C0∩Λ) ⊂ S0, we have Y ̸∈ Γρ(C0, S0);
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this implies the theorem. Suppose not. Then there exists a sequence γk ∈ Γ
such that γkC0 → C and ρ(γk)S0 → S as k → ∞. By (4.1), we have

# lim sup(γkC0 ∩ Λ) ≥ 2. (4.3)

By the ρ-equivariance of f , we have

f(γkC0 ∩ Λ) = f(γk(C0 ∩ Λ)) = ρ(γk)f(C0 ∩ Λ) ⊂ ρ(γk)S0.

Hence

lim sup f(γkC0 ∩ Λ) ⊂ lim sup ρ(γk)S0 = S.

Since lim sup f(γkC0∩Λ) ⊂ f(C ∩Λ) and f is injective, it follows from (4.3)
that #S ∩ f(C ∩ Λ) ≥ 2. This contradicts (4.2), proving the claim. □

We say that Λ is doubly stable if for any ξ ∈ Λ, there exists a Λ-doubly
stable circle containing ξ.

Lemma 4.2. Let Γ < SO◦(n+ 1, 1) be a discrete subgroup. If Ω is discon-
nected, then Λ is doubly stable.

Proof. Let Ω1, Ω2 be distinct connected components of Ω and fix any ξ ∈ Λ.
Let C be a circle containing ξ and intersecting Ω1 and Ω2.

Let Ck be a sequence of circles converging to C as k → ∞. We claim that
# lim sup(Ck ∩ Λ) ≥ 2. Suppose that # lim sup(Ck ∩ Λ) ≤ 1. We will show
that C ∩Ω1 is a singleton, which is a contradiction since C ∩Ω1 is an open
subset of C.

For each k, let Ik ⊂ Ck be a compact interval containing Ck ∩ Λ with
minimal diameter. Since Ck − Ik is a connected subset of Ω, Ck − Ik ⊂ Wk

for some connected componentWk of Ω. After passing to a subsequence and
relabeling Ω1 and Ω2 if necessary, we may assume that Ω1 ̸=Wk and hence
Ω1 ∩Wk = ∅ for all k.

Let x, y ∈ C ∩Ω1. Since the sequence Ck converges to C, x = limk→∞ xk
and y = limk→∞ yk for some xk, yk ∈ Ck. Since Ω1 is open, we may assume
that xk, yk ∈ Ck ∩ Ω1 for all k ≥ 1. Hence xk, yk /∈Wk; so xk, yk ∈ Ik.

Since # lim sup(Ck ∩ Λ) ≤ 1, the diameter of Ik tends to 0 as k → ∞.
Therefore the distance between xk and yk must go to 0 and hence x = y.
This proves the claim, finishing the proof. □

5. Rigidity via circular slices

Let n,m ≥ 2. Let Γ < SO◦(n+1, 1) be a Zariski dense convex cocompact
subgroup. Let ρ : Γ → SO◦(m+ 1, 1) be a Zariski dense convex cocompact
deformation and f : Λ → Sm be its boundary map. Recall

Λf =
⋃ß

C ∩ Λ :
C ⊂ Sn is a circle such that

f(C ∩ Λ) is contained in a (m− 1)-sphere of Sm
™
.

Theorem 1.1 is a special case of the following:
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Theorem 5.1. Suppose that there exists a Λ-doubly stable circle. Then

either Λf = Λ or Hδ(Λf ) = 0.

In the former case, we have n = m, f extends to some g ∈ Möb(Sn) and
ρ is a conjugation by g.

Remark 5.2. By Lemma 4.2, when Ω has at least two components, there
exists a Λ-doubly stable circle. Hence Theorem 5.1 applies to this case.

Proof. Suppose that Hδ(Λf ) > 0. We need to show that Λf = Λ. We
claim that Γρ cannot be Zariski dense in G. Suppose that Γρ is Zariski

dense. Let Λ′ ⊂ Λ be the Hδ|Λ-conull subset given by Theorem 3.3. Since
Hδ(Λf ) > 0, there exists ξ0 ∈ Λf ∩ Λ′. By the definition of Λf , we can find
Y0 = (C0, S0) ∈ Υ∆ so that Y0 ∋ (ξ0, f(ξ0)) and f(C0 ∩ Λ) ⊂ S0. By the
definition of Λ′ as in Theorem 3.3, we have

ΓρY0 = Υρ.

On the other hand, since there exists a Λ-doubly stable circle, Theorem 4.1
implies that ΓρY0 ̸= Υρ. This yields a contradiction, proving that Γρ is not
Zariski dense. Hence by Theorem 2.2, ρ extends to a Lie group isomorphism
SO◦(n+1, 1) → SO◦(m+1, 1) and in particular n = m. Since the Lie group
automorphism of SO◦(n + 1, 1) is a conjugation by some g ∈ Möb(Sn), it
follows that ρ is a conjugation by g and by the uniqueness of the ρ-boundary
map, f is the restriction of g to Λ. Therefore Λf = Λ. □

Topological version without convex cocompactness. The assumption
that Γ and ρ(Γ) are convex cocompact was used to apply the ergodicity as
in Theorem 2.4. The approach of our paper proves the following theorem
without the convex cocompact hypothesis, which was shown in [14] for n =
m = 2:

Theorem 5.3. Let Γ < SO◦(n+ 1, 1) be a Zariski dense discrete subgroup.
Suppose that there exists a Λ-doubly stable circle. Let ρ : Γ → SO◦(m+1, 1)
be a Zariski dense deformation with a ρ-boundary map f : Λ → Sm. Then

either Λf = Λ or Λf has empty interior in Λ.

In the former case, we have n = m, f extends to some g ∈ Möb(Sn) and
ρ is a conjugation by g.

For this, we need to replace the ergodicity theorem (Theorem 2.4) by the
following theorem of Chow-Sarkar for ∆ = Γρ:

Theorem 5.4 ([6, Theorem 8.1]). Let ∆ < G be a Zariski dense discrete
subgroup. For any u ∈ intL∆, there exists a dense A+

u -orbit in

Ω∆ := {[g] ∈ ∆\G : g± ∈ Λ∆}.

This theorem provides a dense subset Λ′ ⊂ Λ such that for any Y ⊂
Υρ intersecting (id×f)(Λ′) non-trivially, ΓρY is dense in Υρ, which is a
topological version of Theorem 3.3. With this replacement, the rest of the
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proof can be repeated in verbatim. Theorem 1.5 is a direct consequence of
Theorem 5.3 and Lemma 4.2.

Added in proofs: We explain the following extension of Theorem 5.1:

Theorem 5.5. Let Γ < SO◦(n + 1, 1) be a Zariski dense discrete subgroup
of divergence type and ρ : Γ → SO◦(m + 1, 1) is a Zariski dense quasi-
isometric deformation (i.e., one inducing a quasi-isometric embedding of
Γo ⊂ Hn+1 into Hm+1) with boundary map f : Λ → Sm. Let νΓ be the
unique δ-dimensional Γ-conformal measure on Λ where δ denotes the critical
exponent of Γ. Suppose that there exists a Λ-doubly stable circle. Then

either Λf = Λ or νΓ(Λf ) = 0.

In the former case, we have n = m, f extends to some g ∈ Möb(Sn) and
ρ is a conjugation by g.

As before, let Γρ := (id×ρ)(Γ) < G := SO◦(n + 1, 1) × SO◦(m + 1, 1).
Let mBMS

ρ be the Bowen-Margulis-Sullivan measure on Γρ\G associated to

νρ := (id×f)∗νΓ. Its support is Ωρ := {[g] ∈ Γρ\G : g± ∈ Λρ}. Since Γρ
is a transverse subgroup of G and hence hyper-transverse in the sense of
[13], it follows from [13, Theorem 1.14] that mBMS

ρ -a.e. A+-orbits are dense

in Ωρ. Since the limit cone Lρ is contained in int a+ ∪ {0}, there exists a
closed convex cone C ⊂ int a+ ∪ {0} whose interior contains Lρ −{0}. Then
a.e. exp C-orbits are dense in Ωρ (cf. [18, Lemma 7.2]). Observing that
the conjugation action of exp C on N has a uniform contraction property,
we can repeat the proof of Theorem 5.1, replacing the directional flow by
exp C-flow, and Hδ by νΓ.
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