RIGIDITY OF KLEINIAN GROUPS VIA SELF-JOININGS:
MEASURE THEORETIC CRITERION
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ABSTRACT. Let n,m > 2. Let I' < SO°(n + 1,1) be a Zariski dense
convex cocompact subgroup and A C S™ be its limit set. Let p : T' —
SO°(m +1,1) be a Zariski dense convex cocompact faithful representa-
tion and f: A — S™ the p-boundary map. Let

o ) C C S" is a circle such that }
Api= U {C na: f(CNA) is contained in a proper sphere in S™J °
When there exists at least one A-doubly stable circle in S™ (e.g., Q =
S™ — A is disconnected), we prove the following dichotomy:

cither Ay =A or H°(Af)=0,

where #° is the Hausdorff measure of dimension § = dimg A. Moreover,
in the former case, we have n = m and p is a conjugation by a M&bius
transformation on S™. Our proof uses ergodic theory for directional
diagonal flows and conformal measure theory of discrete subgroups of
higher rank semisimple Lie groups, applied to the self-joining subgroup
'y = (id xp)(I') < SO°(n+1,1) x SO°(m + 1,1). We also obtain an
analogous theorem for any divergence-type subgroup.

1. INTRODUCTION

Let H"*! denote the (n + 1)-dimensional real hyperbolic space for n > 2.
The group of its orientation-preserving isometries is given by the identity
component SO°(n 4 1,1) of the special orthogonal group. A discrete sub-
group I' < SO°(n+1,1) is called conver cocompact if the convex COI‘€E| of the
associated hyperbolic manifold T'\H"*! is compact. Let I' < SO°(n + 1,1)
be a Zariski dense convex cocompact subgroup for n > 2, and

p:T'—S0°(m+1,1)

be a faithful representation such that p(I") is a Zariski dense convex cocom-
pact cocompact subgroup of SO°(m + 1,1) where m > 2. For simplicity, we
will call a discrete faithful representation p : I' — SO°(m + 1,1) a deforma-
tion of I" into SO°(m + 1,1) and a (resp. Zariski dense) convex cocompact
deformation of T" if the image of p is a (resp. Zariski dense) convex cocom-
pact subgroup. If I' < SO°(n + 1, 1) is cocompact and n = m, the Mostow
strong rigidity theorem [22] says that p is always algebraic, more precisely,
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IThe convex core of P\H"*! is the smallest convex submanifold containing all closed
geodesics.
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it is given by a conjugation by a Mo6bius transformation on S™. However in
other cases, Marden’s isomorphism theorem and the Teichmiiller theory im-
ply that there exists a continuous family of convex cocompact deformations,
modulo the conjugations by Mobius transformation on S™ (cf. [20, Section
5]).

Let A C S™ denote the limit set of I', which is the set of all accumulation
points of T'(0) in S", 0 € H"*'. Let H’ be the §-dimensional Hausdorff
measure on S”, where 0 is the Hausdorff dimension of A with respect to the
spherical metric on S”. Sullivan [23] Theorem 7] showed that for I' convex
cocompact, we have

0 < H(A) < .

The main aim of this paper is to present a criterion on when p is algebraic,
in terms of the Hausdorff measure of the union of all circular slices of A that
are mapped into circles, or more generally into some proper spheres in S™
by the p-boundary map. More precisely, by Tukia [26], there is a unique
p-equivariant continuous embedding

f:A— ST,

called the p-boundary map. We consider all circular slices of A which are
mapped into some proper spheres in S™ by f:

C C S™ is a circle such that
Ag = U {C nA: f(C N A) is contained in a proper sphere in Sm}

Fieure 1. f(C'NA) is contained in a circle

We emphasize that the boundary map f is defined only on A and therefore
our definition of Ay involves the image of the intersection C'N A under f,
but not the whole circle C' (see Figure [I). If n = m and f is a Md&bius
transformation of S, then f clearly maps all circles to circles and hence
Ay = A. The following main theorem of this paper says that in all other
cases, Ay has zero H°-measure. In other words, if ’H‘S(Af) > (, then f is the
restriction of a Mobius transformation of S™ and p is algebraic.

Theorem 1.1. Let n,m > 2. Let I' < SO°(n + 1,1) be a Zariski dense
convex cocompact subgroup such that the ordinary set Q = S™ — A has at
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least two components. Let p: T' — SO°(m + 1,1) be a Zariski dense convex
cocompact deformation and f: A — S™ the p-boundary map. Then

cither Ay =A or H(As)=0.

In the former case, we have n = m, f extends to some g € M&b(S™) and
p 1s a conjugation by g.

When n = m = 2, the topological version of the above theorem that
either Ay = A or Ay has empty interior was obtained in our earlier paper
[14] for all finitely generated discrete subgroups. Theorem provides its
measure theoretic version. See Theorem for the topological version for
general n,m > 2.

Remark 1.2. If T' < SO°(3,1) is convex cocompact with A connected, then
2 is disconnected [19, Chapter IX]; hence Theorem applies.

Indeed, we prove Theorem under a weaker condition that there exists
a A-doubly stable circle (Theorem [5.1)).

Definition 1.3. We say that a circle C C S™ is A-doubly stable if for any
sequence of circles Cj converging to C,

#limsup(Cr NA) > 2,
where lim sup £y, is defined as (), oy U,Qn E}, for a sequence Ej, C S™.

If Q is disconnected, there exists a A-doubly stable circle (Lemma [4.2)).
If Q =0, i.e., A = S™, then every circle is S"-doubly stable. In particular,
Theorem applies to any uniform lattice I' of SO°(n + 1,1): either f :
S™ — S™ preserves Lebesgue-almost none of the circles, or n = m and f is
induced by a Md&bius transformation on S™.

Remark 1.4. It is an interesting question whether there exists a Zariski
dense convex cocompact subgroup of SO°(3,1) whose limit set A is totally
disconnected and there is no A-doubly stable circle.

In terms of the quasiconformal deformation indicated in Figure [2| our
theorem implies that the union of circular slices of the left limit set which
are mapped into circles has zero H’-measure.

Note that (n + 2)-distinct points on S™ form the set of vertices of a
unique ideal hyperbolic (n + 1)-simplex of H"*!. Gromov-Thurston’s proof
of Mostow rigidity theorem ([9], [25]) uses the fact that a homeomorphism
of S® mapping vertices of every maximal volume (n + 1)-simplex of H" ! to
vertices of a maximal volume (n + 1)-simplex is a Mobius transformation.

Any (n + 2)-distinct points on S™ form vertices of a zero-volume (n + 1)-
simplex of H"*! if and only if they lie in some codimension one sphere in
S™. We also prove the following higher dimensional version of [14, Theorem
1.3], which answered McMullen’s question for n = 2:

QImage credit: Curtis McMullen and Yongquan Zhang [27]
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FIGURE 2. Non-trivial quasiconformal deformationﬂ

Theorem 1.5. Let I' < SO°(n + 1,1) be a Zariski dense discrete subgroup.
Suppose that there exists a A-doubly stable circle in S™. If the p-boundary
map f : A — S™ maps vertices of every (n + 1)-simplex of zero-volume to
vertices of an (n + 1)-simplex of zero-volume, then f extends to a Mdbius
transformation of S™.

We obtain a stronger statement that unless f extends to a Mobius trans-
formation, the union of all vertices of (n+1)-simplexes of zero-volume whose
images under f form vertices of zero-volume (n + 1)-simplexes has empty
interior in A.

On the proof of Theorem We use the theory of Anosov representa-
tions. Consider the following self-joining subgroup of G = SO°(n + 1,1) x
SO°(m +1,1):

Py i= (i xp)(T) = {(7,p()) : 7 € T}.
The crucial point is that, under the assumption that both I' and p(I") are

Zariski dense and convex cocompact and not conjugate to each other, we
have that

I, is a Zariski dense Anosov subgroup of G

with respect to a minimal parabolic subgroup

(see the discussion around (2.3)). Hence the recent classification theorem
on higher rank conformal measures by Lee-Oh [I8] (Theorem and the
ergodicity theorem of Burger-Landesberg-Lee-Oh [4] (Theorem[2.4) apply to
our setting, yielding that for any I',-conformal measure on the limit set of
I',, the associated Bowen-Margulis-Sullivan measure on I')\G is ergodic and
conservative for a unique one-parameter diagonal flow A, = {exptu :t € R}
where u is a vector in the interior of the positive Weyl chamber.

A general higher rank conformal measure seems mysterious. However, the
graph structure of our self-joining group I', allows us to pin down a very
explicit I')-conformal measure, which we call the graph-conformal measure
[15]. Indeed, under the convex cocompactness hypothesis on I', the graph-
conformal measure is given by the pushforward measure (id xf).(H°|s),
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and this is the reason why we can relate the Hausdorff measure H°[5 with
dynamics on the Anosov homogeneous space I',)\G in the proof of Theorem
L1

The conclusion of Theorem follows if we show that I', cannot be
Zariski dense in G (Lemma. We give a proof by contradiction. Suppose
that I, is Zariski dense. Considering the action of I', on the space T, of all
ordered pairs Y = (C, S) of a circle C C S" and a codimension one sphere
S C S™ intersecting the limit set A, C S™ x S™ of I, we are then able to
prove, together with the work of Guivarch-Raugi [11] and the aforementioned
ergodicity and conservativity result for the directional diagonal flows, that
for H°|s-almost all £ € A, the T'p-orbit of Y € Y, containing (&, f(€)) is
dense in the space 1.

On the other hand, we show that the existence of a A-doubly stable circle
in S" implies that for any Yy = (Co, So) € T, with f(CoNA) C Sy, the orbit
I',Yy cannot be dense in T, (Theorem . This shows that I', cannot be
Zariski dense when H’(A £) > 0. We also show that when (2 is disconnected,
a A-doubly stable circle exists (Lemma .

Analogous question for rational maps. We close the introduction by
the following question which seems natural in view of Sullivan’s dictionary
between Kleinian groups and rational maps ([24], [21]).

Question 1.6. Let hq, hs : C — C be rational maps of degree at least 2
whose Julia sets are not contained in circles. Suppose that ho = FohjoF~!
for some quasiconformal homeomorphism F' : C—C. Suppose that for the
Julia set J = Jp, of hq, there exists a J-doubly stable circle in C. Let

L ) C c C is a circle such that }
P = U {C nJ: F(C nJ) is contained in a circle) -

~

(1) If Jp = J, is F € M&b(C)?
(2) Suppose that hj, he are hyperbolic. Let § = dimgJ. Is it true that

either Jp=J or H(Jr)=07?

Added in proofs: Using recent developments in the ergodic theory of
transverse subgroups ([5], [16], [13]), Theorem can be extended to all
discrete subgroups I' of divergence type and quasi-isometric deformations p,
provided #° is replaced by the unique d-dimensional I-conformal measure
on A, where § is the critical exponent of I' [23]. This covers all geometrically
finite groups and type-preserving deformations. See Theorem

Organization. The main goal of section [2]is to prove Theorem which
we deduce from the classification of conformal measures in [I8] and the er-
godicity and conservativity of directional diagonal flows in [4] with respect to
the Bowen-Margulis-Sullivan measure associated to the I',-conformal mea-
sure constructed from the d-dimensional Hausdorff measure on A. The main
theorem of section [3]is Theorem B.3] which we deduce from Theorem 2.6 and
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a theorem of Guivarch-Raugi (Theorem [3.2). In section [4] we discuss an ob-
struction to dense I',-orbits in the space T, when a A-doubly stable circle
exists. In section |5 we give a proof of Theorem We also discuss a topo-
logical version of Theorem without convex cocompactness assumption
(Theorem [5.3)).

Acknowledgement. We would like to thank Curt McMullen for useful
comments on the preliminary version. We are also grateful to him and
Yongquan Zhang for allowing us to use the beautiful image of Figure

2. ERCODICITY AND GRAPH-CONFORMAL MEASURE

Let (X1,d;) and (X2, d2) be rank one Riemannian symmetric spaces. Let
G be the product G; x G2 where G; = Isom°(X;) and G2 = Isom°(X2)
are connected simple real algebraic groups of rank one. Then G = Isom® X
where X = X7 x X5 is the Riemannian product. We fix a Cartan involution
0 of the Lie algebra g of G, and decompose g as g = € @ p, where £ and
p are the +1 and —1 eigenspaces of 0, respectively. We denote by K the
maximal compact subgroup of G and choose a maximal abelian subalgebra
a of p. Choosing a closed positive Weyl chamber a™ of a, let A := exp a and
AT = expa™. The centralizer of A in K is denoted by M, and we let Nt
and N = N~ be the horospherical subgroups so that log N* and log N—
are the sum of all negative and positive root subspaces for our choice of AT
respectively. We set

Pt =MAN'Y, and P =P = MAN;

they are minimal parabolic subgroups of G that are opposite to each other.
The quotient F = G/P is known as the Furstenberg boundary of G, and
is isomorphic to K/M. Let Ng(a) be the normalizer of a in K and let
W = Ng(a)/M denote the Weyl group. Let wy € Ng(a) be the unique
element in W such that woPw, L — P*. For each g € G, we define

gt :=gPcF and g :=guwyP € F.

An element g € G is loxodromic if ¢ = hamh™! for some a € int A*,
m € M and h € G. The Jordan projection of g is defined to be A(g) :=
loga € inta™.

In the rest of the section, let A be a Zariski dense discrete subgroup of G.
The limit cone LA C at is defined as the smallest closed cone containing all
Jordan projections of loxodromic elements of A. It is a convex subset of a™
with non-empty interior [I, Section 1.2]. Benoist showed that there exists a
unique A-minimal subset of F, which is called the limit set of A. We denote
it by Aa.

Bowen-Margulis-Sullivan measures. Let F; be the Furstenberg bound-
ary of GG;, which is equal to the geometric boundary 0X;. For each i = 1,2,
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the Busemann function S, (x;, ;) is defined as
Bei (xiyyi) = m di(&ir, 21) — dil&i, yi) (2.1)

where &; ; is a geodesic ray toward to §;. For £ = (§1,§2) € F = F1 x F2 and
x = (x1,22),y = (y1,y2) € X, the a-valued Busemann function is defined
componentwise:

Be(w,y) = (Be, (21, 1), Bey (22,12)) € a

where we have identified a = a; @ as with R2.
In the following we fix 0o = (01,02) € X so that the stabilizer of o is K.

Definition 2.1. For a linear form ¢ € a*, a Borel probability measure v on
F is called a (A, 1))-conformal measure (with respect to o) if for any g € A
and & € F,
dg.v
dv
where g.v(B) = v(g~'B) for any Borel subset B C F. By a A-conformal
measure, we mean a (A, )-conformal measure for some 1) € a*.

(€) = (V(Belo.90))

Two points £ = (§1,&2) and n = (n1,72) are in general position if & # n;
for each i = 1,2. Let F® be the set of all pairs (£,7) € F x F which
are in general position. The map G — F® x a, g — (97,97, B4+ (0, g0))
induces a G-equivariant homeomorphism G/M ~ F 2) x a, called the Hopf-
parametrization.

For a (A, 1)-conformal measure v supported on the limit set Aa for some
¥ € a*, we can define the following Borel measure on G /M using the Hopf-
parametrization:

dmBMS (g0M) = ¥ B+ (0:99)+85=(0:99) g () du (g7 ) dlb (2.2)

where db is the Haar measure on a. By integrating over the fiber of G —
G /M with respect to the Haar measure of M, we will consider mEMS as
a Radon measure on GG, which is then a left A-invariant and right AM-
invariant measure. We denote by mBMS the Radon measure on A\G induced
by mBMS, This measure is called the Bowen-Margulis-Sullivan measure as-

sociated to v. Its support is
Qa ={[g] € A\G : g* € Ap}.
We refer to [8] for a detailed discussion on the construction of this measure.

Self-joinings of convex cocompact groups. In the rest of the section,
we will consider the following special type of discrete subgroups of G. Let
I' < G1 be a Zariski dense convex cocompact subgroup and p : I' — Gy
be a Zariski dense convex cocompact faithful representation. Define the
self-joining of T" via p:

Ly = (idxp)(T) ={(y,p(7)) : v €T}
which is a discrete subgroup of G.
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It follows from the convex cocompactness assumption for I" and p(T") that
if we fix a word metric || on I" for some finite generating set and fix 01 € X3
and oy € Xs, then there exist constants C, C’ > 0 such that for all v € T,

min{di (yo1,01),d2(p(7)02,02)} > Cly| = C". (2.3)

In other words, I', is an Anosov subgroup of G' with respect to a minimal
parabolic subgroup ([I7], [I0], [12]). This enables us to use the general
theory developed for Anosov subgroups. We remark that ergodic theory for
self-joining groups of convex cocompact groups was first studied in [3].

Since both G; and G4 are simple, we have the following equivalence be-
tween Zariski density of the self-joining and the rigidity of p, first observed
by Dal’Bo-Kim [7]:

Lemma 2.2. The subgroup I, is Zariski dense in G if and only if p does
not extend to a Lie group isomorphism G1 — Ga.

Since I" and p(I") are convex cocompact, there exists a unique p-equivariant
continuous embedding f : A — Fo; this is a special case of a theorem of
Tukia [26], which can also be seen directly as follows. Since I' < G} is convex
cocompact, I' is a hyperbolic group and an orbit map I' — X; is a quasi-
isometric embedding, where T' is equipped with a word metric. Hence, it
follows from a standard result for Gromov hyperbolic spaces (e.g. [2, Chap-
ter III.H, Theorem 3.9]) that there exists a unique I'-equivariant homeomor-
phism f; : OI' = Ar = A where 0T is the Gromov boundary of I". Similarly,
we obtain a unique p(I')-equivariant homeomorphism f2 : dp(T') — A, ).
Since p : I' = p(I") is an isomorphism, there exists a unique p-equivariant
homeomorphism fy : OT' — 9p("). Therefore, f := fyo fyo ffl A= Ay
is the unique p-equivariant homeomorphism into JFs.

Hence, for I', Zariski dense, its limit set A, C F is of the form

Ay = (id x f)(A)

where id xf : A — A, is the diagonal embedding. We denote by £, C a™
the limit cone of I',;:
L,=CLr,.
Since T', is Anosov, the following Theorems and are special cases

of theorems proved in those respective papers. Let a* denote the set of all
R-linear forms on a.

Theorem 2.3 (Classification of conformal measures, [I8, Theorem 1.3,
Proposition 4.4]). Suppose that I, is Zariski dense in G. The space of unit
vectors in int L, is in bijection with the space of all I',-conformal measures
on A,. Moreover, each T ,-conformal measure on A, is a (T',,1)-conformal
measure for a unique linear form ¢ € a*.

We will denote this bijection by
U Uy (2.4)



RIGIDITY OF KLEINIAN GROUPS VIA SELF-JOININGS 9

For each unit vector u € int £,, we also denote by 1, € a* the (unique)
linear form associated to vy, that is, v, is (I',, ¥y, )-conformal.

Ergodicity. For simplicity, we set

mBMS . — Thfys and mBEMS .= 5 BMS

For any non-zero vector u € a, we consider the following one-parameter
semigroup /subgroup:

At :={aw, :t >0} and A, = {ay, : t € R}.

where a4, = exp tu. The following ergodicity result due to Burger-Landesberg-
Lee-Oh [4] is the main ingredient of our proof of Theorem

Theorem 2.4 (Ergodicity of directional flows, [4]). Suppose that T, is
Zariski dense in G. For any unit vector u € int £,, (mBM5 T ,\G) is er-
godic and conservative for the Ay,-action. In particular, for mEMS-almost
all z, A} is dense in Qr,.

Graph-conformal measure. Let v be the I'-conformal measure sup-
ported on the limit set A of I'; since I' is convex cocompact, it exists uniquely
[23]. It turns out that the measure (id x f).vr is a I',-conformal measure,
where id x f : A — A, is the diagonal embedding. We called this measure
the graph-conformal measure in [15]. More precisely, we have the following
lemma, thanks to which we were able to apply Theorem in the proof of
Theorem we denote by dr the critical exponent of T

Lemma 2.5. [I5 Proposition 4.9] The measure

(id % f)cvp
is a (I, 01)-conformal measure supported on A,, where o1 € a* is the linear

form given by o1(t1,t2) = orty for (t1,t2) € a.
We now deduce Theorem from Theorems and first, there

exists a unique unit vector

u, € int £, such that (id x f).vr = vy, (2.5)
Hence if we write Q, := Qp, = {[g] € T,\G : g* € A,}, we get the following
main theorem of this section:

Theorem 2.6. Suppose that I', is Zariski dense. Then there exists an
(id x f)«vr-conull subset
A, C A,

such that for any g € G with g* € A}, the closure [g]Aqu contains €2,

Proof. Since mEpMS is equivalent to the product measure dvy,, X dvy,, xdaxdm

where da and dm denote Haar measures on A and M respectively, it follows
from Theoremthat there exists a v,,,-conull subset A; C A, such that for
all £ € A, there exists go € G with gq =& and g; € A, such that [gO]A;fp
is dense in Q,. Hence the claim follows by the following Lemma [2.7} O
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Lemma 2.7. Letu € inta™ and A < G be a Zariski dense discrete subgroup.
If [g0) Ay is dense in Qa, then for any g € G with gt = g, the closure [g] A
contains Q.

Proof. This can be deduced from the proof of [14, Corollary 2.3], which we
recall for readers’ convenience. Since g* = g, g = gop for some p € P.
Writing p = nam € NAM, we claim that

(Qa — [90] A )ma C [g]Ax.

Let € Qa — [go]A;f. Since [go] Ai D Qa, there exists a sequence t; — 400
such that z = lim;_,[go]at,.. Since u € intat, we have a_; nag,, — € as
1 — 00. Therefore

lim [g]at,, = lim [go]namar,, = lim [go]at,u(a—tunat)am = zam;
1—00 11— 00 1—00

so xam € [g]A. This proves the claim.
Since Qa is AM-invariant and Qa — [go] AM is dense in Qa (as Ap C F
is a perfect subset), it follows that

QA C [g]A{r.

3. ORBITS IN THE SPACE OF CIRCLE-SPHERE PAIRS
Let G; =S0°(n+1,1), n > 2 and Gy = SO°(m + 1,1), m > 2. We set
T={Y =(C,S):C CS"acircle, S C S™ a codimension one sphere}.
Let G = G1 x Go. The group G acts on T componentwise:

(91,92)(C, S) = (91C, g25)

for (g1,92) € G1 xGa and (C,S) € T. Let A < G be a Zariski dense discrete
subgroup. Then A acts on the space

TA:{YET:YQAA#Q},
which is a closed subset of Y.

Denseness of T),. Let
Th:={Y eTa:#Y NAA >2}.

Theorem 3.1. The subset T is dense in Tx.

Recalling that P = M AN and F = G/P ~ K/M, we have G/AN ~ K.
Consider the projection 7 : G/AN = K — G/P = K /M, and set

Axr =771 (Ap) C G/AN = K.

Since M ~ SO(n) x SO(m) is connected, the following is a special case of a
theorem of Guivarch and Raugi [11]:
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Theorem 3.2 ([I1, Theorem 2]). The action of A on Aa is minimal.

Indeed, this theorem is a key ingredient of the proof of Theorem [3.1]
which we now begin.

Proof of Theorem For simplicity, we write A for Aa in this proof.
Write K = K; x Ko where K1 = K N (G x {e}) =SO(n+ 1) and Ky =
K n ({e} x G2) = SO(m + 1), and similarly, we write M = M; x My =
SO(n) x SO(m). Via the projection K; — K;/M; = F;, we can think
of a point of K; as an orthonormal frame f; based at { € F;. Hence an
element of K is a pair of orthonormal frames (f¢,fs,) € K1 x K5. For an
infinite sequence (&1 5,&2;) € F1 x Fa converging to (§1,&2), we say that the
convergence is (1, 1)—tangential_t? the frame (fg,fe,) if, for each i = 1,2,
§i&ig

the sequence of unit vectors ]
iSi,j

at & converges to the first vector of the

frame f¢, as j — oo.
Let

&= {(f§1af£2) S /~\2

We first note that £ is non-empty. Since A is Zariski dense in G , A contains
a loxodromic element, say, g € A. Denote by y, € F the attracting fixed
point of g. Choose ¢ € A which is in general position with y,+1. Then

there exists a sequence (&;,&25) € A }
converging to (fg,,fe,) (1,1)-tangentially)

the sequence ¢‘C converges to yg as £ — +oo. The claim follows from the
compactness of the unit sphere in the tangent space of F at y,.

On the other hand, since the action of G on F is conformal and A is
A-invariant, £ is a A-invariant subset of A. Hence by Theorem

E=A.
Let Y = (C,S) € Ta. We will construct a sequence Y}, € T} converging
to Y as k — oo. Choose £ = (£1,&2) € Y N A. Choose a unit vector vy at

&1 tangent to C' and a unit vector vo at & tangent to S. For each i = 1,2,
choose an orthonormal frame f¢, in F; based at & whose first vector is v;.

Since (f¢,, fe,) € A and & is dense in A, we can find a sequence (Foi s fnon) €E

converging to (f¢,fe,) as K — oco. Hence, for each k, there exists a sequence

{(n%’?,né’?) €A:j=1,2,---} converging (1,1)-tangentially to (f,, ., f;,,)

as j — oo. Since (fy, ,,f,,) — (fg,fe,) as k — oo, we can choose large

enough ji for each k so that the following holds for each i = 1, 2:

(1) 171(]2€ — & as k — oo; and
, (k)
kM;

77 2k t ) k
———=% at n; ; converges to v; as kK — o0.

(2) the unit tangent vector R
i k5,

Now we are ready to construct a sequence Y, = (C, S;) € Th:

(1) Fix z; € C — {&} and let Cy, be the circle passing through z1, ny
(k)

and ;7 .
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(2) Fix 2o € S—{&}. The tangent space T, S of S at & is a codimension
one subspace of the tangent space T¢, F2. Noting that vo € Tg, S5,
we can choose unit tangent vectors wi,--- ,wy,—2 € T¢, S so that
Vo, W1, -+ ,Wp,—2 form a basis of T¢,S. For each £ = 1,--- ,m — 2,
we choose a sequence (y ) € F2 converging to &2 such that the unit

12,kGe,k

[Im2, 5 Ce, |l
large enough, the set

vectors converges to wy as k — oo. Then for each k£ > 1

k
{Z27 772,]67 né,j)k y Cl,]ﬁ ) CWL*Q,/C}

has cardinality (m + 1) and hence uniquely determines an (m — 1)-
dimensional sphere in Fo = S™, which we set to be Si.

Since (Ck, Sk) N'A contains two distinct points (71 x,72,%) and (ni’?k,nékj)k),

we have

(Ck, Sk) S T*A-
Moreover, as k — 0o, C} converges to the unique circle passing through z;
and tangent to v; which must be C, and S converges to the unique sphere
passing through 2o and whose tangent space at § is same as Tg, S, which
must be S. Therefore (Cy, Si) € T converges to Y = (C, S). This finishes
the proof of Theorem

Dense orbits. Let I' < SO°(n + 1,1) be a convex cocompact subgroup
where n > 2. Then vr is equal to dp-dimensional Hausdorff measure ’H‘SF| A
and ¢ := Jr is equal to the Hausdorff dimension of A by [23]. Let p: I' —
SO°(m + 1,1) be a Zariski dense convex cocompact faithful representation.
Let 'y := (id xp)(I") < G and

Y,:=Tr, ={Y =(C,8) e T:YNA,# 0} (3.1)

Theorem 3.3. Suppose that I, is Zariski dense. Then there exists a HO|A-
conull A" C A such that for any Y € Y, intersecting (id x f)(A") non-
trivially,

r,Yy="1,.
Proof. Since G acts transitively on T as homeomorphisms, we have the
homeomorphism

T ~G/H
where H = Stab(Yp) is the stabilizer of some Yy = (Cp,Sp) € Y. Noting
that H° is a semisimple real algebraic subgroup conjugate to (SO°(2,1) x
SO(n — 1)) x SO°(m, 1), we may choose Yy so that H D A and that H N P
is a minimal parabolic subgroup of H.

Recall the subset Y7 = {Y € T, : #Y N A, > 2}. Let Q, C G be
the preimage of 2, for the projection G — I')\G. Clearly, T, D QpYO.
In fact, we have T7 = QpYO. Indeed, as Y corresponds to H, denoting by
e = (e1,e2) € H the identity element, we have 61i € Cp and 62i € Sy. For any
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Y = (C,S) € T, there exist distinct §,7 € AN C such that f(€), f(n) € S.
We can then find g; € G such that ¢1(Cp) = C and gie] = € and g1e] = 0.
Similarly, we can find go € Go such that go(Sp) = S and goed = f(€) and
g2e5 = f(n). Then Y = g¥ for g = (g1,92) € G. Since g* = (&, f(£)) and
g~ = (n,f(n)), g € Q. Therefore, Q,Y, = 5.

Suppose that there exists g € G such that the closure of [g] A} contains
Q, for some u € inta™. Since A C H, the closure of T',gH contains QpH,
in other words, the closure of I',gYj contains QpYo = T}. Hence by Theorem

B-1}

LYo =71,.
Since I' < SO°(n + 1,1) is convex cocompact, we have that H°|, is the
unique I'-conformal measure on A, up to a constant multiple [23]. Therefore
Theorem [3.3] follows from Theorem 2.6l and Lemma 2.5 O

4. DOUBLY STABLE CONDITION

In this section, let T' < SO°(n 4+ 1,1) be a discrete group, n > 2, which is
not necessarily convex cocompact. Let A C S™ denote its limit set.
We say that a circle C' C S™ is A-doubly stable if for any sequence of circles
C}, converging to C,
#limsup(Cr NA) > 2.
If Q is disconnected, there exists a A-doubly stable circle (Lemma .
Recall from that T, ={Y e T: Y NA, #0}.

Theorem 4.1. Let I' < SO°(n + 1,1) be a discrete subgroup and p : I' —
SO°(m+1,1), m > 2, be a discrete faithful representation with a boundary
map f : A — S™. Assume that there exists at least one A-doubly stable
circle. If (Co,S0) € Y, such that f(Co N A) C So, then

I',(Co,S0) # Y.

Proof. Let C' C S™ be a A-doubly stable circle. Then for any sequence of
circles C, C S™ converging to C' as k — oo, we have

#limsup(Cr NA) > 2. (4.1)

It follows that #C N A > 2.

We first claim that there exists a codimension one sphere S C S™ such
that

#SNfCNA)=1. (4.2)

Since C'N A is not homemorphic to S™, m > 2, the image f(C NA) is a
proper compact subset of S”™. Therefore we can find a minimal closed m-
ball B C S™ containing f(C N A). By the minimality of B, there exists
& € C'N A such that f(&) lies in the boundary of B. Now any codimension
one sphere S in S™ such that SN B = {f(&)} satisfies (4.2)).

Set Y = (C,S). Since (&, f(&0)) € (C,S), we have Y € T,. We claim
that for any (Cop, So) € T, such that f(ConA) C Sy, we have Y € I',(Co, Sp);
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this implies the theorem. Suppose not. Then there exists a sequence v, € I’
such that v,Cy — C and p(7;)Sy — S as k — oo. By (4.1)), we have

# limsup(y:Co N A) > 2. (4.3)
By the p-equivariance of f, we have

FConA) = f((CoNA)) = p(yi) f(Co N A) C p(vk)So-
Hence
limsup f(7:Co N A) C limsup p(yx)So = S.

Since lim sup f(7xCoNA) C f(CNA) and f is injective, it follows from (4.3)
that #5 N f(C N A) > 2. This contradicts (4.2), proving the claim. O

We say that A is doubly stable if for any £ € A, there exists a A-doubly
stable circle containing &.

Lemma 4.2. Let I' < SO°(n+ 1,1) be a discrete subgroup. If 2 is discon-
nected, then A is doubly stable.

Proof. Let €1, Q9 be distinct connected components of 2 and fix any £ € A.
Let C be a circle containing £ and intersecting €21 and €.

Let C), be a sequence of circles converging to C' as k — oco. We claim that
# limsup(Cyr N A) > 2. Suppose that # limsup(Cr N A) < 1. We will show
that C' N €y is a singleton, which is a contradiction since C' N €); is an open
subset of C.

For each k, let I, C Cj be a compact interval containing Cp N A with
minimal diameter. Since C), — I is a connected subset of Q, Cp — I, C Wi
for some connected component Wy, of 2. After passing to a subsequence and
relabeling Q1 and 9 if necessary, we may assume that 27 # W}, and hence
QN W, =0 for all k.

Let x,y € C N Q. Since the sequence C} converges to C, x = limg_oo Tg
and y = limy_, o yi for some zp, yr € Ck. Since 2 is open, we may assume
that zg, yr € Cr, Ny for all k > 1. Hence zy, yr & Wi; so x, yx € .

Since # limsup(Cy N'A) < 1, the diameter of I} tends to 0 as k — oc.
Therefore the distance between z; and y; must go to 0 and hence z = y.
This proves the claim, finishing the proof. O

5. RIGIDITY VIA CIRCULAR SLICES

Let n,m > 2. Let I' < SO°(n+1,1) be a Zariski dense convex cocompact
subgroup. Let p: I' — SO°(m + 1,1) be a Zariski dense convex cocompact
deformation and f : A — S™ be its boundary map. Recall

C' C S™ is a circle such that
A= U {C na: f(CNA) is contained in a (m — 1)-sphere of Sm}

Theorem is a special case of the following:
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Theorem 5.1. Suppose that there exists a A-doubly stable circle. Then
cither Ap=A or H°(Af)=0.

In the former case, we have n =m, f extends to some g € M&b(S™) and
p s a conjugation by g.

Remark 5.2. By Lemma [£.2] when  has at least two components, there
exists a A-doubly stable circle. Hence Theorem [5.1] applies to this case.

Proof. Suppose that H°(Ay) > 0. We need to show that Ay = A. We
claim that I', cannot be Zariski dense in G. Suppose that I', is Zariski
dense. Let A’ C A be the H’|5-conull subset given by Theorem Since
HO(Ay) > 0, there exists & € Ay N A’. By the definition of A, we can find
Yy = (Co,So) € Ta so that Yy o (fo,f(go)) and f(C(] N A) C Sp. By the
definition of A’ as in Theorem we have

I')Yo=17,.
On the other hand, since there exists a A-doubly stable circle, Theorem (.1
implies that I',Yy # T,. This yields a contradiction, proving that I', is not
Zariski dense. Hence by Theorem p extends to a Lie group isomorphism
SO°(n+1,1) — SO°(m+1,1) and in particular n = m. Since the Lie group
automorphism of SO°(n + 1,1) is a conjugation by some g € M&b(S"), it
follows that p is a conjugation by g and by the uniqueness of the p-boundary
map, f is the restriction of g to A. Therefore Ay = A. O

Topological version without convex cocompactness. The assumption
that T" and p(I") are convex cocompact was used to apply the ergodicity as
in Theorem The approach of our paper proves the following theorem
without the convex cocompact hypothesis, which was shown in [14] for n =
m = 2:

Theorem 5.3. Let T' < SO°(n+ 1,1) be a Zariski dense discrete subgroup.
Suppose that there exists a A-doubly stable circle. Let p: T — SO°(m+1,1)
be a Zariski dense deformation with a p-boundary map f: A — S™. Then

either Ay =N or Ay has empty interior in A.

In the former case, we have n =m, f extends to some g € M&b(S™) and
p 1S a conjugation by g.

For this, we need to replace the ergodicity theorem (Theorem by the
following theorem of Chow-Sarkar for A =T,

Theorem 5.4 ([6l Theorem 8.1]). Let A < G be a Zariski dense discrete
subgroup. For any u € int L, there exists a dense A -orbit in

Qa = {[g] € A\G : gF € Ap}.

This theorem provides a dense subset A’ C A such that for any Y C
T, intersecting (id x f)(A’) non-trivially, T',)Y" is dense in T,, which is a
topological version of Theorem [3.3] With this replacement, the rest of the
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proof can be repeated in verbatim. Theorem is a direct consequence of
Theorem [5.3] and Lemma [£.2]

Added in proofs: We explain the following extension of Theorem [5.1

Theorem 5.5. Let I' < SO°(n + 1,1) be a Zariski dense discrete subgroup
of divergence type and p : T' — SO°(m + 1,1) is a Zariski dense quasi-
isometric deformation (i.e., one inducing a quasi-isometric embedding of
T'o C H*! into H™!) with boundary map f : A — S™. Let vr be the
unique d-dimensional I'-conformal measure on A where § denotes the critical
exponent of I'. Suppose that there exists a A-doubly stable circle. Then

either Ay =A or wvp(Af)=0.

In the former case, we have n = m, f extends to some g € M&b(S™) and
p s a conjugation by g.

As before, let '), := (id xp)(I') < G := SO°(n + 1,1) x SO°(m + 1,1).
Let mE‘MS be the Bowen-Margulis-Sullivan measure on I',\G associated to
v, = (id X f).vr. Its support is Q, := {[g] € T,\G : g* € A,}. Since T,
is a transverse subgroup of G and hence hyper-transverse in the sense of
[13], it follows from [I3| Theorem 1.14] that mpBMS—a.e. AT-orbits are dense
in Q,. Since the limit cone £, is contained in inta™ U {0}, there exists a
closed convex cone C C int a™ U {0} whose interior contains £, — {0}. Then
a.e. expC-orbits are dense in Q, (cf. [I8, Lemma 7.2]). Observing that
the conjugation action of expC on N has a uniform contraction property,
we can repeat the proof of Theorem [5.1] replacing the directional flow by
exp C-flow, and H° by vr.
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