RELATIVELY ANOSOV GROUPS: FINITENESS, MEASURE OF MAXIMAL ENTROPY, AND REPARAMETERIZATION

DONGRYUL M. KIM AND HEE OH

ABSTRACT. For a geometrically finite Kleinian group Γ , the Bowen-Margulis-Sullivan measure is finite and is the unique measure of maximal entropy for the geodesic flow, as shown by Sullivan and Otal-Peigné respectively. Moreover, it is strongly mixing by a result of Babillot. We obtain a higher-rank analogue of this theorem. Given a relatively Anosov subgroup Γ of a semisimple real algebraic group, there is a family of flow spaces parameterized by linear forms tangent to the growth indicator. We construct a reparameterization of each flow space by the geodesic flow on the Groves-Manning space of Γ which exhibits exponential expansion along unstable foliations. Using this reparameterization, we prove that the Bowen-Margulis-Sullivan measure of each flow space is finite and is the unique measure of maximal entropy. Moreover, it is strongly mixing.

Contents

1.	Introduction	1
2.	Preliminaries	6
3.	Vector bundle structure of the non-wandering set Ω_{Γ}	8
4.	Strong mixing for transverse groups with finite BMS measure	10
5.	Relatively Anosov groups	14
6.	Reparameterization for relatively Anosov groups	19
7.	Uniformity of fibers of reparameterization	31
8.	Exponential expansion on unstable foliations	41
9.	Finiteness of Bowen-Margulis-Sullivan measures	47
10.	Unique measure of maximal entropy	50
Ref	References	

1. Introduction

For a geometrically finite Kleinian group Γ of $SO^{\circ}(n,1) = Isom^{+}(\mathbb{H}^{n})$, $n \geq 2$, it is a classical result of Sullivan ([29], see also [13]) that the associated Bowen-Margulis-Sullivan measure m^{BMS} on the unit tangent bundle $T^{1}(\Gamma\backslash\mathbb{H}^{n})$ is finite, and the measure-theoretic entropy of the geodesic flow

Oh is partially supported by the NSF grant No. DMS-1900101.

with respect to $m^{\rm BMS}$ equals the topological entropy. Hence the Bowen-Margulis-Sullivan measure is the measure of maximal entropy. Moreover, Otal-Peigné [24] showed that this measure is the unique measure of maximal entropy. It is also strongly mixing by a theorem of Babillot [1].

In this paper, we obtain higher-rank analogues of these theorems. Let G be a connected semisimple real algebraic group. Anosov subgroups and relatively Anosov subgroups of G are regarded as higher-rank generalizations of convex cocompact and geometrically finite rank-one groups, respectively. There is an even broader class of discrete subgroups called transverse subgroups, which are viewed as generalizations of rank-one discrete subgroups. For a transverse subgroup Γ , we have a family of Bowen-Margulis-Sullivan measures $\mathbf{m}_{\psi}^{\mathrm{BMS}}$ parameterized by a distinguished collection of linear forms ψ . Each such measure $\mathbf{m}_{\psi}^{\mathrm{BMS}}$ lives on a fibered dynamical system over a canonical one-dimensional base flow space $(\Omega_{\psi}, m_{\psi}, \phi_t)$ where the fiber is the kernel of ψ and $\mathbf{m}_{\psi}^{\mathrm{BMS}}$ is equal to the product measure $m_{\psi} \otimes \mathrm{Leb}_{\ker \psi}$. We refer to m_{ψ} as the base Bowen-Margulis-Sullivan measure on Ω_{ψ} .

We prove that if Γ is a relatively Anosov subgroup, then the base BMS measure m_{ψ} is finite and is the unique measure of maximal entropy for the flow $\{\phi_t\}$. Moreover, we show that for any transverse subgroup for which m_{ψ} is finite, the dynamical system $(\Omega_{\psi}, m_{\psi}, \phi_t)$ is strongly mixing. In particular, both entropy-maximization and strong mixing holds for $(\Omega_{\psi}, m_{\psi}, \phi_t)$ associated with relatively Anosov subgroups.

To formulate these results precisely, we fix a Cartan decomposition $G = KA^+K$, where K is a maximal compact subgroup of G and $A^+ = \exp \mathfrak{a}^+$ is a positive Weyl chamber of a maximal split torus A of G. We denote by $\mu: G \to \mathfrak{a}^+$ the Cartan projection defined by the condition $g \in K \exp \mu(g)K$ for $g \in G$. Let Π be the set of all simple roots for (Lie G, \mathfrak{a}^+). Given a nonempty subset $\theta \subset \Pi$, there is the notion of relatively Anosov and transverse subgroup. Let $\mathcal{F}_{\theta} = G/P_{\theta}$ where P_{θ} is the standard parabolic subgroup associated with θ . Let $\Gamma < G$ be a discrete subgroup and let Λ_{θ} denote the limit set of Γ in \mathcal{F}_{θ} as defined in (2.1), which we assume contains at least 3 points, that is, Γ is non-elementary. In the rest of the introduction, we assume that Γ is a θ -transverse (or simply, transverse) subgroup. This means that Γ satisfies

- regularity: $\liminf_{\gamma \in \Gamma} \alpha(\mu(\gamma)) = \infty$ for all $\alpha \in \theta$;
- antipodality: any $\xi \neq \eta \in \Lambda_{\theta \cup i(\theta)}$ are in general position (see (2.3)).

Here $i = -Ad_{w_0} : \Pi \to \Pi$ denotes the opposition involution where w_0 is the longest Weyl element.

Fibered dynamical systems. Let $\mathfrak{a}_{\theta} = \bigcap_{\alpha \in \Pi - \theta} \ker \alpha$ and $A_{\theta} = \exp \mathfrak{a}_{\theta}$. The centralizer of A_{θ} is a Levi subgroup of P_{θ} which is a direct product $A_{\theta}S_{\theta}$ where S_{θ} is a compact central extension of a semisimple algebraic subgroup. The right translation action of A_{θ} on the quotient space G/S_{θ} is equivariantly conjugate to the \mathfrak{a}_{θ} -translation action on $\mathcal{F}_{\theta}^{(2)} \times \mathfrak{a}_{\theta}$ where $\mathcal{F}_{\theta}^{(2)}$

consists of all pairs $(\xi, \eta) \in \mathcal{F}_{\theta} \times \mathcal{F}_{i(\theta)}$ in general position. The left Γ -action on G/S_{θ} is not properly discontinuous in general. On the other hand, if we set $\Lambda_{\theta}^{(2)} = (\Lambda_{\theta} \times \Lambda_{i(\theta)}) \cap \mathcal{F}_{\theta}^{(2)}$, then it is shown in [18, Theorem 9.1] that Γ acts properly discontinuously on the following space:

$$\tilde{\Omega}_{\Gamma} := \Lambda_{\theta}^{(2)} \times \mathfrak{a}_{\theta} \simeq \{ gS_{\theta} \in G/S_{\theta} : gP_{\theta} \in \Lambda_{\theta}, gw_{0}P_{\mathbf{i}(\theta)} \in \Lambda_{\mathbf{i}(\theta)} \}.$$

Hence

$$\Omega_{\Gamma} := \Gamma \backslash \tilde{\Omega}_{\Gamma}.$$

is a second countable locally compact Hausdorff space on which \mathfrak{a}_{θ} acts by translations. Moreover, for each (Γ, θ) -proper¹ linear form $\psi \in \mathfrak{a}_{\theta}^*$, the space Ω_{Γ} fibers over a one-dimensional flow space $\Omega_{\psi} := \Gamma \setminus (\Lambda_{\theta}^{(2)} \times \mathbb{R})$.

 Ω_{Γ} fibers over a one-dimensional flow space $\Omega_{\psi} := \Gamma \setminus (\Lambda_{\theta}^{(2)} \times \mathbb{R})$. More precisely, via the projection $(\xi, \eta, v) \mapsto (\xi, \eta, \psi(v))$, the Γ -action on $\tilde{\Omega}_{\Gamma}$ descends to a proper discontinuous action on $\tilde{\Omega}_{\psi} := \Lambda_{\theta}^{(2)} \times \mathbb{R}$ [18, Theorem 9.2]. Therefore $\Omega_{\psi} := \Gamma \setminus \tilde{\Omega}_{\psi}$ is a second countable locally compact Hausdorff space over which Ω_{Γ} is a trivial ker ψ -bundle:

$$(\Omega_{\Gamma}, \mathfrak{a}_{\theta}) \simeq \Omega_{\psi} \times \ker \psi$$

$$\downarrow$$

$$(\Omega_{\psi}, \mathbb{R})$$

The translation flow $\phi_t(\xi, \eta, s) = (\xi, \eta, s + t)$ on $\tilde{\Omega}_{\psi} = \Lambda_{\theta}^{(2)} \times \mathbb{R}$ descends to a translation flow on Ω_{ψ} which we also denote by $\{\phi_t\}$ by abuse of notation. The (Γ, θ) -properness of $\psi \in \mathfrak{a}_{\theta}^*$ is crucial for the proper discontinuity of the Γ -action on $\tilde{\Omega}_{\psi}$. See Remark 3.2 for examples.

For a pair of a (Γ, ψ) -Patterson-Sullivan measure ν on Λ_{θ} and a $(\Gamma, \psi \circ i)$ -Patterson-Sullivan measure ν_i on $\Lambda_{i(\theta)}$, we denote by $\mathsf{m}_{\psi}^{\mathrm{BMS}} = \mathsf{m}_{\nu,\nu_i}^{\mathrm{BMS}}$ the associated A_{θ} -invariant Bowen-Margulis-Sullivan measure on Ω_{Γ} , locally equivalent to the product $\nu \otimes \nu_i \otimes \mathrm{Leb}_{\mathfrak{a}_{\theta}}$. Similarly, we denote by m_{ψ} the associated $\{\phi_t\}$ -invariant Bowen-Margulis-Sullivan measure on Ω_{ψ} , locally equivalent to the product $\nu \otimes \nu_i \otimes \mathrm{Leb}_{\mathbb{R}}$. Then $\mathsf{m}_{\psi}^{\mathrm{BMS}} = m_{\psi} \otimes \mathrm{Leb}_{\ker \psi}$. As we are not assuming the uniqueness of ν and ν_i for a given ψ , $\mathsf{m}_{\psi}^{\mathrm{BMS}}$ and m_{ψ} are not necessarily determined by ψ . Nevertheless, it is convenient to refer to them as BMS measures associated to ψ .

Relatively Anosov groups. A transverse subgroup $\Gamma < G$ is called relatively Anosov (more precisely relatively θ -Anosov) if Γ is a relatively hyperbolic group and there exists a Γ -equivariant homeomorphism between the Bowditch boundary of Γ and the limit set Λ_{θ} . When Γ is hyperbolic, its Bowditch boundary is the Gromov boundary of Γ , and in this case, the relatively Anosov subgroup Γ is simply an Anosov subgroup. When G has rank-one, relatively Anosov subgroups coincide with geometrically finite Kleinian groups. Recall that for a geometrically finite Kleinian group

 $^{^{1}\}psi$ is called (Γ, θ) -proper if $\psi \circ \mu : \Gamma \to [-\varepsilon, \infty)$ is a proper map for some $\varepsilon > 0$.

 Γ , there exists a unique Patterson-Sullivan measure of dimension equal to the critical exponent δ_{Γ} . In higher-rank, we consider the growth indicator ψ_{Γ}^{θ} of Γ , a generalization of the critical exponent (see (2.7) for the definition). A linear form ψ is said to be tangent to ψ_{Γ}^{θ} if $\psi \geq \psi_{\Gamma}^{\theta}$ and equality holds at some non-zero $u \in \mathfrak{a}_{\theta}$. For a relatively Anosov subgroup Γ and a (Γ, θ) -proper linear form $\psi \in \mathfrak{a}_{\theta}^{*}$ tangent to ψ_{Γ}^{θ} , there exists a unique (Γ, ψ) -Patterson-Sullivan measure on Λ_{θ} , and hence a unique BMS measure m_{ψ} associated with ψ (see [21], [28] for Anosov groups and [11] for relatively Anosov groups).

For Anosov subgroups, the associated base space Ω_{ψ} is known to be homeomorphic to the Gromov geodesic flow space and is compact ([12], [7], [28]). In fact, for a transverse subgroup, Γ is Anosov if and only if Ω_{ψ} is compact [18]. In particular, Ω_{ψ} is non-compact for relatively Anosov subgroups that are not Anosov. Analogous to the classical result on the finitness of the Bowen-Margulis-Sullivan measure for a geometrically finite Kleinian group, we prove the following:

Theorem 1.1 (Finiteness and mixing). Let Γ be a relatively Anosov subgroup of G. For any (Γ, θ) -proper linear form $\psi \in \mathfrak{a}_{\theta}^*$ tangent to the growth indicator of Γ , the BMS measure m_{ψ} is finite:

$$|m_{\psi}| < \infty$$
.

Moreover, the system $(\Omega_{\psi}, m_{\psi}, \phi_t)$ is strongly mixing.

In fact, we establish strong mixing in a broader setting of transverse subgroups, which can be regarded as a higher-rank analogue of Babillot's mixing theorem (see Theorem 4.1).

Given the finiteness of m_{ψ} , the metric entropy $h_{m_{\psi}}(\{\phi_t\})$ of the normalized measure $m_{\psi}/|m_{\psi}|$ is well-defined. For a (Γ, θ) -proper linear form $\psi \in \mathfrak{a}_{\theta}^*$, the associated ψ -critical exponent is given by

$$\delta_{\psi} = \limsup_{T \to \infty} \frac{\log \#\{\gamma \in \Gamma : \psi(\mu(\gamma)) < T\}}{T} \in (0, \infty)$$

and one has $\delta_{\psi} = 1$ if and only if ψ is tangent to ψ_{Γ}^{θ} ([11, Theorem 10.1], [18, Theorem 4.5]).

Theorem 1.2 (Unique measure of maximal entropy). Let Γ be a relatively Anosov subgroup of G. For any (Γ, θ) -proper linear form $\psi \in \mathfrak{a}_{\theta}^*$ tangent to the growth indicator of Γ ,

 m_{ψ} is the unique measure of maximal entropy for $(\Omega_{\psi}, \{\phi_t\})$ and the entropy $h_{m_{\psi}}(\{\phi_t\})$ is equal to $\delta_{\psi} = 1$.

For Anosov subgroups, this theorem is due to Sambarino ([27], [28]), as a consequence of thermodynamic formalism. Our proof, by constrast, does not use the thermodynamic formalism and thus provides an alternative argument even in the Anosov case.

Remark 1.3. The identity $\delta_{\psi} = 1$ follows from the normalization that ψ is tangent to ψ_{Γ}^{θ} . In rank-one, ϕ_{t} corresponds to the time-changed geodesic flow $g_{t/\delta_{\Gamma}}$ and $m_{\delta_{\Gamma}}$ is the unique measure of maximal entropy for g_{t} , satisfying $h_{m_{\delta_{\Gamma}}}(\{g_{t}\}) = \delta_{\Gamma}$. Hence $h_{m_{\delta_{\Gamma}}}(\{\phi_{t}\}) = h_{m_{\delta_{\Gamma}}}(\{g_{t}\})/\delta_{\Gamma} = 1$.

A key technical ingredient of Theorems 1.1 and 1.2 is the following coarse reparameterization theorem, which is also of independent interest. Let (X_{GM}, d_{GM}) denote the Groves-Manning cusp space of Γ and let \mathcal{G} denote the space of all parameterized bi-infinite geodesics in the Groves-Manning cusp space [15]. Define the geodesic flow $\varphi_s : \mathcal{G} \to \mathcal{G}$ by $(\varphi_s \sigma)(\cdot) = \sigma(\cdot + s)$.

Theorem 1.4 (Reparameterization). There exists a continuous, surjective, proper Γ -equivariant map

$$\tilde{\Psi}: \mathcal{G} \to \tilde{\Omega}_{\psi}$$

together with a continuous cocycle $\tilde{t}: \mathcal{G} \times \mathbb{R} \to \mathbb{R}$ such that for all $\sigma \in \mathcal{G}$ and $s \in \mathbb{R}$,

- (1) $\tilde{\Psi}(\varphi_s \sigma) = \phi_{\tilde{\mathsf{t}}(\sigma,s)} \tilde{\Psi}(\sigma);$
- (2) $\tilde{\mathsf{t}}(\sigma,s) = -\tilde{\mathsf{t}}(\varphi_s\sigma,-s);$
- (3) there exists an absolute constant B > 0 such that

$$a|s| - B \le \tilde{\mathsf{t}}(\sigma, |s|) \le a'|s| + B$$

where

$$0 < a := \liminf_{\gamma \in \Gamma} \frac{\psi(\mu(\gamma))}{d_{GM}(e,\gamma)} \quad and \quad a' := 3 \limsup_{\gamma \in \Gamma} \frac{\psi(\mu(\gamma))}{d_{GM}(e,\gamma)} < \infty;$$

(4) all fibers $\{\sigma(0) \in X_{GM} : \sigma \in \tilde{\Psi}^{-1}(x)\}, x \in \tilde{\Omega}_{\psi}, \text{ have uniformly bounded diameter.}$

Moreover, the flow ϕ_t is exponentially expanding along unstable foliations of $\tilde{\Omega}_{\psi} = \Lambda_{\theta}^{(2)} \times \mathbb{R}$, as described in Theorem 8.1.

The map $\Psi: \Gamma \backslash \mathcal{G} \to \Omega_{\psi}$, induced from $\tilde{\Psi}$, provides a thick-thin decomposition of Ω_{ψ} that plays a crucial role in the proof of the finiteness of m_{ψ} (Theorem 1.1). This decomposition is used in conjunction with the work of Canary-Zhang-Zimmer [11], which analyzes the critical exponents of peripheral subgroups of Γ . The exponentially expanding property of ϕ_t is essential in constructing a measurable partition of $\tilde{\Omega}_{\psi}$ subordinated to unstable foliations (Proposition 10.2), a key step in the proof of Theorem 1.2 concerning the uniqueness of the measure of maximal entropy.

Remark 1.5. Recently, Blayac-Canary-Zhu-Zimmer [4] showed that for θ -transverse Γ and $\psi \in \mathfrak{a}_{\theta}^*$, if there exists a (Γ, θ) -Patterson-Sullivan measure on Λ_{θ} , then ψ must be (Γ, θ) -proper. This result implies that the (Γ, θ) -properness condition is not a genuinely restrictive assumption when studying dynamics associated to Bowen-Margulis-Sullivan measures.

Acknowledgements. We were informed that the ongoing work of Blayac, Canary, Zhu and Zimmer [4] contains a different proof of Theorem 1.1.

2. Preliminaries

We review some basic facts about Lie groups, following [18, Section. 2] which we refer for more details. Throughout the paper, let G be a connected semisimple real algebraic group. Let P < G be a minimal parabolic subgroup with a fixed Langlands decomposition P = MAN where A is a maximal real split torus of G, M is the maximal compact subgroup of P commuting with A and N is the unipotent radical of P. Let \mathfrak{g} and \mathfrak{a} respectively denote the Lie algebras of G and A. Fix a positive Weyl chamber $\mathfrak{a}^+ < \mathfrak{a}$ so that $\log N$ consists of positive root subspaces and set $A^+ = \exp \mathfrak{a}^+$. We fix a maximal compact subgroup K < G such that the Cartan decomposition $G = KA^+K$ holds. We denote by $\mu : G \to \mathfrak{a}^+$ the Cartan projection defined by the condition $g \in K \exp \mu(g)K$ for $g \in G$. Let K = G/K be the associated Riemannian symmetric space and $o = [K] \in X$. Fix a K-invariant norm $\|\cdot\|$ on \mathfrak{g} . This induces the left G-invariant Riemannian metric d on K.

Let $\Phi = \Phi(\mathfrak{g}, \mathfrak{a})$ denote the set of all roots, $\Phi^+ \subset \Phi$ the set of all positive roots, and $\Pi \subset \Phi^+$ the set of all simple roots. Fix a Weyl element $w_0 \in K$ of order 2 in the normalizer of A representing the longest Weyl element so that $\mathrm{Ad}_{w_0} \mathfrak{a}^+ = -\mathfrak{a}^+$. The map

$$i = -Ad_{w_0} : \mathfrak{a} \to \mathfrak{a}$$

is called the opposition involution. It induces an involution $\Phi \to \Phi$ preserving Π , for which we use the same notation i, such that $i(\alpha) \circ Ad_{w_0} = -\alpha$ for all $\alpha \in \Phi$.

Henceforth, we fix a non-empty subset $\theta \subset \Pi$. Let P_{θ} denote a standard parabolic subgroup of G corresponding to θ ; that is, P_{θ} is generated by MA and all root subgroups U_{α} , where α ranges over all positive roots which are not \mathbb{Z} -linear combinations of $\Pi - \theta$. Hence $P_{\Pi} = P$. Let

$$\mathfrak{a}_{\theta} = \bigcap_{\alpha \in \Pi - \theta} \ker \alpha, \qquad \mathfrak{a}_{\theta}^+ = \mathfrak{a}_{\theta} \cap \mathfrak{a}^+,$$

$$A_{\theta} = \exp \mathfrak{a}_{\theta}, \quad \text{and} \quad A_{\theta}^{+} = \exp \mathfrak{a}_{\theta}^{+}.$$

Let $p_{\theta}: \mathfrak{a} \to \mathfrak{a}_{\theta}$ denote the projection invariant under all Weyl elements fixing \mathfrak{a}_{θ} pointwise. We write $\mu_{\theta}:=p_{\theta}\circ\mu:G\to\mathfrak{a}_{\theta}^+$. The space $\mathfrak{a}_{\theta}^*=\operatorname{Hom}(\mathfrak{a}_{\theta},\mathbb{R})$ can be identified with the subspace of \mathfrak{a}^* which is p_{θ} -invariant: $\mathfrak{a}_{\theta}^*=\{\psi\in\mathfrak{a}^*:\psi\circ p_{\theta}=\psi\}$. We have the Levi-decomposition $P_{\theta}=L_{\theta}N_{\theta}$ where L_{θ} is the centralizer of A_{θ} and $N_{\theta}=R_{u}(P_{\theta})$ is the unipotent radical of P_{θ} . We set $M_{\theta}=K\cap P_{\theta}\subset L_{\theta}$.

Limit set Λ_{θ} . We set

$$\mathcal{F}_{\theta} = G/P_{\theta}$$
.

The subgroup K acts transitively on \mathcal{F}_{θ} , and hence $\mathcal{F}_{\theta} \simeq K/M_{\theta}$.

Definition 2.1. For a sequence $g_i \in G$ and $\xi \in \mathcal{F}_{\theta}$, we write $\lim_{i \to \infty} g_i = \xi$ and say g_i converges to ξ if

- for each $\alpha \in \theta$, $\alpha(\mu(g_i)) \to \infty$ as $g_i \to \infty$;
- $\lim_{i\to\infty} \kappa_i \xi_{\theta} = \xi$ in \mathcal{F}_{θ} for some $\kappa_i \in K$ such that $g_i \in \kappa_i A^+ K$.

The θ -limit set of a discrete subgroup Γ can be defined as follows:

(2.1)
$$\Lambda_{\theta} = \Lambda_{\theta}(\Gamma) := \{ \lim \gamma_i \in \mathcal{F}_{\theta} : \gamma_i \in \Gamma \}$$

where $\lim \gamma_i$ is defined as in Definition 2.1. If Γ is Zariski dense, this is the unique Γ -minimal subset of \mathcal{F}_{θ} ([2], [26]).

Jordan projections. Any $g \in G$ can be written as the commuting product $g = g_h g_e g_u$ where g_h is hyperbolic, g_e is elliptic and g_u is unipotent. The hyperbolic component g_h is conjugate to a unique element $\exp \lambda(g) \in A^+$ and $\lambda(g)$ is called the *Jordan projection* of g. We write $\lambda_{\theta} := p_{\theta} \circ \lambda$.

Theorem 2.2. [3] For any Zariski dense subgroup $\Gamma < G$, the subgroup generated by $\{\lambda(\gamma) \in \mathfrak{a}^+ : \gamma \in \Gamma\}$ is dense in \mathfrak{a} .

Busemann map and Gromov product. The \mathfrak{a} -valued Busemann map $\beta: \mathcal{F}_{\Pi} \times G \times G \to \mathfrak{a}$ is defined as follows: for $\xi \in \mathcal{F}$ and $g, h \in G$,

$$\beta_{\xi}(g,h) := \sigma(g^{-1},\xi) - \sigma(h^{-1},\xi)$$

where $\sigma(g^{-1}, \xi) \in \mathfrak{a}$ is the unique element such that $g^{-1}k \in K \exp(\sigma(g^{-1}, \xi))N$ for any $k \in K$ with $\xi = kP$. For $(\xi, g, h) \in \mathcal{F}_{\theta} \times G \times G$, we define

(2.2)
$$\beta_{\xi}^{\theta}(g,h) := p_{\theta}(\beta_{\xi_0}(g,h))$$

for any $\xi_0 \in \mathcal{F}_{\Pi}$ projecting to ξ . This is well-defined independent of the choice of ξ_0 [26, Lemma 6.1]. Moreover, since product map $K \times A \times N \to G$ is a diffeomorphism, Busemann maps are continuous.

Two points $\xi \in \mathcal{F}_{\theta}$ and $\eta \in \mathcal{F}_{i(\theta)}$ are said to be in general position if

(2.3)
$$\xi = gP_{\theta} \text{ and } \eta = gw_0P_{\mathbf{i}(\theta)} \text{ for some } g \in G.$$

We set

(2.4)
$$\mathcal{F}_{\theta}^{(2)} = \{(\xi, \eta) \in \mathcal{F}_{\theta} \times \mathcal{F}_{i(\theta)} : \xi, \eta \text{ are in general position}\}$$

which is the unique open G-orbit in $\mathcal{F}_{\theta} \times \mathcal{F}_{i(\theta)}$ under the diagonal G-action.

For $(\xi, \eta) \in \mathcal{F}_{\theta}^{(2)}$, we define the \mathfrak{a}_{θ} -valued Gromov product as

(2.5)
$$\langle \xi, \eta \rangle = \beta_{\xi}^{\theta}(e, g) + i(\beta_{\eta}^{i(\theta)}(e, g))$$

where $g \in G$ satisfies $(gP_{\theta}, gw_0P_{i(\theta)}) = (\xi, \eta)$. This does not depend on the choice of g [18, Lemma 9.13].

Patterson-Sullivan measures. For $\psi \in \mathfrak{a}_{\theta}^*$, a (Γ, ψ) -conformal measure is a Borel probability measure on \mathcal{F}_{θ} such that

(2.6)
$$\frac{d\gamma_*\nu}{d\nu}(\xi) = e^{\psi(\beta_{\xi}^{\theta}(e,\gamma))} \quad \text{for all } \gamma \in \Gamma \text{ and } \xi \in \mathcal{F}_{\theta}$$

where $\gamma_*\nu(D) = \nu(\gamma^{-1}D)$ for any Borel subset $D \subset \mathcal{F}_{\theta}$ and β_{ξ}^{θ} denotes the \mathfrak{a}_{θ} -valued Busemann map defined in (2.2). A (Γ, ψ) -conformal measure supported on Λ_{θ} is called a (Γ, ψ) -Patterson Sullivan measure.

Growth indicator. Let $\Gamma < G$ be a θ -discrete subgroup, that is, $\mu_{\theta}|_{\Gamma}$ is a proper map. The θ -growth indicator $\psi_{\Gamma}^{\theta} : \mathfrak{a}_{\theta} \to [-\infty, \infty)$ is a higher-rank version of the critical exponent, which is defined as follows: If $u \in \mathfrak{a}_{\theta}$ is non-zero,

(2.7)
$$\psi_{\Gamma}^{\theta}(u) = \|u\| \inf_{u \in \mathcal{C}} \tau_{\mathcal{C}}^{\theta}$$

where $\tau_{\mathcal{C}}^{\theta}$ is the abscissa of convergence of the series $\sum_{\gamma \in \Gamma, \mu_{\theta}(\gamma) \in \mathcal{C}} e^{-s\|\mu_{\theta}(\gamma)\|}$ and $\mathcal{C} \subset \mathfrak{a}_{\theta}$ ranges over all open cones containing u. Set $\psi_{\Gamma}^{\theta}(0) = 0$. This definition was given in [18], extending Quint's growth indicator [25] to a general θ .

For Γ transverse and ψ (Γ , θ)-proper, it is proved in [18] that if there exists a (Γ , ψ)-conformal measure on \mathcal{F}_{θ} , then

$$\psi \geq \psi_{\Gamma}^{\theta}$$
.

We say that $\psi \in \mathfrak{a}_{\theta}^{*}$ is tangent to ψ_{Γ}^{θ} if $\psi \geq \psi_{\Gamma}^{\theta}$ and $\psi(u) = \psi_{\Gamma}^{\theta}(u)$ for some $u \in \mathfrak{a}_{\theta} - \{0\}$. In the rank-one case, if δ_{Γ} is the critical exponent of the Poincaré series $\sum_{\gamma \in \Gamma} e^{-sd(o,\gamma o)}$ and $v \in \mathfrak{a}^{+}$ is the unique vector with $d(o, \exp vo) = 1$, then ψ_{Γ}^{Π} on $\mathfrak{a}^{+} = \mathbb{R}_{+}v$ is given by $\psi_{\Gamma}^{\Pi}(tv) = \delta_{\Gamma}t$. As ψ_{Γ}^{Π} itself is the restriction of a linear form to \mathfrak{a}^{+} , it is the unique linear form tangent to itself. In higher-rank, ψ_{Γ}^{θ} is typically non-linear but concave and there are abundant tangent linear forms in general. As in the rank-one setting, interesting geometry and dynamics occur for tangent linear forms.

3. Vector bundle structure of the non-wandering set Ω_{Γ}

We fix a non-empty subset θ of Π . In this section, we assume that $\Gamma < G$ is a non-elementary θ -transverse subgroup, that is, Γ satisfies

- (non-elementary): $\#\Lambda_{\theta} \geq 3$;
- (regularity): $\liminf_{\gamma \in \Gamma} \alpha(\mu(\gamma)) = \infty$ for all $\alpha \in \theta$; and
- (antipodality): any two distinct $\xi, \eta \in \Lambda_{\theta \cup i(\theta)}$ are in general position as in (2.3).

We will define a locally compact Hausdorff space Ω_{Γ} which is the non-wandering set for the action of A_{θ} . Recall that the centralizer of A_{θ} is the direct product $A_{\theta}S_{\theta}$ where S_{θ} is a compact central extension of a connected semisimple real algebraic subgroup. Note that S_{θ} is compact if and only if $\theta = \Pi$

The homogeneous space G/S_{θ} can be identified with the space $\mathcal{F}_{\theta}^{(2)} \times \mathfrak{a}_{\theta}$ via the map

$$gS_{\theta} \mapsto (gP_{\theta}, gw_0P_{i(\theta)}, \beta^{\theta}_{gP_{\theta}}(e, g)),$$

recalling that $w_0 \in K$ is the longest Weyl element, and the left G-action on $\mathcal{F}_{\theta}^{(2)} \times \mathfrak{a}_{\theta}$ given by

$$g(\xi, \eta, v) = (g\xi, g\eta, v + \beta_{\xi}^{\theta}(g^{-1}, e))$$

makes the above identification G-equivariant. Since S_{θ} commutes with A_{θ} , the diagonal subgroup A_{θ} acts on G/S_{θ} on the right, and this action is conjugate to the action of \mathfrak{a}_{θ} on $\mathcal{F}_{\theta}^{(2)} \times \mathfrak{a}_{\theta}$ by the translation on the last component. Since S_{θ} is not compact in general, the action of Γ on $\mathcal{F}_{\theta}^{(2)} \times \mathfrak{a}_{\theta}$ is not properly discontinuous. However for Γ transverse, the Γ -action restricted to the subspace $\tilde{\Omega}_{\Gamma} := \Lambda_{\theta}^{(2)} \times \mathfrak{a}_{\theta}$ turns out to be properly discontinuous where $\Lambda_{\theta}^{(2)} = \mathcal{F}_{\theta}^{(2)} \cap (\Lambda_{\theta} \times \Lambda_{\mathrm{i}(\theta)})$ [18, Theorem 9.1]. Hence we obtain the locally compact second countable Hausdorff space

$$\Omega_{\Gamma} := \Gamma \backslash \tilde{\Omega}_{\Gamma}$$

which is the non-wandering set for the right A_{θ} -action.

For each (Γ, θ) -proper form $\psi \in \mathfrak{a}_{\theta}^*$, Ω_{Γ} admits a ker ψ -bundle structure over a non-wandering set Ω_{ψ} for a one-dimensional flow. More precisely,

Theorem 3.1. [18, Theorem 9.2] The Γ -action on the space $\tilde{\Omega}_{\psi} := \Lambda_{\theta}^{(2)} \times \mathbb{R}$ given by

$$\gamma(\xi, \eta, s) = (\gamma \xi, \gamma \eta, s + \psi(\beta_{\xi}^{\theta}(\gamma^{-1}, e)))$$

is properly discontinuous. Thus the space

(3.1)
$$\Omega_{\psi} := \Gamma \backslash \tilde{\Omega}_{\psi} = \Gamma \backslash (\Lambda_{\theta}^{(2)} \times \mathbb{R})$$

is a locally compact second countable Hausdorff space equipped with the translation flow $\{\phi_t\}$ on the \mathbb{R} -component.

Remark 3.2. Any linear form which is positive on $\mathfrak{a}^+ \cap \mathfrak{a}_{\theta} - \{0\}$, e.g., any non-negative linear combination of the fundamental weights ω_{α} , $\alpha \in \theta$, is (Γ, θ) -proper. On the other hand, a linear form which takes negative values on some part of the θ -limit cone is never (Γ, θ) -proper (see [18]).

Explicitly, the translation flow $\{\phi_t\}$ is defined as follows: for $t \in \mathbb{R}$ and $(\xi, \eta, s) \in \tilde{\Omega}_{\psi}$,

$$\phi_t(\xi, \eta, s) = (\xi, \eta, s + t).$$

This flow $\{\phi_t\}$ on $\tilde{\Omega}_{\psi}$ commutes with the Γ -action, and hence induces the one-dimensional flow on Ω_{ψ} which we also denote by ϕ_t by abusing notations.

Consider the projection $\Omega_{\Gamma} \to \Omega_{\psi}$ induced by the Γ -equivariant projection $\tilde{\Omega}_{\Gamma} \to \tilde{\Omega}_{\psi}$ given by $(\xi, \eta, v) \mapsto (\xi, \eta, \psi(v))$. This is a principal ker ψ -bundle, which is trivial since ker ψ is a vector space. It follows that there exists a ker ψ -equivariant homeomorphism between Ω_{Γ} and $\Omega_{\psi} \times \ker \psi$.

$$\Omega_{\Gamma} \simeq \Omega_{\psi} \times \ker \psi$$

$$\downarrow$$

$$\Omega_{\psi}$$

Let ν and ν_i be a pair of (Γ, ψ) and $(\Gamma, \psi \circ i)$ -Patterson-Sullivan measures on Λ_{θ} and $\Lambda_{i(\theta)}$ respectively. The Bowen-Margulis-Sullivan measure $\mathsf{m}_{\psi}^{\mathrm{BMS}}$ on Ω_{Γ} associated with the pair (ν, ν_i) is the A_{θ} -invariant measure induced by the Γ -invariant measure $d\tilde{\mathfrak{m}}_{\psi}^{\mathrm{BMS}}(\xi,\eta,v) := e^{\psi(\langle \xi,\eta\rangle)} d\nu(\xi) d\nu_{\mathrm{i}}(\eta) d\operatorname{Leb}_{\mathfrak{a}_{\theta}}(v)$ on $\tilde{\Omega}_{\Gamma}$, where $\langle \cdot, \cdot \rangle$ denotes the Gromov product (2.5) and $d\operatorname{Leb}_{\mathfrak{a}_{\theta}}$ denotes the Lebesgue measure on \mathfrak{a}_{θ} .

We also have a $\{\phi_t\}$ -invariant Radon measure m_{ψ} on Ω_{ψ} induced by the Γ -invariant measure

(3.2)
$$d\tilde{m}_{\psi}(\xi, \eta, s) := e^{\psi(\langle \xi, \eta \rangle)} d\nu(\xi) d\nu_{i}(\eta) ds$$

on $\tilde{\Omega}_{\psi}$ where ds denotes the Lebesgue measure on \mathbb{R} . The measure m_{ψ} is also referred to as Bowen-Margulis-Sullivan measure on Ω_{ψ} associated with the pair $(\nu, \nu_{\rm i})$. By the ker ψ -equivariant homeomorphism $\Omega_{\Gamma} \simeq \Omega_{\psi} \times \ker \psi$, $\mathsf{m}_{\psi}^{\rm BMS}$ disintegrates over the measure m_{ψ} with conditional measure being the Lebesgue measure Leb_{ker $\psi}$} so that

$$\mathsf{m}_{\psi}^{\mathrm{BMS}} = m_{\psi} \otimes \operatorname{Leb}_{\ker \psi}$$
.

4. Strong mixing for transverse groups with finite BMS measure

Let $\Gamma < G$ be a non-elementary θ -transverse subgroup. Fix a (Γ, θ) -proper form $\psi \in \mathfrak{a}_{\theta}^*$ and a pair (ν, ν_i) of (Γ, ψ) and $(\Gamma, \psi \circ i)$ -Patterson-Sullivan measures on Λ_{θ} and $\Lambda_{i(\theta)}$ respectively. Let Ω_{ψ} be as in Theorem 3.1 and $m_{\psi} = m_{\psi}(\nu, \nu_i)$ denote a BMS measure on Ω_{ψ} associated to a pair (ν, ν_i) .

This section is devoted to the proof of the following:

Theorem 4.1. If $|m_{\psi}| < \infty$, then $(\Omega_{\psi}, m_{\psi}, \phi_t)$ is strongly mixing. That is, for any $f_1, f_2 \in L^2(\Omega_{\psi}, m_{\psi})$,

$$\lim_{|t| \to \infty} \int f_1(\phi_t(x)) f_2(x) \ dm_{\psi}(x) = \frac{1}{|m_{\psi}|} \int f_1 \ dm_{\psi} \int f_2 \ dm_{\psi}.$$

We begin by observing the ergodicity of m_{ψ} :

Theorem 4.2. If $|m_{\psi}| < \infty$, then $(\Omega_{\psi}, m_{\psi}, \phi_t)$ is ergodic.

Proof. By the Poincaré recurrence theorem, the dynamical system $(\Omega_{\psi}, m_{\psi}, \phi_t)$ is conservative. Hence it follows from the higher-rank Hopf-Tsuji-Sullivan dichotomy [18, Theorem 10.2] that $(\Omega_{\psi}, m_{\psi}, \phi_t)$ is ergodic.

Although the flow space Ω_{ψ} was not considered, Theorem 4.2 can also be deduced from [10] once Ω_{ψ} is shown to make sense. See also [22] and [28] for Anosov cases.

 θ -transitivity subgroups. For $g \in G$, we set $g^+ := gP_{\theta} \in \mathcal{F}_{\theta}$ and $g^- := gw_0P_{\mathbf{i}(\theta)} \in \mathcal{F}_{\mathbf{i}(\theta)}$. Set $N_{\theta}^+ = w_0N_{\mathbf{i}(\theta)}w_0^{-1}$. We use the following notion of θ -transitivity subgroup:

Definition 4.3. For $g \in G$ with $(g^+, g^-) \in \Lambda_{\theta}^{(2)}$, we define the subset $\mathcal{H}_{\Gamma}^{\theta}(g)$ of A_{θ} as follows: for $a \in A_{\theta}$, $a \in \mathcal{H}_{\Gamma}^{\theta}(g)$ if and only if there exist $\gamma \in \Gamma$, $s \in S_{\theta}$ and a sequence $n_1, \dots, n_k \in N_{\theta} \cup N_{\theta}^+$, such that

(1)
$$((gn_1 \cdots n_r)^+, (gn_1 \cdots n_r)^-) \in \Lambda_{\theta}^{(2)}$$
 for all $1 \le r \le k$; and

(2)
$$gn_1 \cdots n_k = \gamma gas$$
.

It is not hard to see that $\mathcal{H}^{\theta}_{\Gamma}(g)$ is a subgroup (cf. [31, Lemma 3.1]). We call $\mathcal{H}^{\theta}_{\Gamma}$ the θ -transitivity subgroup for Γ .

In the following, we prove that the θ -transitivity subgroup $\mathcal{H}^{\theta}_{\Gamma}$ contains $\exp \lambda_{\theta}(\Gamma_0)$ for some Schottky subgroup $\Gamma_0 < \Gamma$.

Proposition 4.4. For any $g \in G$ such that $(g^+, g^-) \in \Lambda_{\theta}^{(2)}$, the subgroup $\psi(\log \mathcal{H}_{\Gamma}^{\theta}(g))$ is dense in \mathbb{R} .

Proof. It was shown in [19, Proposition 8.3] that if Γ is a Zariski dense θ -transverse subgroup and if $g \in G$ is such that $(g^+, g^-) \in \Lambda_{\theta}^{(2)}$, then the subgroup $\mathcal{H}_{\Gamma}^{\theta}(g)$ is dense in A_{θ} , by proving that for a Schottky subgroup $\Gamma_0 < \Gamma$, the set of Jordan projections $\lambda_{\theta}(\Gamma_0)$ is contained in $\log \mathcal{H}_{\Gamma}^{\theta}(g)$. The Zariski dense hypothesis was used to guarantee that Γ_0 can be taken to be Zariski dense, and hence $\lambda_{\theta}(\Gamma_0)$ generates a dense subgroup in \mathfrak{a}_{θ} ([3], Theorem 2.2).

In general, let H be the Zariski closure of Γ and consider the Levi decomposition of $H\colon H=LU$ where L is a reductive algebraic subgroup and U the unipotent radical of H. Moreover, we have a Cartan decomposition $G=KA^+K$ so that $L=(K\cap L)(A^+\cap L)(K\cap L)$ by [23]. If $\pi:H\to L$ denotes the projection, then $\pi(\Gamma)$ is Zariski dense in L and hence its Jordan projection generates a dense subgroup of $\mathfrak{a}\cap \mathrm{Lie}\,L$. This allows the same proof of [19, Proposition 8.3] to work within L, and hence the claim follows.

Contractions by flow on Ω_{ψ} . For $g \in G$, we write

$$[g] := (g^+, g^-, \psi(\beta_{q^+}^{\theta}(e, g))) \in \mathcal{F}_{\theta}^{(2)} \times \mathbb{R}.$$

We mainly consider the case when $[g] \in \tilde{\Omega}_{\psi} = \Lambda_{\theta}^{(2)} \times \mathbb{R}$, that is, when $(g^+, g^-) \in \Lambda_{\theta}^{(2)}$. For $[g] \in \tilde{\Omega}_{\psi}$, we denote by $\Gamma[g] \in \Omega_{\psi}$ the element of Ω_{ψ} obtained as the projection of [g] by $\tilde{\Omega}_{\psi} \to \Omega_{\psi}$.

We set for $g \in G$ such that $[g] \in \tilde{\Omega}_{\psi}$,

(4.1)
$$\tilde{W}^{+}([g]) := \{ [gn] \in \tilde{\Omega}_{\psi} : n \in N_{\theta}^{+} \}; \\ \tilde{W}^{-}([g]) := \{ [gn] \in \tilde{\Omega}_{\psi} : n \in N_{\theta} \}.$$

The elements of $\tilde{W}^{\pm}([g])$ can be described as follows:

Lemma 4.5. [19, Lemma 8.4] Let $g \in G$, $n \in N_{\theta}^+$, and $n' \in N_{\theta}$. Then

$$[gn] = \left((gn)^+, g^-, \psi \left(\beta_{g^+}^{\theta}(e, g) + \langle (gn)^+, g^- \rangle - \langle (g^+, g^-) \rangle \right) \right);$$

$$[gn'] = \left(g^+, (gn')^-, \psi \left(\beta_{g^+}^{\theta}(e, g) \right) \right).$$

These are leaves of foliations $\tilde{W}^{\pm} := \{\tilde{W}^{+}([g]) : [g] \in \tilde{\Omega}_{\psi}\}$. For $z \in \Omega_{\psi}$, we set

(4.2)
$$W^+(z) := \Gamma \backslash \tilde{W}^+([g]), \text{ and } W^-(z) := \Gamma \backslash \tilde{W}^-([g])$$

where $g \in G$ is such that $\Gamma[g] = z$. The following proposition says that we may consider $W^+ := \{W^+(z) : z \in \Omega_\psi\}$ and $W^- := \{W^-(z) : z \in \Omega_\psi\}$ as unstable and stable foliations for the flow ϕ_t in Ω_ψ : note that since Ω_ψ is a locally compact second countable Hausdorff space by Theorem 3.1, so is its one-point compactification Ω_ψ^* . Hence Ω_ψ^* is metrizable. Therefore, we can choose a metric d on Ω_ψ which is a restriction of a metric on Ω_ψ^* . That we can use this kind of metric d to prove the following proposition was first observed in [4].

Proposition 4.6. [19, Proposition 8.6] Let $z \in \Omega_{\psi}$. We have

(1) if $x, y \in W^+(z)$, then

$$d(\phi_{-t}(x), \phi_{-t}(y)) \to 0 \quad as \ t \to +\infty.$$

(2) if $x, y \in W^-(z)$, then

$$d(\phi_t(x), \phi_t(y)) \to 0$$
 as $t \to +\infty$.

Moreover, the convergence is uniform on compact subsets.

Proof of Theorem 4.1. We are now ready to prove the strong mixing. We recall the following lemma proved by Babillot:

Lemma 4.7. [1, Lemma 1] Let $(\mathcal{X}, m, \{T_t\}_{t \in \mathbb{R}})$ be a probability measurepreserving system. Let $f \in L^2(\mathcal{X}, m)$ be such that $\int f dm = 0$. Suppose that $f \circ T_{t_i} \not\to 0$ weakly² for some $t_i \to \infty$. Then there exists a non-constant function F such that by passing to a subsequence,

$$f \circ T_{t_i} \to F$$
 and $f \circ T_{-t_i} \to F$ weakly as $i \to \infty$.

The following is an easy observation in measure theory:

Lemma 4.8. Let (\mathcal{X}, m) be a probability measure space. If $f_i \to F$ weakly in $L^2(\mathcal{X}, m)$, then there exists a subsequence f_{i_j} such that the Cesaro average converges:

$$\frac{1}{\ell^2} \sum_{j=1}^{\ell^2} f_{i_j} \to F \quad m\text{-a.e.}$$

Now going back to our setting, let $f_1, f_2 \in L^2(\Omega_{\psi}, m_{\psi})$. We may assume that m_{ψ} is a probability measure. By replacing f_1 with $f_1 - \int f_1 dm_{\psi}$, it suffices to show that for any $f \in L^2(\Omega_{\psi}, m_{\psi})$ with $\int f dm_{\psi} = 0$, we have $f \circ \phi_t \to 0$ weakly as $|t| \to \infty$. Since $C_c(\Omega_{\psi})$ is dense in $L^2(\Omega_{\psi}, m_{\psi})$, we may assume without loss of generality that f is a continuous function with compact support on Ω_{ψ} . Suppose that $f \circ \phi_t \not\to 0$ weakly as $t \to \infty$. By

 $^{{}^2}f_n \to 0$ weakly if and only if $\int f_n g \, dm \to 0$ for all $g \in L^2(\mathcal{X}, m)$

Lemma 4.7 and Lemma 4.8, there exists a non-constant function $F: \Omega_{\psi} \to \mathbb{R}$ and a subsequence $t_i \to \infty$ such that

$$(4.3) \quad \frac{1}{\ell^2} \sum_{i=1}^{\ell^2} f \circ \phi_{t_i} \to F \quad \text{and} \quad \frac{1}{\ell^2} \sum_{i=1}^{\ell^2} f \circ \phi_{-t_i} \to F \quad m_{\psi}\text{-a.e. as } \ell \to \infty.$$

We claim that F is invariant under the flow ϕ_t ; this yields a contradiction to the ergodicity of $(\Omega_{\psi}, m_{\psi}, \phi_t)$ obtained in Theorem 4.2.

Let $W_0 = \{x \in \Omega_{\psi} : (4.3) \text{ holds}\}$, which is m_{ψ} -conull. Since f is uniformly continuous, it follows from Proposition 4.6 that if $g \in G$ and $n \in N_{\theta} \cup N_{\theta}^+$ are such that $[g], [gn] \in \tilde{\Omega}_{\psi}$ and $\Gamma[g], \Gamma[gn] \in W_0$, then

$$F(\Gamma[g]) = F(\Gamma[gn]).$$

Denote by \tilde{W}_0 and \tilde{F} the Γ -invariant lifts of W_0 and F to $\tilde{\Omega}_{\psi}$ respectively. We set

$$W_1 := \{(\xi, \eta) : (\xi, \eta, t) \in \tilde{W}_0 \text{ for Leb-a.e. } t\}.$$

We also set

$$W = \{(\xi, \eta) \in W_1 : (\xi, \eta'), (\xi', \eta) \in W_1 \text{ for } \nu\text{-a.e. } \xi' \text{ and } \nu_i\text{-a.e. } \eta'\}.$$

Recall that we also denote by $\{\phi_t\}$ the translation flow on $\tilde{\Omega}_{\psi}$. For any $\varepsilon > 0$ and $x \in \tilde{\Omega}_{\psi}$, let

$$F_{\varepsilon}(x) := \frac{1}{\varepsilon} \int_{-\varepsilon}^{\varepsilon} \tilde{F}(\phi_s(x)) ds.$$

Then F_{ε} is continuous on each $\{\phi_t\}$ -orbit and as $\varepsilon \to 0$, we have the convergence $F_{\varepsilon} \to \tilde{F}$ m_{ψ} -a.e. Hence it suffices to show that F_{ε} is invariant under the flow ϕ_t .

By the definition of W and the observation on W_0 made above, we have that if $g \in G$ and $n \in N_{\theta} \cup N_{\theta}^+$ are such that $[g], [gn] \in W \times \mathbb{R} \subset \tilde{\Omega}_{\psi}$, then $F_{\varepsilon}([g]) = F_{\varepsilon}([gn])$. Fix $g \in G$ such that $[g] \in W \times \mathbb{R}$ and let $t_0 \in \psi(\log \mathcal{H}_{\Gamma}^{\theta}(g))$ and $a \in \mathcal{H}_{\Gamma}^{\theta}(g)$ such that $\psi(\log a) = t_0$. We then have $\phi_{t_0}([g]) = [ga]$. By the definition of the θ -transitivity subgroup, there exist $\gamma \in \Gamma$, $s \in S_{\theta}$, and a sequence $n_1, \dots, n_k \in N_{\theta} \cup N_{\theta}^+$, such that

- (1) $((gn_1 \cdots n_r)^+, (gn_1 \cdots n_r)^-) \in \Lambda_{\theta}^{(2)}$ for all $1 \le r \le k$;
- (2) $gn_1 \cdots n_k = \gamma gas$.

As in the proof of [19, Proposition 8.8], there exist a sequence $a_j \in A_\theta$ and a sequence of k-tuples $(n_{1,j}, \dots, n_{k,j}) \in \prod_{i=1}^k N_\theta \cup N_\theta^+$ converging to a and (n_1, \dots, n_k) respectively as $j \to \infty$, and such that for each $j \ge 1$, we have

 $[gn_{1,j}\cdots n_{r,j}] \in W \times \mathbb{R}$ for all $1 \leq r \leq k$ and $[gn_{1,j}\cdots n_{k,j}] = [\gamma ga_j]$. Therefore, we have for each $j \geq 1$ that

$$F_{\varepsilon}([g]) = F_{\varepsilon}([gn_{1,j}]) = \dots = F_{\varepsilon}([gn_{1,j} \dots n_{k-1,j}]) = F_{\varepsilon}([gn_{1,j} \dots n_{k,j}])$$
$$= F_{\varepsilon}([\gamma ga_j]) = F_{\varepsilon}([ga_j]).$$

Taking the limit $j \to \infty$, it follows from the continuity of F_{ε} on each $\{\phi_t\}$ orbit that

$$F_{\varepsilon}([g]) = F_{\varepsilon}([ga]) = (F_{\varepsilon} \circ \phi_{t_0})([g]).$$

Since $\psi(\log \mathcal{H}_{\Gamma}^{\theta}(g))$ is dense in \mathbb{R} by Proposition 4.4, this implies that

$$F_{\varepsilon}([g]) = (F_{\varepsilon} \circ \phi_t)([g])$$
 for all $t \in \mathbb{R}$.

Since $[g] \in W \times \mathbb{R}$ is arbitrary and $(\nu \otimes \nu_i)(W) = 1$, this completes the proof.

5. Relatively Anosov groups

Relatively Anosov groups are relatively hyperbolic groups as abstract groups, which we now define. Let Γ be a countable group acting on a compact metrizable space \mathcal{X} by homeomorphisms. This action is called a convergence group action if for any sequence of distinct elements $\gamma_n \in \Gamma$, there exist a subsequence γ_{n_k} and $a,b \in \mathcal{X}$ such that as $k \to \infty$, $\gamma_{n_k}(x)$ converges to a for all $x \in \mathcal{X} - \{b\}$, uniformly on compact subsets. An element $\gamma \in \Gamma$ of infinite order fixes either exactly two points in \mathcal{X} or exactly one point in \mathcal{X} . In the former case, we call γ loxodromic, and parabolic otherwise. An infinite subgroup $P < \Gamma$ is called parabolic if P fixes some point in \mathcal{X} and every infinite order element of P is parabolic.

A point $\xi \in \mathcal{X}$ is called a *conical limit point* if there exist a sequence of distinct elements $\gamma_n \in \Gamma$ and distinct points $a, b \in \mathcal{X}$ such that as $n \to \infty$, $\gamma_n \xi \to a$ and $\gamma_n \eta \to b$ for all $\eta \in \mathcal{X} - \{\xi\}$. A point $\xi \in \mathcal{X}$ is called a *parabolic limit point* if ξ is fixed by a parabolic subgroup of Γ . We say that a parabolic limit point $\xi \in \mathcal{X}$ is bounded if $\operatorname{Stab}_{\Gamma}(x) \setminus (\mathcal{X} - \{\xi\})$ is compact. The action of Γ on \mathcal{X} is called a *geometrically finite convergence group action* if every point of \mathcal{X} is either conical or bounded parabolic limit point. A typical example of geometrically finite convergence group action is the action of a geometrically finite Kleinian group on its limit set.

Let Γ be a finitely generated group and \mathcal{P} a finite collection of finitely generated infinite subgroups of Γ . We say that Γ is hyperbolic relative to \mathcal{P} (or that (Γ, \mathcal{P}) is relatively hyperbolic), if Γ admits a geometrically finite convergence group action on some compact perfect metrizable space \mathcal{X} and the collection of maximal parabolic subgroups is

$$\mathcal{P}^{\Gamma} := \{ \gamma P \gamma^{-1} : P \in \mathcal{P}, \gamma \in \Gamma \}.$$

Bowditch [6] showed that for Γ hyperbolic relative to \mathcal{P} , the space \mathcal{X} satisfying the above hypothesis is unique up to a Γ -equivariant homeomorphism. Hence this space is called *Bowditch boundary* and denoted by $\partial(\Gamma, \mathcal{P})$.

The Groves-Manning cusp space. Let Γ be a hyperbolic group relative to \mathcal{P} . The *Groves-Manning cusp space* for (Γ, \mathcal{P}) is a proper geodesic Gromov hyperbolic space constructed by Groves-Manning [15] on which Γ acts

properly discontinuously and by isometries. We briefly review the construction of the Groves-Manning cusp space. We first need a notion of combinatorial horoballs: for a graph Y equipped with a simplicial distance d_Y , the combinatorial horoball $\mathcal{H}(Y)$ is the graph with the vertex set $Y^{(0)} \times \mathbb{N}$ and two types of edges: vertical edges between vertices (y, n) and (y, n + 1) for $y \in Y$ and $n \in \mathbb{N}$, and horizontal edges between vertices (y_1, n) and (y_2, n) for $y_1, y_2 \in Y$ and $n \in \mathbb{N}$ if $d_Y(y_1, y_2) \leq 2^{n-1}$. We also equip $\mathcal{H}(Y)$ with the simplicial distance.

Now fix a finite generating set S of Γ such that for each $P \in \mathcal{P}$, $S \cap P$ generates P. We denote by $\mathcal{C}(\Gamma, S)$ and $\mathcal{C}(P, S \cap P)$ the Cayley graphs of Γ and P with respect to S and $S \cap P$ respectively. For each $\gamma \in \Gamma$ and $P \in \mathcal{P}$, we glue the horoball $\mathcal{H}(\gamma\mathcal{C}(P, S \cap P))$ to $\mathcal{C}(\Gamma, S)$, by identifying $\gamma\mathcal{C}(P, S \cap P) \subset \mathcal{C}(\Gamma, S)$ with $\gamma\mathcal{C}(P, S \cap P) \times \{1\} \subset \mathcal{H}(\gamma\mathcal{C}(P, S \cap P))$. The resulting graph equipped with the simplicial distance is called the Groves-Manning cusp space for (Γ, \mathcal{P}) and S, which we denote by $X_{GM}(\Gamma, \mathcal{P}, S)$.

Theorem 5.1. [15, Theorem 3.25] The space $X_{GM}(\Gamma, \mathcal{P}, S)$ is a proper geodesic Gromov hyperbolic space.

From the construction, the natural action of Γ on the Cayley graph $\mathcal{C}(\Gamma, S)$ induces the isometric action of Γ on $X_{GM}(\Gamma, \mathcal{P}, S)$ which is properly discontinuous. Hence the induced Γ -action on the Gromov boundary $\partial X_{GM}(\Gamma, \mathcal{P}, S)$ is a convergence group action [5, Lemma 2.11], and moreover is a geometrically finite convergence group action by the construction of $X_{GM}(\Gamma, \mathcal{P}, S)$. Therefore the Gromov boundary of $X_{GM}(\Gamma, \mathcal{P}, S)$ is the Bowditch boundary:

$$\partial X_{GM}(\Gamma, \mathcal{P}, S) = \partial(\Gamma, \mathcal{P}).$$

Relatively Anosov subgroups. Let $\Gamma < G$ be a finitely generated nonelementary θ -transverse subgroup with the limit set Λ_{θ} and \mathcal{P} a finite collection of finitely generated infinite subgroups of Γ .

Definition 5.2. We say that Γ is θ -Anosov relative to \mathcal{P} if Γ is hyperbolic relative to \mathcal{P} and there exists a Γ-equivariant homeomorphism $\partial(\Gamma, \mathcal{P}) \to \Lambda_{\theta}$.

Let Γ be a θ -Anosov relative to \mathcal{P} in the rest of the section. We denote by $X_{GM} := X_{GM}(\Gamma, \mathcal{P}, S)$ the associated Groves-Manning cusp space for some fixed generating set S. We then have the Γ -equivariant homeomorphism

$$f: \partial X_{GM} \to \Lambda_{\theta},$$

which has the following property: Noting that the action of Γ is faithful on X_{GM} , we have a well-defined map $\Gamma x \to \Gamma o$ given by $\gamma x \mapsto \gamma o$ for any $x \in X_{GM}$.

Proposition 5.3. [11, Proposition 4.3] Let $x \in X_{GM}$. Then the map $\Gamma x \to \Gamma o$ extends continuously to a unique Γ -equivariant homeomorphism $f: \partial X_{GM} \to \Lambda_{\theta}$.

By the antipodality of Γ , the canonical projections $\pi_{\theta}: \Lambda_{\theta \cup i(\theta)} \to \Lambda_{\theta}$ and $\pi_{i(\theta)}: \Lambda_{\theta \cup i(\theta)} \to \Lambda_{i(\theta)}$ are Γ -equivariant homeomorphisms. This implies that being relatively θ -Anosov implies being relatively $\theta \cup i(\theta)$ -Anosov as well as relatively $i(\theta)$ -Anosov. In particular, setting the composition $f_i := \pi_{i(\theta)} \circ \pi_{\theta}^{-1} \circ f$, two maps

$$f: \partial X_{GM} \to \Lambda_{\theta}$$
 and $f_i: \partial X_{GM} \to \Lambda_{i(\theta)}$

have the property that if $\xi, \eta \in \partial X_{GM}$ are distinct, then $(f(\xi), f_i(\eta)) \in \mathcal{F}_{\theta}^{(2)}$.

Compatibility of shadows. We first define the shadows in the symmetric space X: for $p \in X$ and R > 0, let B(p,R) denote the metric ball $\{x \in X : d(x,p) < R\}$. For $q \in X$, the θ -shadow $O_R^{\theta}(q,p) \subset \mathcal{F}_{\theta}$ of B(p,R) viewed from q is defined as

$$O_R^{\theta}(q,p) = \{ gP_{\theta} \in \mathcal{F}_{\theta} : g \in G, \ go = q, \ gA^+o \cap B(p,R) \neq \emptyset \}.$$

The following two lemmas will be useful:

Lemma 5.4. [21, Lemma 5.7] There exists $\kappa > 0$ such that for any $g, h \in G$ and R > 0, we have

$$\sup_{\xi \in O_B^{\theta}(go,ho)} \|\beta_{\xi}^{\theta}(g,h) - \mu_{\theta}(g^{-1}h)\| \le \kappa R.$$

Lemma 5.5. [18, Lemma 9.9] Let $g_n \in G$ and $\xi_n \in \mathcal{F}_{\theta}$ be sequences both converging to some $\xi \in \mathcal{F}_{\theta}$. Suppose that there exists a sequence $\eta_n \in \mathcal{F}_{i(\theta)}$ converging to some $\eta \in \mathcal{F}_{i(\theta)}$ such that $(\xi, \eta) \in \mathcal{F}_{\theta}^{(2)}$ and the sequence $g_n^{-1}(\xi_n, \eta_n)$ is precompact in $\mathcal{F}_{\theta}^{(2)}$. Then there exists R > 0 such that

$$\xi_n \in O_R^{\theta}(o, g_n o) \quad \text{for all } n \ge 1.$$

We also consider shadows in Groves-Manning cusp space. Let d_{GM} be the simplicial distance on X_{GM} .

The following theorem is obtained in [11, Theorem 10.1]; although it stated only the lower bound, the upper bound also follows from its proof:

Theorem 5.6. For any (Γ, θ) -proper linear form $\psi \in \mathfrak{a}_{\theta}^*$, there exists positive constants c, c' and C such that for all $\gamma \in \Gamma$,

$$c d_{GM}(e, \gamma) - C \le \psi(\mu_{\theta}(\gamma)) \le c' d_{GM}(e, \gamma) + C.$$

For $y \in X_{GM}$ and R > 0, we denote the R-ball centered at y by

$$B_{GM}(y,R) := \{ z \in X_{GM} : d_{GM}(y,z) < R \}.$$

For $x, y \in X_{GM}$ and R > 0, we define the shadow of $B_{GM}(y, R)$ viewed from x as follows:

$$O_R^{GM}(x,y) := \left\{ \xi \in \partial X_{GM} : \begin{array}{c} \text{there exists a geodesic ray from } x \text{ to } \xi \\ \text{passing through } B_{GM}(y,R) \end{array} \right\}.$$

Note that $\xi \in \partial X_{GM}$ is a conical limit point if and only if there exists R > 0 such that $\xi \in O_R^{GM}(o, \gamma_n o)$ for an infinite sequence $\gamma_n \in \Gamma$.

We prove the following compatibility of shadows under $f: \partial X_{GM} \to \Lambda_{\theta}$:

Proposition 5.7. Let $x \in X_{GM}$ and $o \in X$. For all sufficiently large R > 1, there exist $r_1 = r_1(R), r_2 = r_2(R) > 0$ such that for any $\gamma \in \Gamma$, we have

$$O_{r_1}^{\theta}(o, \gamma o) \cap \Lambda_{\theta} \subset f(O_R^{GM}(x, \gamma x)) \subset O_{r_2}^{\theta}(o, \gamma o) \cap \Lambda_{\theta}.$$

Moreover, we can take $r_1(R) \to \infty$ as $R \to \infty$.

We begin with some lemmas:

Lemma 5.8. For any $x \in X_{GM}$, there exists $R_0 > 0$ such that $O_{R_0}^{GM}(x, \gamma x) \neq \emptyset$ for any $\gamma \in \Gamma$.

Proof. Suppose not. Then there exists an infinite sequence $\gamma_n \in \Gamma$ so that $O_n^{GM}(x,\gamma_n x) = \emptyset$, and hence $O_n^{GM}(\gamma_n^{-1}x,x) = \emptyset$ for all $n \geq 1$. This forces ∂X_{GM} to be a singleton, which contradicts the perfectness of ∂X_{GM} .

Lemma 5.9. Let $x \in X_{GM}$ and R > 0. Let $\gamma_n \in \Gamma$ and $\xi_n \in \partial X_{GM}$ be sequences such that $\xi_n \in O_R^{GM}(x, \gamma_n x)$ for all $n \ge 1$. If $\gamma_n x \to \xi \in \partial X_{GM}$ as $n \to \infty$, then $\xi_n \to \xi$ as $n \to \infty$.

Proof. Suppose to the contrary that the sequence ξ_n , after passing to a subsequence, converges to $\xi' \in \partial X_{GM}$ distinct from ξ . Since $\gamma_n x \to \xi$ as $n \to \infty$ and X_{GM} is Gromov hyperbolic (Theorem 5.1), this implies that there exist a constant R' > 0 and a sequence of geodesic rays $[\gamma_n x, \xi_n]$ from $\gamma_n x$ to ξ_n such that $d_{GM}(x, [\gamma_n x, \xi_n]) < R'$ for all $n \geq 1$. On the other hand, since $\xi_n \in O_R^{GM}(x, \gamma_n x)$, there exists a geodesic ray $[x, \xi_n]$ from x to ξ_n and a point $c_n \in [x, \xi_n]$ such that $d_{GM}(c_n, \gamma_n x) < R$ for all $n \ge 1$. Since the distance between $\gamma_n x$ and c_n is uniformly bounded, the Hausdorff distance between two geodesic rays $[\gamma_n x, \xi_n]$ and $[c_n, \xi_n] \subset [x, \xi_n]$ is uniformly bounded, by the Gromov hyperbolicity of X_{GM} (Theorem 5.1). Since the distance $d_{GM}(x, [\gamma_n x, \xi_n])$ is uniformly bounded, this implies that the distance $d_{GM}(x, [c_n, \xi_n])$ is uniformly bounded as well. Since $[c_n, \xi_n]$ is the geodesic ray contained in the geodesic ray $[x, \xi_n]$, we have that $d_{GM}(x,c_n)=d_{GM}(x,[c_n,\xi_n])$ is uniformly bounded. Therefore, it follows from the uniform boundedness of $d_{GM}(c_n, \gamma_n x)$ that $d_{GM}(x, \gamma_n x)$ is uniformly bounded, which contradicts the hypothesis that $\gamma_n x \to \xi$ as $n \to \infty$. This finishes the proof.

Proof of Proposition 5.7. Note that the first inclusion and the last claim follow once we show that for any c>0, there exists C>0 such that $O_c^{\theta}(o,\gamma o)\subset f(O_C^{GM}(x,\gamma x))$ for all $\gamma\in\Gamma$. Suppose not. Then there exist sequences $\gamma_n\in\Gamma$ and $\xi_n\in\partial X_{GM}-O_n^{GM}(x,\gamma_n x)$ such that $f(\xi_n)\in O_c^{\theta}(o,\gamma_n o)$ for all $n\geq 1$. After passing to a subsequence, we may assume that the sequence $\gamma_n^{-1}x$ converges to some point $\eta\in\partial X_{GM}$ as $n\to\infty$. Since $\gamma_n^{-1}\xi_n\notin O_n^{GM}(\gamma_n^{-1}x,x)$ for all $n\geq 1$, we have that

$$\lim_{n \to \infty} \gamma_n^{-1} \xi_n = \eta.$$

On the other hand, by Proposition 5.3, we have $\lim_{n\to\infty} \gamma_n^{-1} = f_i(\eta) \in \Lambda_{i(\theta)}$. Since $f(\gamma_n^{-1}\xi_n) \in O_c^{\theta}(\gamma_n^{-1}o, o)$ for all $n \geq 1$ and $\lim_{n\to\infty} \gamma_n^{-1} = f_i(\eta)$, it follows from (5.1) and the continuity of higher-rank shadows on viewpoints [19, Proposition 3.4] that $f(\eta) = \lim_{n\to\infty} f(\gamma_n^{-1}\xi_n) \in \Lambda_{\theta}$ is in general position with $f_i(\eta)$. This yields contradiction.

We now prove the second inclusion. Let $R_0 > 0$ be as given by Lemma 5.8 and fix $R > R_0$. Let $x \in X_{GM}$ and $o \in X$. Suppose on the contrary that there exists a sequence $\gamma_n \in \Gamma$ such that

$$f(O_R^{GM}(x, \gamma_n x)) \not\subset O_n^{\theta}(o, \gamma_n o)$$
 for all $n \ge 1$.

This means that there exists a sequence $\xi_n \in O_R^{GM}(x, \gamma_n x)$ such that $f(\xi_n) \not\in O_n^{\theta}(o, \gamma_n o)$ for all $n \geq 1$. After passing to a subsequence, we may assume that the sequence $\gamma_n x$ converges to a point $\xi \in \partial X_{GM}$. By Proposition 5.3, we have

(5.2)
$$\gamma_n \to f(\xi) \text{ as } n \to \infty.$$

In addition, it follows from Lemma 5.9 that $\xi_n \to \xi$ as $n \to \infty$. For each $n \geq 1$, we choose a point $\eta_n \in O_R^{GM}(\gamma_n x, x)$ which is possible by Lemma 5.8. We may assume that the sequence η_n converges to $\eta \in \partial X_{GM}$, after passing to a subsequence. Since $\gamma_n x \to \xi$ as $n \to \infty$ and $\eta_n \in O_R^{GM}(\gamma_n x, x)$ for all $n \geq 1$, we have $\xi \neq \eta$. Therefore, we have the following convergence of the sequence in $\mathcal{F}_{\theta}^{(2)}$:

(5.3)
$$(f(\xi_n), f_i(\eta_n)) \to (f(\xi), f_i(\eta)) \in \mathcal{F}_{\theta}^{(2)} \quad \text{as } n \to \infty.$$

On the other hand, we also have $\gamma_n^{-1}\xi_n\in O_R^{GM}(\gamma_n^{-1}x,x)$ and $\gamma_n^{-1}\eta_n\in O_R^{GM}(x,\gamma_n^{-1}x)$ for all $n\geq 1$. Together with the Γ -equivariance of f and f_i , a similar argument as above implies that

(5.4) the sequence
$$\gamma_n^{-1}(f(\xi_n), f_i(\eta_n))$$
 is precompact in $\mathcal{F}_{\theta}^{(2)}$.

By (5.2), (5.3), and (5.4), we apply Lemma 5.5 and deduce that there exists R'>0 so that $f(\xi_n)\in O^{\theta}_{R'}(o,\gamma_n o)$ for all $n\geq 1$. This contradicts to the choice of the sequence ξ_n that $f(\xi_n)\notin O^{\theta}_n(o,\gamma_n o)$ for all $n\geq 1$. This completes the proof.

Lemma 5.10. Let $x \in X_{GM}$ and R > 0. Then there exists a compact subset $Q \subset \mathfrak{a}_{\theta}$ satisfying the following: if $\xi, \eta \in \partial X_{GM}$ are such that $d_{GM}(x, [\xi, \eta]) < R$ for some bi-infinite geodesic $[\xi, \eta]$, then

$$\langle f(\xi), f_{\mathbf{i}}(\eta) \rangle \in Q$$

where $\langle \cdot, \cdot \rangle$ is the Gromov product defined in (2.5).

Proof. Suppose not. Then there exists a sequence of bi-infinite geodesics $[\xi_n, \eta_n]$ for some $\xi_n, \eta_n \in \partial X_{GM}$ such that we have $\sup_n d_{GM}(x, [\xi_n, \eta_n]) < R$ and the Gromov products $\langle f(\xi_n), f_i(\eta_n) \rangle$ escape every compact subset of \mathfrak{a}_θ as $n \to \infty$. After passing to a subsequence, we may assume that $\xi_n \to \xi$ and $\eta_n \to \eta$ in ∂X_{GM} . The hypothesis $\sup_n d_{GM}(x, [\xi_n, \eta_n]) < R$

implies $\xi \neq \eta$, since X_{GM} is Gromov hyperbolic (Theorem 5.1). Therefore $(f(\xi), f_{\mathbf{i}}(\eta)) \in \Lambda_{\theta}^{(2)}$ and hence $\langle f(\xi), f_{\mathbf{i}}(\eta) \rangle \in \mathfrak{a}_{\theta}$ is well-defined. On the other hand, by the continuity of the Gromov product, we have $\langle f(\xi_n), f_{\mathbf{i}}(\eta_n) \rangle \to \langle f(\xi), f_{\mathbf{i}}(\eta) \rangle \in \mathfrak{a}_{\theta}$ as $n \to \infty$. This yields a contradiction.

6. Reparameterization for relatively Anosov groups

Let $\Gamma < G$ be a θ -Anosov subgroup relative to \mathcal{P} and $X_{GM} = X_{GM}(X, \mathcal{P}, S)$ the associated Groves-Manning cusp space for a fixed generating set S. Fix a (Γ, θ) -proper linear form $\psi \in \mathfrak{a}_{\theta}^*$. Recall from section 3 the space $\tilde{\Omega}_{\psi} := \Lambda_{\theta}^{(2)} \times \mathbb{R}$ equipped with the Γ -action given by

$$\gamma(\xi,\eta,s) = (\gamma\xi,\gamma\eta,s + \psi(\beta_\xi^\theta(\gamma^{-1},e))).$$

As stated in Theorem 3.1, the space

$$\Omega_{\psi} := \Gamma \backslash \tilde{\Omega}_{\psi}$$

is a locally compact second countable Hausdorff space. The translation flow $\{\phi_t\}$ on the \mathbb{R} -component of $\tilde{\Omega}_{\psi}$ commutes with the Γ -action, and hence it induces the translation flow on Ω_{ψ} which we also denote by $\{\phi_t\}$. We will relate $\tilde{\Omega}_{\psi}$ and Ω_{ψ} with the Groves-Manning cusp space X_{GM} in this section. More precisely, let

$$\mathcal{G} := \{ \sigma : \mathbb{R} \to X_{GM} : \text{ bi-infinite geodesic} \}.$$

The space \mathcal{G} admits the geodesic flow $\varphi_s: \mathcal{G} \to \mathcal{G}$ defined by $(\varphi_s \sigma)(\cdot) = \sigma(\cdot + s)$ for $s \in \mathbb{R}$, and the inversion $I: \mathcal{G} \to \mathcal{G}$ defined by $(I\sigma)(s) = \sigma(-s)$ for $s \in \mathbb{R}$. The canonical isometric action of Γ on \mathcal{G} commutes with the geodesic flow and I, and is properly discontinuous. Hence we can also consider the locally compact Hausdorff space $\Gamma \setminus \mathcal{G}$. This section is devoted to the proof of the following reparameterization theorem:

(6.1)
$$a = \liminf_{\gamma \in \Gamma} \frac{\psi(\mu_{\theta}(\gamma))}{d_{GM}(e, \gamma)} \quad \text{and} \quad a' = 3 \limsup_{\gamma \in \Gamma} \frac{\psi(\mu_{\theta}(\gamma))}{d_{GM}(e, \gamma)}.$$

By Theorem 5.6, we have $0 < a \le a' < \infty$.

Theorem 6.1 (Reparameterization, Theorem 1.4(1)-(3)). There exists a continuous, surjective, proper Γ -equivariant map

$$\tilde{\Psi}: \mathcal{G} \to \tilde{\Omega}_{\psi}.$$

Moreover, we have a continuous cocycle $\tilde{t}: \mathcal{G} \times \mathbb{R} \to \mathbb{R}$ such that for all $\sigma \in \mathcal{G}$ and $s \in \mathbb{R}$,

(1) $\tilde{\Psi}(\varphi_s \sigma) = \phi_{\tilde{\mathfrak{t}}(\sigma,s)} \tilde{\Psi}(\sigma);$

Set

- (2) $\tilde{\mathsf{t}}(\sigma,s) = -\tilde{\mathsf{t}}(\varphi_s\sigma,-s);$
- (3) there exists an absolute constant B > 0 such that

$$a|s| - B \le \tilde{\mathsf{t}}(\sigma, |s|) \le a'|s| + B.$$

In the above theorem, $\tilde{\mathbf{t}}: \mathcal{G} \times \mathbb{R} \to \mathbb{R}$ being a continuous cocycle means that it is continuous and for all $\sigma \in \mathcal{G}$ and $s_1, s_2 \in \mathbb{R}$,

$$\tilde{\mathsf{t}}(\sigma, s_1 + s_2) = \tilde{\mathsf{t}}(\sigma, s_1) + \tilde{\mathsf{t}}(\varphi_{s_1}\sigma, s_2).$$

Since $\tilde{\Psi}: \mathcal{G} \to \tilde{\Omega}_{\psi}$ in Theorem 6.1 is Γ -equivariant, this descends to the map $\Psi: \Gamma \backslash \mathcal{G} \to \Omega_{\psi}$. The following is immediate from Theorem 6.1.

Corollary 6.2 (Reparameterization). There exists a continuous, surjective, proper map

$$\Psi: \Gamma \backslash \mathcal{G} \to \Omega_{\psi}$$
.

Moreover, we have a continuous cocycle $t : \Gamma \backslash \mathcal{G} \times \mathbb{R} \to \mathbb{R}$ such that for all $\sigma \in \mathcal{G}$ and $s \in \mathbb{R}$,

- (1) $\Psi([\varphi_s \sigma]) = \phi_{\mathsf{t}(\sigma,s)} \Psi([\sigma]);$
- (2) $t(\sigma, s) = -t(\varphi_s \sigma, -s);$
- (3) there exists an absolute constant B > 0 such that

$$a|s| - B \le \mathsf{t}(\sigma, |s|) \le a'|s| + B.$$

Thick-thin decomposition of \mathcal{G} . For $P \in \mathcal{P}$, let $\xi_P \in \partial X_{GM}$ be the bounded parabolic limit point fixed by P. We consider the open horoball $H_P \subset X_{GM}$ based at ξ_P invariant under P, defined as follows: let $H'_P \subset X_{GM}$ be the subgraph induced by the vertices $\{(g,n): g \in P, n \geq 2\}$ and $\hat{H}_P \subset X_{GM}$ be the subgraph induced by the vertices $\{(g,2): g \in P\}$. We then set

$$H_P := H_P' - \hat{H}_P.$$

For $\gamma \in \Gamma$, we also set

$$H_{\gamma P \gamma^{-1}} := \gamma H_P$$

which is the open horoball based at $\xi_{\gamma P \gamma^{-1}} := \gamma \xi_P$ and invariant under $\gamma P \gamma^{-1} \in \mathcal{P}^{\Gamma}$. The boundary $\partial H_{\gamma P \gamma^{-1}}$ consists of the vertices $\gamma \{(g,2) : g \in P\}$. We then have the Γ -invariant family $\{H_P : P \in \mathcal{P}^{\Gamma}\}$ of open horoballs with disjoint closures.

We define the following subsets of \mathcal{G} : for $P \in \mathcal{P}^{\Gamma}$, let

$$\mathcal{G}_P := \{ \sigma \in \mathcal{G} : \sigma(0) \in H_P \};$$

$$\partial \mathcal{G}_P := \{ \sigma \in \mathcal{G} : \sigma(0) \in \partial H_P \}.$$

We have the thick-thin decomposition of \mathcal{G} :

$$\mathcal{G}_{thin} := \bigcup_{P \in \mathcal{D}^{\Gamma}} \mathcal{G}_P \quad \text{and} \quad \mathcal{G}_{thick} := \mathcal{G} - \mathcal{G}_{thin}.$$

Since the Groves-Manning cusp space X_{GM} is constructed by attaching combinatorial horoballs to the Cayley graph of Γ , the Γ -action on $X_{GM} - \bigcup_{P \in \mathcal{P}^{\Gamma}} H_P$ is cocompact. Hence the Γ -action on \mathcal{G}_{thick} which consists of bi-infinite geodesics based at $X_{GM} - \bigcup_{P \in \mathcal{P}^{\Gamma}} H_P$ is also cocompact.

We also introduce the following subsets of $\partial \mathcal{G}_P$ for each $P \in \mathcal{P}^{\Gamma}$:

$$\partial^+ \mathcal{G}_P := \{ \sigma \in \partial \mathcal{G}_P : \sigma(t) \in H_P \text{ for all sufficiently small } t > 0 \};$$

$$\partial^- \mathcal{G}_P := \{ \sigma \in \partial \mathcal{G}_P : \sigma(-t) \in H_P \text{ for all sufficiently small } t > 0 \}.$$

Note that $\partial^+ \mathcal{G}_P \cap \partial^- \mathcal{G}_P = \emptyset$. For $\sigma \in \partial^+ \mathcal{G}_P$, we set

$$T_{\sigma}^{+} := \min\{t \in (0, \infty] : \sigma(t) \notin H_{P}\},\$$

and for $\sigma \in \partial^- \mathcal{G}_P$, we set

$$T_{\sigma}^{-} := \max\{t \in [-\infty, 0) : \sigma(t) \notin H_{P}\},$$

which are the escaping times for the horoball H_P . We then have

$$\mathcal{G}_{P} = \left(\bigcup_{\sigma \in \partial^{+} \mathcal{G}_{P}} \bigcup_{t \in (0, T_{\sigma}^{+})} \varphi_{t} \sigma\right) \cup \left(\bigcup_{\sigma \in \partial^{-} \mathcal{G}_{P}} \bigcup_{t \in (T_{\sigma}^{-}, 0)} \varphi_{t} \sigma\right).$$

Construction of the reparameterization. To construct the reparameterization, we consider the trivial bundle

$$\mathcal{G} \times \mathbb{R}_+ \to \mathcal{G}$$
.

Given $\sigma \in \mathcal{G}$, we denote by $\sigma^+ = \sigma(\infty) \in \partial X_{GM}$ and $\sigma^- = \sigma(-\infty) \in \partial X_{GM}$ the forward and backward endpoint of the bi-infinite geodesic σ . Noting that we have Γ -equivariant homeomorphisms $f: \partial X_{GM} \to \Lambda_{\theta}$ and $f_i: \partial X_{GM} \to \Lambda_{i(\theta)}$, we identify ∂X_{GM} , Λ_{θ} , and $\Lambda_{i(\theta)}$ in this section via the homeomorphisms. We define the Γ -action on $\mathcal{G} \times \mathbb{R}_+$ as follows: for $\gamma \in \Gamma$ and $(\sigma, v) \in \mathcal{G} \times \mathbb{R}_+$,

$$\gamma(\sigma, v) = \left(\gamma \sigma, v e^{\psi\left(\beta_{\sigma}^{\theta} + (\gamma^{-1}, e)\right)}\right).$$

This action makes the following projection Γ -equivariant:

$$\Psi_0: \mathcal{G} \times \mathbb{R}_+ \longrightarrow \tilde{\Omega}_{\psi}$$
$$(\sigma, v) \longmapsto (\sigma^+, \sigma^-, \log v).$$

We construct the reparameterization $\Psi: \Gamma \backslash \mathcal{G} \to \Omega_{\psi}$ in Theorem 6.1 by constructing a nice Γ -equivariant section $u: \mathcal{G} \to \mathcal{G} \times \mathbb{R}_+$ of the trivial bundle so that we obtain a Γ -equivariant map $\tilde{\Psi}: \mathcal{G} \to \tilde{\Omega}_{\psi}$ as follows, with the desired properties:

Norms on fibers. To construct a section of the trivial bundle $\mathcal{G} \times \mathbb{R}_+ \to \mathcal{G}$, we define a continuous family of Γ -equivariant norms on fibers. More precisely, we define a Γ -invariant continuous function

$$\|\cdot\|:\mathcal{G}\times\mathbb{R}_+\to\mathbb{R}_+$$

such that for each $\sigma \in \mathcal{G}$, $\|(\sigma, \cdot)\|$ is the restriction of a norm on \mathbb{R} to \mathbb{R}_+ . We simply write

$$\|\cdot\|_{\sigma} := \|(\sigma,\cdot)\|$$
 for each $\sigma \in \mathcal{G}$.

Once we define the norm, we will define a section $u: \mathcal{G} \to \mathcal{G} \times \mathbb{R}_+$ by $u(\sigma) = (\sigma, v_{\sigma})$ where $v_{\sigma} \in \mathbb{R}_+$ is the unique unit vector with respect to the norm $\|\cdot\|_{\sigma}$, i.e., $\|v_{\sigma}\|_{\sigma} = 1$. The Γ -equivariance and the continuity of the norms imply that the section u is also Γ -equivariant and continuous. To make the reparameterization $\tilde{\Psi} = \Psi_0 \circ u$ satisfy the conditions in Theorem 6.1, our norms should have a property that the contraction rate along the geodesic flow is bounded from both above and below by uniform exponential functions.

Our construction of the family of norms is motivated by [32] which considered flat bundles for relatively Anosov subgroups of $SL(n,\mathbb{R})$ with respect to a maximal parabolic subgroup. Our proof of the contraction property is motivated by ([9], [32]) where the upper bound of the contraction rate of norms on flat bundles for relatively Anosov subgroups of $SL(n,\mathbb{R})$ with respect to a maximal parabolic subgroup was proved. We also remark that the contraction property was earlier studied in ([30], [12]) for Anosov subgroups.

We now define a family of norms as follows (compare to a similar construction in [32]): first we fix a continuous family of Γ -equivariant norms $\|\cdot\|_{\sigma}$ for $\sigma \in \mathcal{G}_{thick}$ such that $\|\cdot\|_{\sigma} = \|\cdot\|_{I\sigma}$ for all $\sigma \in \mathcal{G}_{thick}$. Let $\sigma \in \mathcal{G}_{thin}$. Then $\sigma \in \mathcal{G}_P$ for some $P \in \mathcal{P}^{\Gamma}$. Let

$$(6.2) c > 0$$

be the constant given by Theorem 5.6. There are two cases indicated by the Figures 1 and 2:

Case 1. If $\sigma = \varphi_t \sigma_0$ for some $\sigma_0 \in \partial^+ \mathcal{G}_P$ and $t \in (0, T_{\sigma_0}^+)$, we write $T := T_{\sigma_0}^+$ and

• if $t \in (0, \frac{1}{3}T]$, we set

$$\|\cdot\|_{\sigma} := e^{-ct}\|\cdot\|_{\sigma_0}.$$

• if $t \in \left[\frac{2}{3}T, T\right)$, we set

$$\|\cdot\|_{\sigma} := e^{c(T-t)} \|\cdot\|_{\varphi_T \sigma_0}.$$

• if $t \in (\frac{1}{3}T, \frac{2}{3}T)$, we set

$$\|\cdot\|_{\sigma} := \|\cdot\|_{\varphi_{T/3}\sigma_0}^{2-\frac{3}{T}t} \|\cdot\|_{\varphi_{2T/3}\sigma_0}^{\frac{3}{T}t-1}.$$

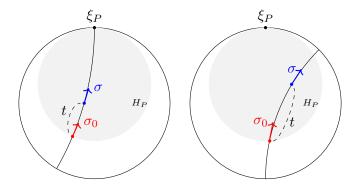


FIGURE 1. Two possible configurations of $\sigma \in \mathcal{G}_P$ in Case 1 depending on whether $T_{\sigma_0}^+ = \infty$ or not. Only the first item in Case 1 applies to the left figure.

Case 2. If $\sigma = \varphi_s \tilde{\sigma}_0$ for some $\tilde{\sigma}_0 \in \partial^- \mathcal{G}_P$ and $s \in (T_{\tilde{\sigma}_0}^-, 0)$, we write $T := T_{\tilde{\sigma}_0}^-$ and

• if $s \in \left[\frac{1}{3}T, 0\right)$, we set

$$\|\cdot\|_{\sigma} := e^{-cs} \|\cdot\|_{\tilde{\sigma}_0}.$$

• if $s \in (T, \frac{2}{3}T]$, we set

$$\|\cdot\|_{\sigma} := e^{c(T-s)} \|\cdot\|_{\varphi_T \tilde{\sigma}_0}.$$

• if $s \in \left(\frac{2}{3}T, \frac{1}{3}T\right)$, we set

$$\|\cdot\|_{\sigma} := \|\cdot\|_{\varphi_{2T/3}\tilde{\sigma}_0}^{\frac{3}{T}s-1} \|\cdot\|_{\varphi_{T/3}\tilde{\sigma}_0}^{2-\frac{3}{T}s}.$$

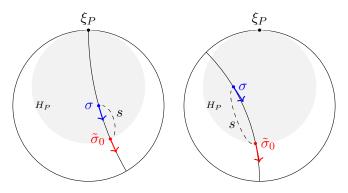


FIGURE 2. Two possible configurations of $\sigma \in \mathcal{G}_P$ in Case 2 depending on whether $T_{\tilde{\sigma}_0}^- = -\infty$ or not. Only the first item in Case 2 applies to the left figure.

Note that both cases can happen at the same time, and in that case two definitions coincide. The resulting family of norms is continuous and Γ -equivariant.

Contraction rate along geodesic flow. For $\sigma \in \mathcal{G}$, there exists a unique $v_{\sigma} \in \mathbb{R}_{+}$ such that $||v_{\sigma}||_{\sigma} = 1$. For $t \in \mathbb{R}$, we define

(6.3)
$$\kappa_t(\sigma) := \|v_{\sigma}\|_{\varphi_t \sigma};$$

this measures the contraction rates of norms under the geodesic flow. It is easy to see that for $\sigma \in \mathcal{G}$ and $t, s \in \mathbb{R}$, we have

(6.4)
$$v_{\varphi_t \sigma} = \frac{v_{\sigma}}{\|v_{\sigma}\|_{\varphi_t \sigma}} \quad \text{and} \quad \kappa_{t+s}(\sigma) = \kappa_s(\varphi_t \sigma) \kappa_t(\sigma).$$

Moreover, $\kappa_t(\cdot)$ is Γ -invariant.

Lemma 6.3. For $\sigma \in \mathcal{G}$, $t \in \mathbb{R}$, and $\gamma \in \Gamma$, we have

$$\kappa_t(\gamma\sigma) = \kappa_t(\sigma).$$

Proof. By the Γ -equivariance of the norm, we have

$$1 = \|v_{\sigma}\|_{\sigma} = \left\|v_{\sigma}e^{\psi(\beta_{\sigma}^{\theta} + (\gamma^{-1}, e))}\right\|_{\gamma\sigma}.$$

This implies

(6.5)
$$v_{\gamma\sigma} = v_{\sigma}e^{\psi(\beta_{\sigma^{+}}^{\theta}(\gamma^{-1},e))}.$$

Since $\varphi_t \gamma \sigma = \gamma \varphi_t \sigma$, we have

$$\kappa_{t}(\gamma\sigma) = \|v_{\gamma\sigma}\|_{\varphi_{t}\gamma\sigma} = \|v_{\sigma}\|_{\gamma\varphi_{t}\sigma} e^{\psi(\beta_{\sigma}^{\theta}+(\gamma^{-1},e))}$$

$$= \|v_{\sigma}e^{\psi(\beta_{\gamma\sigma}^{\theta}+(\gamma,e))}\|_{\varphi_{t}\sigma} e^{\psi(\beta_{\sigma}^{\theta}+(\gamma^{-1},e))}$$

$$= \|v_{\sigma}\|_{\varphi_{t}\sigma} = \kappa_{t}(\sigma)$$

as desired.

The following is the desired estimate on the contraction rate:

Theorem 6.4. There exists b > 1 such that for all $\sigma \in \mathcal{G}$ and $t \geq 0$, we have

$$\frac{1}{h}e^{-a't} \le \kappa_t(\sigma) \le be^{-at}$$

where $a = \liminf_{\gamma \in \Gamma} \frac{\psi(\mu_{\theta}(\gamma))}{d_{GM}(e,\gamma)}$ and $a' = 3 \limsup_{\gamma \in \Gamma} \frac{\psi(\mu_{\theta}(\gamma))}{d_{GM}(e,\gamma)}$.

We begin by observing that the recurrence to a compact subset implies the exponential contraction:

Lemma 6.5. For any compact subset $Q \subset X_{GM}$, there exists $C_Q > 1$ such that if $\sigma \in \mathcal{G}$, $t \geq 0$, and $\gamma \in \Gamma$ satisfy $\sigma(0), \gamma^{-1}\sigma(t) \in Q$, then

$$\frac{1}{C_O} e^{-\psi(\mu_{\theta}(\gamma))} \le \kappa_t(\sigma) \le C_Q e^{-\psi(\mu_{\theta}(\gamma))}.$$

Proof. Suppose not. Then there exist sequences $\sigma_n \in \mathcal{G}$, $t_n \geq 0$, and $\gamma_n \in \Gamma$ such that $\sigma_n(0), \gamma_n^{-1} \sigma_n(t_n) \in Q$ for all $n \geq 1$ while the sequence

(6.6)
$$\log \left(\kappa_{t_n}(\sigma_n) e^{\psi(\mu_{\theta}(\gamma_n))} \right) = \psi(\mu_{\theta}(\gamma_n)) + \log \kappa_{t_n}(\sigma_n)$$
 is unbounded.

In particular, γ_n is an infinite sequence and $t_n \to \infty$ as $n \to \infty$.

By the hypothesis that $\sigma_n(0), \gamma_n^{-1}\sigma_n(t_n) \in Q$, there exist $q \in Q$ and R > 0 depending on Q so that we have $\sigma_n^+ \in O_R^{GM}(q, \gamma_n q)$ for all $n \ge 1$. It follows from Proposition 5.7 that for some r > 0, we have $\sigma_n^+ \in O_r^{\theta}(o, \gamma_n o)$ for all $n \ge 1$. By Lemma 5.4, we deduce from (6.6) that the sequence

(6.7)
$$\psi\left(\beta_{\sigma_n}^{\theta}(e,\gamma_n)\right) + \log \kappa_{t_n}(\sigma_n) \text{ is unbounded.}$$

On the other hand, by the Γ -equivariance of the norms $\|\cdot\|$, we have

$$\kappa_{t_n}(\sigma_n) = \|v_{\sigma_n}\|_{\varphi_{t_n}\sigma_n} = \left\|v_{\sigma_n}e^{\psi\left(\beta_{\sigma_n^+}^{\theta}(\gamma_n, e)\right)}\right\|_{\gamma_n^{-1}\varphi_{t_n}\sigma_n}$$
$$= e^{\psi\left(\beta_{\sigma_n^+}^{\theta}(\gamma_n, e)\right)} \|v_{\sigma_n}\|_{\gamma_n^{-1}\varphi_{t_n}\sigma_n}$$

and therefore

(6.8)
$$\psi\left(\beta_{\sigma_n^+}^{\theta}(e,\gamma_n)\right) + \log \kappa_{t_n}(\sigma_n) = \log \|v_{\sigma_n}\|_{\gamma_n^{-1}\varphi_{t_n}\sigma_n}.$$

Since both $\sigma_n(0)$ and $\gamma_n^{-1}\sigma_n(t_n) = (\gamma_n^{-1}\varphi_{t_n}\sigma_n)(0)$ belong to the compact subset Q for all $n \geq 1$, there exists a compact subset of \mathcal{G} containing σ_n and $\gamma_n^{-1}\varphi_{t_n}\sigma_n$ for all $n \geq 1$. Therefore, the sequence (6.8) is uniformly bounded, which contradicts (6.7). Hence the claim follows.

We obtain the following estimate of the contraction rate between the entrance and exit of a horoball.

Corollary 6.6. There exists a constant $c_0 \geq 1$ such that if $\sigma \in \partial^+ \mathcal{G}_P$ for some $P \in \mathcal{P}^{\Gamma}$ with $T_{\sigma}^+ < \infty$, then

$$\frac{1}{c_0}e^{-c'T_{\sigma}^+} \le \kappa_{T_{\sigma}^+}(\sigma) \le c_0e^{-cT_{\sigma}^+}$$

where c and c' are given by Theorem 5.6.

Proof. Let $P \in \mathcal{P}^{\Gamma}$ and $\sigma \in \partial^{+}\mathcal{G}_{P}$ with $T_{\sigma}^{+} < \infty$. By Lemma 6.3, we may assume that $P \in \mathcal{P}$ and $\sigma(0) = (e, 2)$ in the combinatorial horoball attached to a Cayley graph of P. We then have $\sigma(T_{\sigma}^{+}) = (\gamma, 2)$ for some $\gamma \in P$. Setting $Q = \overline{B_{GM}(e, 1)}$ which is a compact subset of X_{GM} , we have $\sigma(0), \gamma^{-1}\sigma(T_{\sigma}^{+}) \in Q$. Hence by Lemma 6.5, we have

$$\frac{1}{C_O} e^{-\psi(\mu_\theta(\gamma))} \leq \kappa_{T_\sigma^+}(\sigma) \leq C_Q e^{-\psi(\mu_\theta(\gamma))}$$

where C_Q is the constant therein. On the other hand, it follows from Theorem 5.6 that

$$\psi(\mu_{\theta}(\gamma)) \ge cd_{GM}(e, \gamma) - C$$

$$\ge c(d_{GM}((e, 2), (\gamma, 2)) - 2) - C$$

$$= cT_{\sigma}^{+} - (2c + C)$$

with the constants c, C in Theorem 5.6. Therefore, we have

$$\kappa_{T_{\sigma}^+}(\sigma) \leq C_Q e^{2c+C} e^{-cT_{\sigma}^+}.$$

Similarly, we have

$$\psi(\mu_{\theta}(\gamma)) \le c' d_{GM}(e, \gamma) + C$$

$$\le c' (d_{GM}((e, 2), (\gamma, 2)) + 2) + C$$

$$= c' T_{\sigma}^{+} + (2c' + C)$$

where c' is given in Theorem 5.6. Therefore, we have

$$\kappa_{T_{\sigma}^+}(\sigma) \geq \frac{1}{C_Q} e^{-(2c'+C)} e^{-c'T_{\sigma}^+}.$$

This finishes the proof.

We now estimate the contraction rate in the thin part.

Lemma 6.7. There exists a constant $c_1 \geq 1$ with the following property: if $\sigma \in \mathcal{G}_{thin}$ is such that $\varphi_s \sigma \in \mathcal{G}_{thin}$ for all $0 \leq s \leq t$, then

$$c_1^{-1}e^{-(3c'-2c)t} \le \kappa_t(\sigma) \le c_1e^{-ct}$$

where c < c' are given by Theorem 5.6.

Proof. We fix $\sigma \in \mathcal{G}_{thin}$ such that $\varphi_s \sigma \in \mathcal{G}_{thin}$ for all $0 \leq s \leq t$. Then there exists $P \in \mathcal{P}^{\Gamma}$ so that $\varphi_s \sigma \in \mathcal{G}_P$ for all $0 \leq s \leq t$. There are three cases to consider:

Case 1. Suppose that $\sigma([0,\infty)) \subset \mathcal{G}_P$. Then $\sigma = \varphi_s \sigma_0$ for some $\sigma_0 \in \partial^+ \mathcal{G}_P$ and s > 0. In this case, by the definition of the norm, we have

$$\|\cdot\|_{\varphi_t\sigma} = \|\cdot\|_{\varphi_{t+s}\sigma_0} = e^{-c(t+s)}\|\cdot\|_{\sigma_0} = e^{-ct}\|\cdot\|_{\sigma}.$$

This implies $\kappa_t(\sigma) = e^{-ct}$.

Case 2. Suppose that $\sigma((-\infty,0]) \subset \mathcal{G}_P$. Then $\sigma = \varphi_s \tilde{\sigma}_0$ for some $\tilde{\sigma}_0 \in \partial^- \mathcal{G}_P$ and s < 0. We then have

$$\|\cdot\|_{\varphi_t\sigma} = e^{-c(s+t)}\|\cdot\|_{\tilde{\sigma}_0} = e^{-ct}\|\cdot\|_{\sigma},$$

and hence $\kappa_t(\sigma) = e^{-ct}$.

Case 3. Suppose that neither $\sigma([0,\infty)) \subset \mathcal{G}_P$ nor $\sigma((-\infty,0]) \subset \mathcal{G}_P$ holds. In this case, we have $\sigma = \varphi_s \sigma_0$ for some s > 0 and $\sigma_0 \in \partial^+ \mathcal{G}_P$ such that $T_{\sigma_0}^+ < \infty$. We simply write $T := T_{\sigma_0}^+$ and $\sigma_1 = \varphi_T \sigma_0$. We first consider the following three subcases:

- if $s, s+t \in (0, \frac{1}{3}T]$, then $\|\cdot\|_{\varphi_t\sigma} = \|\cdot\|_{\varphi_{s+t}\sigma_0} = e^{-c(s+t)}\|\cdot\|_{\sigma_0} = e^{-ct}\|\cdot\|_{\sigma},$ and hence $\kappa_t(\sigma) = e^{-ct}$.
- if $s, s+t \in \left[\frac{2}{3}T, T\right)$, then $\|\cdot\|_{\varphi_t \sigma} = e^{c(T-(t+s))}\|\cdot\|_{\sigma_1} = e^{-ct}\|\cdot\|_{\sigma},$ and hence $\kappa_t(\sigma) = e^{-ct}$.
- if $s, s + t \in \left[\frac{1}{3}T, \frac{2}{3}T\right]$, then we first observe that

$$\|\cdot\|_{\sigma} = \|\cdot\|_{\varphi_{T/3}\sigma_{0}}^{2-\frac{3}{T}s}\|\cdot\|_{\varphi_{2T/3}\sigma_{0}}^{\frac{3}{T}s-1}$$

$$= \left(e^{-c\frac{T}{3}}\|\cdot\|_{\sigma_{0}}\right)^{2-\frac{3}{T}s}\left(e^{c\frac{T}{3}}\|\cdot\|_{\sigma_{1}}\right)^{\frac{3}{T}s-1}$$

$$= e^{c(2s-T)}\|\cdot\|_{\sigma_{0}}^{2-\frac{3}{T}s}\|\cdot\|_{\sigma_{1}}^{\frac{3}{T}s-1}$$

and similarly that

$$\|\cdot\|_{\varphi_t\sigma} = e^{c(2(s+t)-T)} \|\cdot\|_{\sigma_0}^{2-\frac{3}{T}(s+t)} \|\cdot\|_{\sigma_1}^{\frac{3}{T}(s+t)-1}.$$

Combining the above two computations, we obtain

$$\|\cdot\|_{\varphi_t\sigma} = \|\cdot\|_{\sigma}e^{2ct}\|\cdot\|_{\sigma_0}^{-\frac{3}{T}t}\|\cdot\|_{\sigma_1}^{\frac{3}{T}t}.$$

Evaluating at v_{σ_0} , the above becomes

$$\kappa_{t+s}(\sigma_0) = \kappa_s(\sigma_0)e^{2ct}\kappa_T(\sigma_0)^{\frac{3}{T}t}$$

Since $\kappa_{t+s}(\sigma_0) = \kappa_t(\sigma)\kappa_s(\sigma_0)$ by (6.4), it follows from Corollary 6.6 and $0 \le t \le \frac{T}{3}$ that

$$\kappa_t(\sigma) = e^{2ct} \kappa_T(\sigma_0)^{\frac{3}{T}t}
\leq e^{2ct} (c_0 e^{-cT})^{\frac{3}{T}t} = e^{2ct} c_0^{\frac{3}{T}t} e^{-3ct}
\leq \max(1, c_0) e^{-ct}.$$

Similarly, we also obtain from Corollary 6.6 and $0 \le t \le \frac{T}{3}$ that

$$\kappa_t(\sigma) = e^{2ct} \kappa_T(\sigma_0)^{\frac{3}{T}t}$$

$$\geq e^{2ct} (c_0^{-1} e^{-c'T})^{\frac{3}{T}t} = e^{2ct} c_0^{\frac{-3}{T}t} e^{-3c't}$$

$$\geq \min(1, c_0^{-1}) e^{-(3c'-2c)t}.$$

We now set $c_1 := \max(1, c_0)$. Note also that $c' \ge c$ and hence $e^{-(3c'-2c)t} \le e^{-ct}$ for all $t \ge 0$. In general, we consider the following three consecutive subintervals

$$[s, s+t] \cap \left(0, \frac{1}{3}T\right], \quad [s, s+t] \cap \left[\frac{1}{3}T, \frac{2}{3}T\right], \quad \text{and} \quad [s, s+t] \cap \left[\frac{2}{3}T, T\right],$$

and then apply the each of the above three subcases to each subintervals. Then by (6.4), we get

$$c_1^{-1}e^{-(3c'-2c)t} \le \kappa_t(\sigma) \le c_1e^{-ct}$$

as desired.

We now combine estimates on the thick and thin parts and prove Theorem 6.4. We give proofs of the lower bound and the upper bound separately:

Proof of the lower bound in Theorem 6.4. Let $\sigma \in \mathcal{G}$ and $t \geq 0$. If $\varphi_s \sigma \in \mathcal{G}_{thin}$ for all $0 \leq s \leq t$, then by Lemma 6.7, we have

(6.9)
$$\kappa_t(\sigma) \ge c_1^{-1} e^{-(3c'-2c)t}$$

where constants c_1, c', c are given in Lemma 6.7. Now suppose that $\varphi_s \sigma \in \mathcal{G}_{thick}$ for some $s \in [0, t]$ and set

$$s_1 := \min\{s \in [0, t] : \varphi_s \sigma \in \mathcal{G}_{thick}\};$$

$$s_2 := \max\{s \in [0, t] : \varphi_s \sigma \in \mathcal{G}_{thick}\}$$

which are well-defined. It follows from (6.4) and Lemma 6.7 that

(6.10)
$$\kappa_{t}(\sigma) = \kappa_{t-s_{2}}(\varphi_{s_{2}}\sigma)\kappa_{s_{2}}(\sigma) \\
= \kappa_{t-s_{2}}(\varphi_{s_{2}}\sigma)\kappa_{s_{2}-s_{1}}(\varphi_{s_{1}}\sigma)\kappa_{s_{1}}(\sigma) \\
\geq c_{1}^{-1}e^{-(3c'-2c)(t-s_{2})}\kappa_{s_{2}-s_{1}}(\varphi_{s_{1}}\sigma)c_{1}^{-1}e^{-(3c'-2c)s_{1}} \\
= c_{1}^{-2}e^{-(3c'-2c)t}e^{(3c'-2c)(s_{2}-s_{1})}\kappa_{s_{2}-s_{1}}(\varphi_{s_{1}}\sigma).$$

To estimate $\kappa_{s_2-s_1}(\varphi_{s_1}\sigma)$, we fix a compact fundamental domain $Q \subset X_{GM} - \bigcup_{P \in \mathcal{P}^{\Gamma}} H_P$ for the Γ -action. We may assume that $e \in Q$. By the definition of s_1 and s_2 , there exist $\gamma_1, \gamma_2 \in \Gamma$ such that $(\varphi_{s_1}\sigma)(0) \in \gamma_1 Q$ and $(\varphi_{s_2}\sigma)(0) \in \gamma_2 Q$. In other words, we have $(\gamma_1^{-1}\varphi_{s_1}\sigma)(0) \in Q$ and $(\gamma_1^{-1}\varphi_{s_2}\sigma)(0) \in \gamma_1^{-1}\gamma_2 Q$. Since $(\gamma_1^{-1}\varphi_{s_1}\sigma)(0) = \gamma_1^{-1}\sigma(s_1)$ and $(\gamma_1^{-1}\varphi_{s_2}\sigma)(0) = \gamma_1^{-1}\sigma(s_2)$, this implies that for some constant q > 0 depending on Q, we have $|d_{GM}(e, \gamma_1^{-1}\gamma_2) - (s_2 - s_1)| \leq q$. Setting $\gamma := \gamma_1^{-1}\gamma_2$, this is rephrased as

(6.11)
$$|d_{GM}(e,\gamma) - (s_2 - s_1)| \le q.$$

Moreover, noting that $(\varphi_{s_2}\sigma)(0) = (\varphi_{s_1}\sigma)(s_2 - s_1)$, we have

$$(\gamma_1^{-1}\varphi_{s_1}\sigma)(0), \gamma^{-1}(\gamma_1^{-1}\varphi_{s_1}\sigma)(s_2-s_1) \in Q.$$

Hence, by Lemma 6.3 and Lemma 6.5, we have

$$\kappa_{s_2-s_1}(\varphi_{s_1}\sigma) = \kappa_{s_2-s_1}(\gamma_1^{-1}\varphi_{s_1}\sigma)$$

$$\geq \frac{1}{C_Q}e^{-\psi(\mu_{\theta}(\gamma))}$$

with the constant C_Q given by Lemma 6.5. By Theorem 5.6 and (6.11), we deduce

$$\kappa_{s_2-s_1}(\varphi_{s_1}\sigma) \ge \frac{1}{C_Q} e^{-c'd_{GM}(e,\gamma)-C} \ge \frac{e^{-c'q-C}}{C_Q} e^{-c'(s_2-s_1)}.$$

Together with (6.10), we have (6.12)

$$\kappa_{t}(\sigma) \geq c_{1}^{-2} e^{-(3c'-2c)t} e^{(3c'-2c)(s_{2}-s_{1})} \frac{e^{-c'q-C}}{C_{Q}} e^{-c'(s_{2}-s_{1})}$$

$$= \frac{c_{1}^{-2} e^{-c'q-C}}{C_{Q}} e^{-(3c'-2c)t} e^{(2c'-2c)(s_{2}-s_{1})} \geq \frac{c_{1}^{-2} e^{-c'q-C}}{C_{Q}} e^{-(3c'-2c)t}$$

where the last inequality is due to $c' \geq c$ and $s_2 \geq s_1$.

Now note that $a' \geq 3c' - 2c$ by Theorem 5.6 and choose b > 1 such that $b^{-1} \leq \min\left(c_1^{-1}, \frac{c_1^{-2}e^{-c'q-C}}{C_Q}\right)$. Then it follows from (6.9) and (6.12) that

$$\kappa_t(\sigma) \ge \frac{1}{b} e^{-a't}$$

as desired. \Box

Proof of the upper bound in Theorem 6.4. Let $\sigma \in \mathcal{G}$ and $t \geq 0$. If $\varphi_s \sigma \in \mathcal{G}_{thin}$ for all $0 \leq s \leq t$, then by Lemma 6.7, we have

(6.13)
$$\kappa_t(\sigma) \le c_1 e^{-ct}$$

where c_1 and c are constants given in Lemma 6.7. We now assume that $\varphi_s \sigma \in \mathcal{G}_{thick}$ for some $s \in [0, t]$. As in the proof of the lower bound, we set

$$s_1 := \min\{s \in [0, t] : \varphi_s \sigma \in \mathcal{G}_{thick}\};$$

$$s_2 := \max\{s \in [0, t] : \varphi_s \sigma \in \mathcal{G}_{thick}\}$$

We then have from (6.4) and Lemma 6.7 that

(6.14)
$$\kappa_t(\sigma) = \kappa_{t-s_2}(\varphi_{s_2}\sigma)\kappa_{s_2-s_1}(\varphi_{s_1}\sigma)\kappa_{s_1}(\sigma)$$
$$\leq c_1^2 e^{-ct} e^{c(s_2-s_1)}\kappa_{s_2-s_1}(\varphi_{s_1}\sigma).$$

By the similar argument as in the proof of the lower bound, we have

$$\kappa_{s_2-s_1}(\varphi_{s_1}\sigma) \le C_Q e^{-\psi(\mu_{\theta}(\gamma))}$$

where $Q \subset X_{GM} - \bigcup_{P \in \mathcal{P}^{\Gamma}} H_P$ is a compact fundamental domain for the Γ -action, C_Q is the constant given by Lemma 6.5, and $\gamma \in \Gamma$ is such that $|d_{GM}(e,\gamma) - (s_2 - s_1)| \leq q$ for some constant $q \geq 0$ depending only on Q. By Theorem 5.6, this implies

$$\kappa_{s_2-s_1}(\varphi_{s_1}\sigma) \le C_Q e^{-cd_{GM}(e,\gamma)+C} \le C_Q e^{cq+C} e^{-c(s_2-s_1)}$$

with the constant C therein. Plugging this into (6.14), we have

(6.15)
$$\kappa_t(\sigma) \le c_1^2 C_Q e^{cq+C} e^{-ct}.$$

We then choose $b \ge \max(c_1, c_1^2 C_Q e^{cq+C})$. By (6.13) and (6.15), we finally obtain

$$\kappa_t(\sigma) \le be^{-ct}.$$

Since a = c by Theorem 5.6, this completes the proof.

Proof of Theorem 6.1. As described above, we define the Γ -equivariant continuous section $u: \mathcal{G} \to \mathcal{G} \times \mathbb{R}_+$ by setting $u(\sigma) = (\sigma, v_{\sigma})$, and set $\bar{\Psi} = \Psi_0 \circ u$ so that we have the following commutative diagram:

$$\begin{array}{ccc}
\mathcal{G} \times \mathbb{R}_+ \\
\downarrow & & & & \\
u & \downarrow & & & \\
\mathcal{G} & \xrightarrow{\tilde{\Psi}} & \tilde{\Omega}_{\psi}
\end{array}$$

In other words, $\tilde{\Psi}(\sigma) = (\sigma^+, \sigma^-, \log v_\sigma)$.

We first prove that $\tilde{\Psi}$ is proper, from which the properness of Ψ follows. Suppose not. Then there exists a sequence $\sigma_n \in \mathcal{G}$ such that σ_n escapes every compact subset of \mathcal{G} as $n \to \infty$ while $\tilde{\Psi}(\sigma_n) = (\sigma_n^+, \sigma_n^-, \log v_{\sigma_n})$ converges in $\tilde{\Omega}_{\psi}$. Since the sequence (σ_n^+, σ_n^-) converges in $\Lambda_{\theta}^{(2)}$, two sequences σ_n^+ and σ_n^- converge to two distinct points in ∂X_{GM} . This implies that there exist a sequence $t_n \in \mathbb{R}$ and a compact subset $Q \subset \mathcal{G}$ so that $\varphi_{t_n} \sigma_n \in Q$ for all $n \ge 1$. Moreover, since the sequence $\tilde{\Psi}(\sigma_n) = (\sigma_n^+, \sigma_n^-, \log v_{\sigma_n})$ converges in $\tilde{\Omega}_{\psi}$, the sequence v_{σ_n} converges in \mathbb{R}_+ . This implies that, after passing to a subsequence,

(6.16) the sequence $||v_{\sigma_n}||_{\varphi_{t_n}\sigma_n}$ converges to a positive number.

On the other hand, since the sequence σ_n escapes any compact subset of \mathcal{G} as $n \to \infty$, we have either $t_n \to \infty$ or $t_n \to -\infty$ as $n \to \infty$, after passing to a subsequence. Suppose first that $t_n \to \infty$ as $n \to \infty$. It follows from Theorem 6.4 that for all sufficiently large $n \ge 1$,

$$||v_{\sigma_n}||_{\varphi_{t_n}\sigma_n} = \kappa_{t_n}(\sigma_n) \le be^{-at_n} \to 0 \text{ as } n \to \infty.$$

This contradicts (6.16). We now assume that $t_n \to -\infty$ as $n \to \infty$. Then for all sufficiently large $n \ge 1$, we have

$$\|v_{\sigma_n}\|_{\varphi_{t_n}\sigma_n} = \frac{1}{\|v_{\varphi_{t_n}\sigma_n}\|_{\sigma_n}} = \frac{1}{\kappa_{-t_n}(\varphi_{t_n}\sigma_n)} \ge b^{-1}e^{-at_n}$$

by (6.4) and Theorem 6.4. Therefore, $||v_{\sigma_n}||_{\varphi_{t_n}\sigma_n} \to \infty$ as $n \to \infty$, contradicting (6.16). This proves the properness.

We now prove items (1), (2), and (3). Since the Γ -action on \mathcal{G} and $\tilde{\Omega}_{\psi}$ commute with flows on \mathcal{G} and $\tilde{\Omega}_{\psi}$, it suffices to prove the statement for $\tilde{\Psi}: \mathcal{G} \to \tilde{\Omega}_{\psi}$. For $(\sigma, s) \in \mathcal{G} \times \mathbb{R} \to \mathbb{R}$, define a continuous function

$$\tilde{\mathsf{t}}(\sigma, s) := \log v_{\varphi_s \sigma} - \log v_{\sigma}.$$

By (6.4), we have

$$v_{\varphi_s\sigma} = \frac{v_\sigma}{\|v_\sigma\|_{\varphi_s\sigma}} = \frac{v_\sigma}{\kappa_s(\sigma)}.$$

Therefore

(6.17)
$$\tilde{\mathsf{t}}(\sigma, s) = -\log \kappa_s(\sigma),$$

is Γ -invariant (Lemma 6.3) and hence induces a continuous map $t : \Gamma \setminus \mathcal{G} \times \mathbb{R} \to \mathbb{R}$. The cocycle property of \tilde{t} follows from (6.4). By the definition of $\tilde{\Psi}$, we have

$$\tilde{\Psi}(\varphi_s \sigma) = \phi_{\tilde{\mathsf{t}}(\sigma,s)} \tilde{\Psi}(\sigma),$$

from which (1) follows. This also implies (2), noting that

$$\phi_{-\tilde{\mathfrak{t}}(\sigma,s)}\tilde{\Psi}(\varphi_s\sigma)=\tilde{\Psi}(\sigma)=\tilde{\Psi}(\varphi_{-s}\varphi_s\sigma)=\phi_{\tilde{\mathfrak{t}}(\varphi_s\sigma,-s)}(\varphi_s\sigma).$$

Moreover, by Theorem 6.4 and (6.17), we have that for all s > 0,

(6.18)
$$as - \log b \le \tilde{\mathsf{t}}(\sigma, s) \le a's + \log b$$

where a, a' > 0 and $b \ge 1$ are given in Theorem 6.4. This shows (3).

To see the surjectivity of $\tilde{\Psi}$, note first that for each $(\xi, \eta, t_0) \in \tilde{\Omega}_{\psi}$, there exists $\sigma \in \mathcal{G}$ with $\sigma^+ = \xi$ and $\sigma^- = \eta$ as X_{GM} is a proper geodesic Gromov hyperbolic space. For $s_0 \geq 0$, it follows from (6.18) that

$$\tilde{\mathsf{t}}(\sigma, s_0) \ge as_0 - \log b$$
 and $\tilde{\mathsf{t}}(\varphi_{-s_0}\sigma, s_0) \ge as_0 - \log b$.

Since $\tilde{t}(\varphi_{-s_0}\sigma, s_0) = -\tilde{t}(\sigma, -s_0)$ due to the cocycle property (6.4), we have

$$\tilde{\mathsf{t}}(\sigma, s_0) \ge as_0 - \log b$$
 and $\tilde{\mathsf{t}}(\sigma, -s_0) \le -as_0 + \log b$.

Since $\tilde{\Psi}$ is continuous, this implies that the image of $\tilde{\Psi}$ restricted on $\{\varphi_s\sigma: -s_0 \leq s \leq s_0\}$ contains $\{\phi_t\tilde{\Psi}(\sigma): -as_0 + \log b \leq t \leq as_0 - \log b\}$. Since $\sigma^+ = \xi$ and $\sigma^- = \eta$, $\tilde{\Psi}(\sigma) = (\xi, \eta, t_1)$ for some $t_1 \in \mathbb{R}$. We then take s_0 large enough so that

$$-as_0 + \log b + t_1 \le t_0 \le as_0 - \log b + t_1$$
.

Then $(\xi, \eta, t_0) \in \{\phi_t \tilde{\Psi}(\sigma) : -as_0 + \log b \le t \le as_0 - \log b\}$, and hence (ξ, η, t_0) belongs to the image of $\tilde{\Psi}$. Therefore, $\tilde{\Psi}$ is surjective. This completes the proof.

7. Uniformity of fibers of reparameterization

Recall the reparameterization $\tilde{\Psi}: \mathcal{G} \to \tilde{\Omega}_{\psi}$ constructed in section 6. The main goal of this section is to establish a uniform bound on the diameters of the fibers of $\tilde{\Psi}$:

Theorem 7.1 (Theorem 1.4(4)). The fibers of $\tilde{\Psi}$ have uniformly bounded diameter. That is, there exists C > 0 such that for any $\sigma, \sigma' \in \mathcal{G}$,

$$\tilde{\Psi}(\sigma) = \tilde{\Psi}(\sigma') \Longrightarrow d_{GM}(\sigma(0), \sigma'(0)) < C.$$

We prove this result by analyzing the explicit form of our reparameterization. For $\sigma \in \mathcal{G}$,

$$\tilde{\Psi}(\sigma) = (\sigma^+, \sigma^-, \log v_\sigma)$$

where $v_{\sigma} \in \mathbb{R}_{+}$ is the unit vector with respect to the norm $\|\cdot\|_{\sigma}$, as constructed in section 6. Thus, Theorem 7.1 follows from the next proposition:

Proposition 7.2. There exists a constant $C_0 > 0$ such that the following holds: for any $\sigma, \sigma' \in \mathcal{G}$ with $\sigma^{\pm} = \sigma'^{\pm}$, there exists $s \in \mathbb{R}$ such that

$$d_{GM}(\sigma(0), \sigma'(s)) < C_0$$
 and $|\log v_{\sigma} - \log v_{\varphi_s \sigma'}| < C_0$.

Moreover, the shift parameter s satisfies:

• if $s \ge 0$, then

$$\frac{(\log v_{\sigma} - \log v_{\sigma'}) - C_0 - B}{a'} \le s \le \frac{(\log v_{\sigma} - \log v_{\sigma'}) + C_0 + B}{a}.$$

• if s < 0, then

$$\frac{(\log v_{\sigma} - \log v_{\sigma'}) - C_0 - B}{a} \le s \le \frac{(\log v_{\sigma} - \log v_{\sigma'}) + C_0 + B}{a'}.$$

Here 0 < a < a' and B > 0 are the constants appearing in Theorem 6.1.

To prove Proposition 7.2, we require several preparatory lemmas. We begin by recalling the definition of the *Gromov product* on $X_{GM} \cup \partial X_{GM}$. For $x, y, z \in X_{GM}$, define

$$(y|z)_x := \frac{1}{2}(d_{GM}(x,y) + d_{GM}(x,z) - d_{GM}(y,z)).$$

For $y, z \in X_{GM} \cup \partial X_{GM}$, define

$$(y|z)_x := \sup \liminf_{i,j \to \infty} (y_i|z_j)_x$$

where the supremum is taken over all sequences $y_i, z_j \in X_{GM}$ converging to y, z, respectively. By the Gromov hyperbolicity of X_{GM} (Theorem 5.1), the Gromov product $(y|z)_x$ estimates the distance from x to a geodesic [y, z], up to a uniformly bounded additive error.

Lemma 7.3. Let $\sigma_n \in \mathcal{G}$ be a sequence such that $\{\sigma_n(0) \in X_{GM} : n \geq 1\}$ is uniformly bounded. Then there do not exist sequences $T_n, S_n > 0$ tending to ∞ such that both $\sigma_n(T_n)$ and $\sigma_n(-S_n)$ lie in the same horoball $\overline{H_P}$ for some $P \in \mathcal{P}$.

Proof. Suppose such sequences exist. Then since σ_n^{\pm} belong to the shadows $O_1^{GM}(\sigma_n(0), \sigma_n(T_n))$ and $\sigma_n^- \in O_1^{GM}(\sigma_n(0), \sigma_n(-S_n))$, and $\{\sigma_n(0) : n \geq 1\}$ is bounded, we must have $\lim_{n\to\infty} \sigma_n^{\pm} = \xi_P$. On the other hand, the boundedness of $\sigma_n(0)$ implies that $\{\sigma_n\}$ is relatively compact, yielding a contradiction.

It is a standard fact in the Gromov hyperbolic geometry (cf. [8, Theorem III.H.1.7]) that there exists a constant $c_0 > 0$ such that any two geodesics with same endpoints have Hausdorff distance at most c_0 .

Lemma 7.4. There exists $T'_{\mathsf{h}} > 0$ such that for each $P \in \mathcal{P}^{\Gamma}$ and $\sigma \in \partial^{+}\mathcal{G}_{P}$ with $T^{+}_{\sigma} > 3T'_{\mathsf{h}}$, the c_{0} -neighborhood of the segment $\sigma([T'_{\mathsf{h}}, T^{+}_{\sigma} - T'_{\mathsf{h}}])$ is entirely contained in H_{P} .

Proof. Suppose not. Since \mathcal{P} is finite, there exist $P \in \mathcal{P}$ and sequences $\sigma_n \in \partial^+ \mathcal{G}_P$ with $T_{\sigma_n}^+ > 3n$ and $t_n \in [n, T_{\sigma_n}^+ - n]$ such that $\sigma_n(t_n)$ is not contained in the c_0 -neighborhood of H_P . Hence there exists $p_n \in P$ such that $d_{GM}(\sigma_n(t_n), (p_n, 2)) < c_0$. Replacing σ_n with $p_n^{-1}\sigma_n$, we may assume that $p_n = e$, so $\sigma_n(t_n)$ lies in a fixed bounded neighborhood of (e, 2). Applying Lemma 7.3 to $\varphi_{t_n}\sigma_n$ with $T_n = T_{\sigma_n}^+ - t_n$ and $S_n = t_n$ yields a contradiction.

Lemma 7.5. There exists $\tilde{T} > 0$ such that for any $P \in \mathcal{P}^{\Gamma}$ and $\sigma \in \partial^{+}\mathcal{G}_{P}$ with $\sigma^{+} = \xi_{P}$, we have $\sigma(t) \in H_{P}$ for all $t > \tilde{T}$.

Proof. Suppose not. As in the proof of Lemma 7.4, for some $P \in \mathcal{P}$, there exist $\sigma_n \in \partial^+ \mathcal{G}_P$ with $\sigma_n^+ = \xi_P$ and $t_n > n$ such that $\sigma_n(t_n) = (e, 2)$. Since $\sigma_n^+ = \xi_P$, there exist $T_n > n + t_n$ such that $\sigma_n(T_n) \in H_P$ and $\sigma_n(0) \in \partial H_P$. Applying Lemma 7.3 to $\varphi_{t_n} \sigma_n$ gives a contradiction.

Let $T_{\mathsf{h}}', \tilde{T} > 0$ be constants given in Lemma 7.4 and Lemma 7.5 respectively.

Lemma 7.6. There exists $T_h > T'_h + \tilde{T} + c_0 + 2$ with the following property: let $P \in \mathcal{P}^{\Gamma}$, $\sigma \in \partial^+ \mathcal{G}_P$ with $T^+_{\sigma} > 5T_h$, and $t \in [2T_h, T^+_{\sigma} - 2T_h]$. Suppose $\sigma' \in \partial^+ \mathcal{G}_P$ satisfies $\sigma'^{\pm} = \sigma^{\pm}$ and $d_{GM}(\sigma'([0, T^+_{\sigma'}]), \sigma(t)) < c_0$. Then

- (1) $d_{GM}(\sigma(0), \sigma'(0)) < T_h;$
- (2) $T_{\sigma}^{+} < \infty$ if and only if $T_{\sigma'}^{+} < \infty$, and in this case,

$$d_{GM}(\sigma(T_{\sigma}^+), \sigma'(T_{\sigma'}^+)) < T_{\mathsf{h}}.$$

Proof. Suppose that there exist $P \in \mathcal{P}$, $\sigma_n, \sigma'_n \in \partial^+ \mathcal{G}_P$ with $T^+_{\sigma_n} > 5n$ and $\sigma_n(0) = (e, 2), \, \sigma^{\pm}_n = \sigma'^{\pm}_n$, and $t_n \in [2n, T^+_{\sigma_n} - 2n], \, s_n \in [0, T^+_{\sigma'_n}]$ such that

$$d_{GM}(\sigma_n(t_n), \sigma'_n(s_n)) < c_0$$
 and $d_{GM}(\sigma_n(0), \sigma'_n(0)) > n$.

Since $\sigma_n(t_n) \in H_P$, $\sigma_n(0) = (e, 2)$, and $d_{GM}(\sigma_n(t_n), \sigma_n(0)) = t_n \to \infty$, we have $\sigma_n(t_n) \to \xi_P$ as $n \to \infty$. Write $\sigma'_n(0) = (p_n, 2)$ with $p_n \in P$. We claim that

(7.1)
$$d_{GM}(\sigma_n(t_n), \sigma'_n(0)) \to \infty;$$

if not, the sequence $p_n^{-1}\sigma_n(t_n)$ is contained in a fixed compact subset. Since $p_n^{-1}\sigma_n(T_{\sigma_n}^+), p_n^{-1}\sigma_n(0) \in \partial H_P$ and $T_{\sigma_n}^+ - t_n, t_n \to +\infty$, this contradicts Lemma 7.3.

Let $s'_n \in \mathbb{R}$ be such that $d_{GM}(\sigma_n(0), \sigma'_n(s'_n)) < c_0$, which exists by the Gromov hyperbolicity.

We now divide the argument into two cases:

Case 1: $s'_n \geq 0$ for infinitely many n. Then the Gromov product $(\sigma'_n(0)|\sigma'^+_n)_{\sigma_n(0)}$ is uniformly bounded, passing to a subsequence. Since $\sigma_n(0)=(e,2)$, it follows that after passing to a subsequence, $\sigma'_n(0) \to \xi$ and $\sigma'^+_n \to \xi'$ with $\xi \neq \xi'$. But $\sigma'_n(0)=(p_n,2)$ with $p_n \in P$, and since $d_{GM}(\sigma_n(0),\sigma'_n(0)) > n$, we conclude that $p_n \to \infty$ in P, hence $\sigma'_n(0) \to \xi_P$. On the other hand, since $\sigma'^+_n = \sigma^+_n \in O_1^{GM}((e,2),\sigma_n(T^+_{\sigma_n}))$ and $\sigma_n(T^+_{\sigma_n}) = 0$

 $(q_n, 2)$ with $q_n \to \infty$ in P, it follows from Lemma 5.9 that $\sigma_n^{\prime +} \to \xi_P$, This contradicts the distinctness $\xi \neq \xi'$.

Case 2: $s'_n < 0$ for all but finitely many $n \ge 1$. In this case, two geodesic segments $\sigma_n([0,t_n])$ and $\sigma'_n([s'_n,s_n])$ have c_0 -close endpoints. Hence, by Gromov hyperbolicity, there exists $t'_n \in [0,t_n]$ such that $\sigma_n(t'_n)$ is uniformly close to $\sigma'_n(0)$. This implies that the Gromov product $(\sigma_n(0)|\sigma_n(t_n))_{\sigma'_n(0)} = (p_n^{-1}\sigma_n(0)|p_n^{-1}\sigma_n(t_n))_{p_n^{-1}\sigma'_n(0)}$ is uniformly bounded. It follows from $p_n \to \infty$ that $p_n^{-1}\sigma_n(0) = (p_n^{-1},2)$ converges to ξ_P , after passing to a subsequence. Since $p_n^{-1}\sigma'_n(0) = (e,2)$, $p_n^{-1}\sigma_n(t_n)$ must converge to a point distinct from ξ_P . On the other hand, we have $p_n^{-1}\sigma_n(t_n) \in H_P$, and from (7.1), we know it diverges from (e,2), thus converging to ξ_P again, which is a contradiction.

Now let $T_h > 0$ be the constant obtained from the first part. Let $P \in \mathcal{P}$, $\sigma \in \partial^+ \mathcal{G}_P$ with $T_\sigma^+ > 5T_h$, and $t \in [2T_h, T_\sigma^+ - 2T_h]$. Let $\sigma' \in \partial^+ \mathcal{G}_P$ satisfy $\sigma'^{\pm} = \sigma^{\pm}$, and suppose that there exists $s \in [0, T_{\sigma'}^+]$ such that $d_{GM}(\sigma'(s), \sigma(t)) < c_0$. If $\sigma^+ = \sigma'^+ \neq \xi_P$, then both T_σ^+ and $T_{\sigma'}^+$ are finite. So it suffices to consider the case where $\sigma^+ = \sigma'^+ = \xi_P$. Since $T_\sigma^+ > 5T_h > \tilde{T}$, Lemma 7.5 implies $T_\sigma^+ = \infty$. By the first part, we have $d_{GM}(\sigma(0), \sigma'(0)) < T_h$, and since $t > 2T_h$, we have $T_{\sigma'}^+ \geq s > t - T_h - c_0 > T_h - c_0 > \tilde{T}$, so Lemma 7.5 again implies $T_{\sigma'}^+ = \infty$. Finally, when $T_\sigma^+ < \infty$, and hence $T_{\sigma'}^+ < \infty$, we can apply the same argument to the time-reversed geodesics of $\varphi_{T_\sigma^+} \sigma$ and $\varphi_{T_\sigma^+} \sigma'$, completing the proof.

Proof of Proposition 7.2. Fix two geodesics $\sigma, \sigma' \in \mathcal{G}$ with the same endpoints $\sigma^{\pm} = \sigma'^{\pm}$. Since the norm $\|\cdot\|_{\sigma}$ used to define v_{σ} depends on the position of $\sigma(0)$, we divide the proof into cases based on the geometry of $\sigma(0)$.

Case 1. Suppose that $\sigma(0)$ lies within $5T_h$ -neighborhood of the Cayley graph of Γ in X_{GM} . That is, $d_{GM}(\Gamma, \sigma(0)) < 5T_h$. By the definition of $c_0 > 0$, we can find $s \in \mathbb{R}$ so that

$$d_{GM}(\sigma(0), \sigma'(s)) < c_0.$$

Let $\gamma \in \Gamma$ be such that $d_{GM}(\gamma \sigma(0), e) < 5T_h$. Then both $\gamma \sigma(0)$ and $\gamma \sigma'(s)$ lie in the $(5T_h + c_0)$ -neighborhood of the identity. Hence the shifted geodesics $\gamma \sigma$ and $\gamma \varphi_s \sigma' = \varphi_s \gamma \sigma'$ lie in a uniformly compact subset of \mathcal{G} . Therefore, there exists a uniform constant $C_1 > 0$ such that

$$|\log v_{\gamma\sigma} - \log v_{\gamma\varphi_s\sigma'}| < C_1.$$

By the equivariance formula for $v_{\gamma\sigma}$ (see (6.5)), we have

$$\log v_{\gamma\sigma} = \log v_{\sigma} + \psi(\beta_{\sigma^{+}}^{\theta}(\gamma^{-1}, e))$$
$$\log v_{\gamma\varphi_{s}\sigma'} = \log v_{\varphi_{s}\sigma'} + \psi(\beta_{\sigma'^{+}}^{\theta}(\gamma^{-1}, e)).$$

Since $\sigma^+ = \sigma'^+$, the Busemann maps in both expressions coincide and we conclude

$$|\log v_{\sigma} - \log v_{\varphi_s \sigma'}| < C_1.$$

Choosing $C_0 > \max(c_0, C_1)$ completes the proof in this case.

Case 2. Suppose that $d_{GM}(\Gamma, \sigma(0)) > 5T_h$, $\sigma(0) \in H_P$, and $\sigma^+ = \xi_P$ for some $P \in \mathcal{P}^{\Gamma}$. In this case, we can write $\sigma = \varphi_t \sigma_0$ for some $\sigma_0 \in \partial^+ \mathcal{G}_P$ and t > 0. By hypothesis, $t > 5T_h > \tilde{T}$, and hence $T_{\sigma_0}^+ = \infty$ by Lemma 7.5. Then

(7.2)
$$\|\cdot\|_{\sigma} = e^{-ct} \|\cdot\|_{\sigma_0}$$

where c > 0 is the constant defined in (6.2).

By the definition of $c_0 > 0$, there exists $s \in \mathbb{R}$ such that $d_{GM}(\sigma'(s), \sigma(0)) < c_0$. Since $t > 5T_h > T_h'$ and $T_{\sigma_0}^+ = \infty$, Lemma 7.4 implies $\sigma'(s) \in H_P$. So we may write $\varphi_s \sigma' = \varphi_{t'} \sigma'_0$ for some $\sigma'_0 \in \partial^+ \mathcal{G}_P$ and t' > 0. Applying Lemma 7.6 to σ_0 and σ'_0 , we obtain

(7.3)
$$d_{GM}(\sigma_0(0), \sigma'_0(0)) < T_h \text{ and } T_{\sigma'_0}^+ = \infty.$$

This gives

(7.4)
$$\|\cdot\|_{\varphi_s \sigma'} = e^{-ct'} \|\cdot\|_{\sigma'_0}.$$

Combining (7.2) and (7.4), we compute:

$$\log v_{\sigma} = ct + \log v_{\sigma_0}$$

$$\log v_{\varphi_s \sigma'} = ct' + \log v_{\sigma'_0}.$$

Hence it suffices to bound |t-t'| and $|\log v_{\sigma_0} - \log v_{\sigma'_0}|$. First,

$$t = d_{GM}(\sigma_0(0), \sigma(0))$$

$$\leq d_{GM}(\sigma_0(0), \sigma'_0(0)) + d_{GM}(\sigma'_0(0), \sigma'(s)) + d_{GM}(\sigma'(s), \sigma(0)) < T_h + t' + c_0.$$

Similarly, $t' < T_h + t + c_0$, and hence

$$|t - t'| < T_{\mathsf{h}} + c_0.$$

Since $\sigma_0, \sigma'_0 \in \partial^+ \mathcal{G}_P$ and their basepoints $\sigma_0(0)$ and $\sigma'_0(0)$ lie in the 2-neighborhood of the Cayley graph of Γ , with distance less than T_h by (7.3), we may apply Case 1 to σ_0, σ'_0 to obtain

$$|\log v_{\sigma_0} - \log v_{\sigma_0'}| < C_2$$

for some uniform constant $C_2 > 0$. Therefore,

$$|\log v_{\sigma} - \log v_{\varphi_s \sigma'}| < c(T_{\mathsf{h}} + c_0) + C_2.$$

Taking $C_0 > \max(c_0, c(T_h + c_0) + C_2)$ verifies the claim in this case.

Case 3. Suppose $d_{GM}(\Gamma, \sigma(0)) > 5T_h$, $\sigma(0) \in H_P$ and $\sigma^- = \xi_P$ for some $P \in \mathcal{P}^{\Gamma}$. In this case, we apply Lemma 7.5 to the time reversal of σ , obtaining $\sigma = \varphi_t \tilde{\sigma}_0$ for some $\tilde{\sigma}_0 \in \partial^- \mathcal{G}_P$ with $T_{\tilde{\sigma}_0}^- = -\infty$ and t < 0. The norm $\|\cdot\|_{\sigma}$ is given by

$$\|\cdot\|_{\sigma} = e^{-ct} \|\cdot\|_{\tilde{\sigma}_0}.$$

This case is symmetric to Case 2 and follows by the same argument, which we omit.

Case 4. Suppose that none of Cases 1-3 applies. Then for some $P \in \mathcal{P}^{\Gamma}$, $\sigma_0 \in \partial^+ \mathcal{G}_P$ with finite $T := T_{\sigma_0}^+ < \infty$, and some $t \in [5T_h, T - 5T_h]$, we have $\sigma = \varphi_t \sigma_0$. In particular, $T > 5T_h$ and $t \in [2T_h, T - 2T_h]$. We may assume that $P \in \mathcal{P}$ and $\sigma_0(0) = (e, 2)$.

By definition of $c_0 > 0$, there exists $s'' \in \mathbb{R}$ such that

$$(7.5) d_{GM}(\sigma(0), \sigma'(s'')) < c_0.$$

By Lemma 7.4, $\sigma'(s'') \in H_P$, and hence

(7.6)
$$\varphi_{s''}\sigma' = \varphi_{t''}\sigma'_0$$
 for some $t'' > 0$ and $\sigma'_0 \in \partial^+ \mathcal{G}_P$.

By Lemma 7.6, we have $T':=T_{\sigma_0'}^+<\infty$ and

(7.7)
$$d_{GM}(\sigma_0(0), \sigma'_0(0)) < T_h \text{ and } d_{GM}(\sigma_0(T), \sigma'_0(T')) < T_h.$$

In particular,

$$|T - T'| < 2T_{h}.$$

Since all points $\sigma_0(0)$, $\sigma'_0(0)$, $\sigma_0(T)$, and $\sigma'_0(T')$ lie in the 2-neighborhood of the Cayley graph of Γ , we may apply the argument of Case 1 to σ_0 and σ'_0 to obtain a uniform constant $C_3 > 0$ such that

$$(7.9) |\log v_{\sigma_0} - \log v_{\sigma'_0}| < C_3 and |\log v_{\varphi_T \sigma_0} - \log v_{\varphi_{T'} \sigma'_0}| < C_3$$

As the norm $\|\cdot\|_{\sigma}$ is defined according to the time parameter t, we now proceed to subcases depending on how t compares the ends of the segment [0,T].

Case 4-1. Suppose that $0 < t \le T/3$. By (7.5), (7.6), (7.7), and (7.8), we have

$$-(T_{\mathsf{h}}+c_0) < t - (T_{\mathsf{h}}+c_0) \le t'' \le t + (T_{\mathsf{h}}+c_0) \le \frac{T}{3} + (T_{\mathsf{h}}+c_0) < \frac{T'}{3} + (2T_{\mathsf{h}}+c_0).$$

Hence, we can take $t' \in (t'' - (2T_h + c_0), t'' + (T_h + c_0))$ so that

$$0 < t' < \frac{T'}{3}.$$

This implies

$$|t - t'| < 3T_h + 2c_0 \quad \text{and} \quad$$

(7.11)

$$d_{GM}(\sigma(0), \sigma_0'(t')) \le d_{GM}(\sigma(0), \sigma'(s'')) + d_{GM}(\sigma_0'(t''), \sigma_0'(t')) < 2(T_{\mathsf{h}} + c_0)$$

where the last inequality follows from (7.5) and $|t' - t''| < 2T_h + c_0$. From the construction, we have

$$\|\cdot\|_{\sigma} = e^{-ct}\|\cdot\|_{\sigma_0}$$
 and $\|\cdot\|_{\varphi_{t'}\sigma'_0} = e^{-ct'}\|\cdot\|_{\sigma'_0}$.

and hence

$$\log v_{\sigma} = ct + \log v_{\sigma_0}$$
 and $\log v_{\varphi_{t'}\sigma'_0} = ct' + \log v_{\sigma'_0}$.

Hence, using (7.10) and (7.9), we deduce

$$|\log v_{\sigma} - \log v_{\varphi_{t'}\sigma'_{0}}| < c(3T_{\mathsf{h}} + 2c_{0}) + C_{3}.$$

Since $\varphi_s \sigma' = \varphi_{t'} \sigma'_0$ for some $s \in \mathbb{R}$, we conclude the claim in this case hold with $C_0 > \max(2(T_h + c_0), c(3T_h + 2c_0) + C_3)$.

Case 4-2. Suppose that $2T/3 \le t < T$. In this case, the norm $\|\cdot\|_{\sigma}$ is given by

$$\|\cdot\|_{\sigma} = e^{c(T-t)} \|\cdot\|_{\varphi_T \sigma_0}.$$

This case is symmetric to Case 4-1 and follows by the same argument using T-t in place of t, together with (7.8). We omit the details.

Case 4-3. Suppose that T/3 < t < 2T/3. Then from the same bounds (7.5), (7.6), (7.7), and (7.8),

$$\frac{T'}{3} - (2T_{\mathsf{h}} + c_0) < \frac{T}{3} - (T_{\mathsf{h}} + c_0) < t - (T_{\mathsf{h}} + c_0) \le t''$$

$$\le t + (T_{\mathsf{h}} + c_0) \le \frac{2T}{3} + (T_{\mathsf{h}} + c_0) < \frac{2T'}{3} + (3T_{\mathsf{h}} + c_0).$$

Hence we can find $t' \in (t'' - (3T_h + c_0), t'' + (2T_h + c_0))$ so that

$$\frac{T'}{3} < t' < \frac{2T'}{3}.$$

This gives

$$|t - t'| < 4T_{h} + 2c_{0} \quad \text{and} \quad$$

$$(7.13) d_{GM}(\sigma(0), \sigma'_0(t')) \le d_{GM}(\sigma(0), \sigma'(s'')) + d_{GM}(\sigma'_0(t''), \sigma'_0(t')) < 3T_h + 2c_0$$

using again (7.5) and $|t' - t''| < 3T_h + c_0$.

Now using the interpolation formula for the norm, we get

$$\begin{aligned} \|\cdot\|_{\sigma} &= \|\cdot\|_{\varphi_{T/3}\sigma_{0}}^{2-\frac{3}{T}t}\|\cdot\|_{\varphi_{2T/3}\sigma_{0}}^{\frac{3}{T}t-1} = e^{c(2t-T)}\|\cdot\|_{\sigma_{0}}^{2-\frac{3}{T}t}\|\cdot\|_{\varphi_{T}\sigma_{0}}^{\frac{3}{T}t-1} \\ \|\cdot\|_{\varphi_{t'}\sigma_{0}'} &= \|\cdot\|_{\varphi_{T'/3}\sigma_{0}'}^{2-\frac{3}{T'}t'}\|\cdot\|_{\varphi_{2T'/3}\sigma_{0}'}^{\frac{3}{T'}t'-1} = e^{c(2t'-T')}\|\cdot\|_{\sigma_{0}'}^{2-\frac{3}{T'}t'}\|\cdot\|_{\varphi_{T'}\sigma_{0}'}^{\frac{3}{T'}t'-1}. \end{aligned}$$

Therefore,

$$\log v_{\sigma} = cT - 2ct + \left(2 - \frac{3}{T}t\right) \log v_{\sigma_0} + \left(\frac{3}{T}t - 1\right) \log v_{\varphi_T\sigma_0}$$

$$= cT - 2ct + 2 \log v_{\sigma_0} - \log v_{\varphi_T\sigma_0} + \frac{3t}{T} \left(\log v_{\varphi_T\sigma_0} - \log v_{\sigma_0}\right)$$

$$\log v_{\varphi_{t'}\sigma'_0} = cT' - 2ct' + 2 \log v_{\sigma'_0} - \log v_{\varphi_{T'}\sigma'_0} + \frac{3t'}{T'} \left(\log v_{\varphi_{T'}\sigma'_0} - \log v_{\sigma'_0}\right).$$

Now using the triangle inequality, (7.8), (7.12), (7.9), and the fact that t' < 2T'/3, we estimate

$$\begin{split} &|\log v_{\sigma} - \log v_{\varphi_{t'}\sigma'_{0}}| \\ &\leq 2cT_{\mathsf{h}} + 2c(4T_{\mathsf{h}} + 2c_{0}) + 2C_{3} + C_{3} + \left|\frac{3t}{T} - \frac{3t'}{T'}\right| |\log v_{\varphi_{T}\sigma_{0}} - \log v_{\sigma_{0}}| \\ &+ \frac{3t'}{T'} |\log v_{\varphi_{T'}\sigma'_{0}} - \log v_{\varphi_{T}\sigma_{0}}| + \frac{3t'}{T'} |\log v_{\sigma'_{0}} - \log v_{\sigma_{0}}| \\ &\leq 2c(5T_{\mathsf{h}} + 2c_{0}) + 3C_{3} + \left|\frac{3t}{T} - \frac{3t'}{T'}\right| |\log v_{\varphi_{T}\sigma_{0}} - \log v_{\sigma_{0}}| + 4C_{3}. \end{split}$$

Now recall that $\sigma_0(0) = (e, 2)$ as noted earlier, and denote $\sigma_0(T) = (\gamma, 2)$ for some $\gamma \in P$. Let $Q \subset X_{GM}$ denote the closed 2-ball centered at e. Then $\sigma_0(0) \in Q$ and $\sigma_0(T) \in \gamma Q$. From (6.3) and (6.4), we have $v_{\varphi_T \sigma_0} = \frac{v_{\sigma_0}}{\kappa_T(\sigma_0)}$. In particular,

$$\log v_{\varphi_T \sigma_0} - \log v_{\sigma_0} = -\log \kappa_T(\sigma_0).$$

By Lemma 6.5, there exists $c_Q > 0$ depending only on Q, such that

$$|\log v_{\varphi_T \sigma_0} - \log v_{\sigma_0} - \psi(\mu_{\theta}(\gamma))| < c_Q.$$

Therefore,

$$\begin{split} &|\log v_{\sigma} - \log v_{\varphi_{t'}\sigma'_{0}}|\\ &\leq 2c(5T_{\mathsf{h}} + 2c_{0}) + 7C_{3} + \left|\frac{3t}{T} - \frac{3t'}{T'}\right|c_{Q} + \left|\frac{3t}{T} - \frac{3t'}{T'}\right||\psi(\mu_{\theta}(\gamma))|\\ &\leq 2c(5T_{\mathsf{h}} + 2c_{0}) + 7C_{3} + c_{Q} + \left|\frac{3t}{T} - \frac{3t'}{T'}\right||\psi(\mu_{\theta}(\gamma))| \end{split}$$

where the last inequality is from $\frac{T}{3} < t < \frac{2T}{3}$ and $\frac{T'}{3} < t' < \frac{2T'}{3}$. Estimate the final term:

$$\begin{split} \left| \frac{3t}{T} - \frac{3t'}{T'} \right| |\psi(\mu_{\theta}(\gamma))| &\leq \frac{3|t - t'|}{T} |\psi(\mu_{\theta}(\gamma))| + 3t' \left| \frac{1}{T} - \frac{1}{T'} \right| |\psi(\mu_{\theta}(\gamma))| \\ &\leq \frac{3|t - t'|}{T} |\psi(\mu_{\theta}(\gamma))| + 3t' \frac{|T - T'|}{T'T} |\psi(\mu_{\theta}(\gamma))| \\ &\leq \left(16T_{\mathsf{h}} + 6c_{0}\right) \left| \frac{\psi(\mu_{\theta}(\gamma))}{T} \right|, \end{split}$$

using (7.12), (7.8), and t' < 2T'/3. It follows from $T = d_{GM}(\sigma_0(0), \sigma_0(T)) = d_{GM}((e, 2), (\gamma, 2))$ that

$$|T - d_{GM}(e, \gamma)| \le 2.$$

Then, by Theorem 5.6, there exist uniform constants $c_1, c_2 > 1$ such that

$$c_1^{-1}T - c_2 \le \psi(\mu_\theta(\gamma)) \le c_1T + c_2.$$

Since $T > T_h$, we conclude:

$$\left|\frac{\psi(\mu_{\theta}(\gamma))}{T}\right| \le c_1 + \frac{c_2}{T_{\mathsf{h}}}.$$

Combining all altogether,

$$|\log v_{\sigma} - \log v_{\varphi_{t'}\sigma'_0}| \le 2c(5T_{\mathsf{h}} + 2c_0) + 7C_3 + c_Q + (16T_{\mathsf{h}} + 6c_0)(c_1 + c_2/T_{\mathsf{h}}).$$

Since $\varphi_s \sigma' = \varphi_{t'} \sigma'_0$ for some $s \in \mathbb{R}$, and using (7.13), the claim follows by setting

$$C_0 > 2c(5T_h + 2c_0) + 7C_3 + c_O + (16T_h + 6c_0)(c_1 + c_2/T_h) > 3T_h + 2c_0.$$

This completes the proof of the first part of Proposition 7.2.

We now prove the second assertion. Let $C_0 > 0$ be the constant from the first part and let $\sigma, \sigma' \in \mathcal{G}$ be such that $\sigma^{\pm} = \sigma'^{\pm}$. Then for some $s \in \mathbb{R}$, we have

$$d_{GM}(\sigma(0), \sigma'(s)) < C_0$$
 and $|\log v_{\sigma} - \log v_{\varphi,\sigma'}| < C_0$.

Therefore,

$$\log v_{\sigma} - \log v_{\sigma'} - C_0 < \log v_{\varphi_s \sigma'} - \log v_{\sigma'} < \log v_{\sigma} - \log v_{\sigma'} + C_0.$$

Now, from Theorem 6.1, we have

$$\tilde{\Psi}(\varphi_s \sigma') = \phi_t \tilde{\Psi}(\sigma')$$

for some t with $as - B \le t \le a's + B$ if $s \ge 0$ and $a's - B \le t \le as + B$ if s < 0, where 0 < a < a' and B > 0 are constants in the theorem. Since

$$\log v_{\varphi_s \sigma'} = t + \log v_{\sigma'},$$

we deduce the bounds on s as follows

• if s > 0,

$$\frac{\log v_{\varphi_s\sigma'} - \log v_{\sigma'} - B}{a'} \le s \le \frac{\log v_{\varphi_s\sigma'} - \log v_{\sigma'} + B}{a}.$$

Therefore,

$$\frac{(\log v_{\sigma} - \log v_{\sigma'}) - C_0 - B}{a'} \le s \le \frac{(\log v_{\sigma} - \log v_{\sigma'}) + C_0 + B}{a}.$$

• if s < 0,

$$\frac{\log v_{\varphi_s\sigma'} - \log v_{\sigma'} - B}{a} \le s \le \frac{\log v_{\varphi_s\sigma'} - \log v_{\sigma'} + B}{a'}.$$

Therefore,

$$\frac{(\log v_{\sigma} - \log v_{\sigma'}) - C_0 - B}{a} \le s \le \frac{(\log v_{\sigma} - \log v_{\sigma'}) + C_0 + B}{a'}.$$

This completes the proof.

Proof of Theorem 7.1. Let $\sigma, \sigma' \in \mathcal{G}$ be such that

$$\tilde{\Psi}(\sigma) = \tilde{\Psi}(\sigma').$$

This implies that $\sigma^{\pm} = \sigma'^{\pm}$ and $\log v_{\sigma} - \log v_{\sigma'} = 0$. By Proposition 7.2, there exist uniform constants $a, B, C_0 > 0$ so that

$$d_{GM}(\sigma(0), \sigma'(s)) < C_0 \text{ for some } s \in \left[-\frac{C_0 + B}{a}, \frac{C_0 + B}{a} \right].$$

Therefore,

$$d_{GM}(\sigma(0), \sigma'(0)) \le d_{GM}(\sigma(0), \sigma'(s)) + d_{GM}(\sigma'(s), \sigma'(0)) < C_0 + \frac{C_0 + B}{a}.$$
 This finishes the proof.

Disjointness of $\tilde{\Psi}$ -images of horoballs. We deduce from Theorem 7.1 that $\tilde{\Psi}$ -images of deep horoballs are disjoint. This implies that the reparameterization $\tilde{\Psi}: \mathcal{G} \to \tilde{\Omega}_{\psi}$ and $\Psi: \Gamma \backslash \mathcal{G} \to \Omega_{\psi}$ respectively give genuine decompositions of $\tilde{\Omega}_{\psi}$ and Ω_{ψ} into the non-cuspidal part and disjoint cuspidal components.

To be precise, for each $n \geq 2$, we define the depth-n horoballs, similar to the definition of open horoballs H_P , as follows: for $P \in \mathcal{P}$, let $H'_P(n) \subset X_{GM}$ be the subgraph induced by the vertices $\{(g,k): g \in P, k \geq n\}$ and $\hat{H}_P(n) \subset X_{GM}$ be the subgraph induced by the vertices $\{(g,n): g \in P\}$. We then set

$$H_P(n) := H_P' - \hat{H}_P.$$

For $\gamma \in \Gamma$, we set

$$H_{\gamma P \gamma^{-1}}(n) := \gamma H_P(n).$$

This results in the collection of depth-n open horoballs $\{H_P(n): P \in \mathcal{P}^{\Gamma}\}$. Note that $H_P = H_P(2)$ for $P \in \mathcal{P}^{\Gamma}$. For $P \in \mathcal{P}^{\Gamma}$, we consider the set

$$\mathcal{G}_P(n) := \{ \sigma \in \mathcal{G} : \sigma(0) \in H_P(n) \}$$

which consists of bi-infinite geodesics based at $H_P(n)$. We now obtain the following disjointness:

Corollary 7.7. There exists $n_0 \geq 2$ such that for $P, P' \in \mathcal{P}^{\Gamma}$,

$$P \neq P' \Longrightarrow \tilde{\Psi}(\mathcal{G}_P(n_0)) \cap \tilde{\Psi}(\mathcal{G}_{P'}(n_0)) = \emptyset.$$

Proof. Let C > 0 be the constant given by Theorem 7.1. We fix $n_0 > \frac{C}{2} + 1$ and show that the desired disjointness holds. Suppose on the contrary that for some distinct $P, P' \in \mathcal{P}^{\Gamma}$, there exist $\sigma \in \mathcal{G}_P(n_0)$ and $\mathcal{G}_{P'}(n_0)$ such that $\tilde{\Psi}(\sigma) = \tilde{\Psi}(\sigma')$. Since $\sigma(0) \in H_P(n_0)$, the distance from $\sigma(0)$ to the Cayley graph of Γ is at least $n_0 - 1$. Similarly, the distance from $\sigma'(0)$ to the Cayley graph of Γ is at least $n_0 - 1$. Since two basepoints $\sigma(0)$ and $\sigma'(0)$ are contained in distinct horoballs, a geodesic segment between them must pass through the Cayley graph. Therefore, we have

$$d_{GM}(\sigma(0), \sigma'(0)) \ge 2n_0 - 2 > C.$$

On the other hand, since $\tilde{\Psi}(\sigma) = \tilde{\Psi}(\sigma')$, we have $d_{GM}(\sigma(0), \sigma'(0)) < C$ by Theorem 7.1, which is a contradiction. This shows the claim.

Remark 7.8. By the above corollary, the reparameterization given in Corollary 6.2 gives us a thick-thin decomposition of Ω_{ψ} where the thin part is the disjoint union of Ψ -images of bi-infinite geodesics based at the horoballs in $\Gamma \setminus X_{GM}$ corresponding to elements of \mathcal{P} .

8. Exponential expansion on unstable foliations

Let $\Gamma < G$ be a θ -Anosov subgroup relative to \mathcal{P} . Fix a (Γ, θ) -proper linear form $\psi \in \mathfrak{a}_{\theta}^*$. Recall the space $\tilde{\Omega}_{\psi} = \Lambda_{\theta}^{(2)} \times \mathbb{R}$ equipped with the Γ -action given by

$$\gamma(\xi, \eta, s) = (\gamma \xi, \gamma \eta, s + \psi(\beta_{\xi}^{\theta}(\gamma^{-1}, e)))$$

for $\gamma \in \Gamma$ and $(\xi, \eta, s) \in \Lambda_{\theta}^{(2)} \times \mathbb{R}$, and $\Omega_{\psi} = \Gamma \setminus \tilde{\Omega}_{\psi}$ as defined in section 3. Recall from (4.1) and (4.2) the unstable and stable foliations W^{\pm} on Ω_{ψ} and their lifts \tilde{W}^{\pm} on $\tilde{\Omega}_{\psi}$. The goal of this section is to establish the following exponential expansion (resp. contraction) property of the flow $\{\phi_t\}$ on unstable (resp. stable) foliations.

Theorem 8.1. We have the following:

(1) There exist a Γ -invariant non-negative symmetric function $d^+: \tilde{\Omega}_{\psi} \times \tilde{\Omega}_{\psi} \to \mathbb{R}$ and constants $\alpha, \alpha' > 0$ and $b \geq 1$ such that for $z \in \tilde{\Omega}_{\psi}$, the restriction of d^+ defines a semi-metric³ on $\tilde{W}^+(z)$ and for any $w_1, w_2 \in \tilde{W}^+(z)$ and $t \geq 0$,

$$\frac{1}{b}e^{\alpha t}d^+(w_1, w_2) \le d^+(\phi_t w_1, \phi_t w_2) \le be^{\alpha' t}d^+(w_1, w_2).$$

(2) Similarly, there exists a Γ -invariant non-negative symmetric function $d^-: \tilde{\Omega}_{\psi} \times \tilde{\Omega}_{\psi} \to \mathbb{R}$ such that for $z \in \tilde{\Omega}_{\psi}$, the restriction of d^- defines a semi-metric on $\tilde{W}^-(z)$ and for any $w_1, w_2 \in \tilde{W}^-(z)$ and $t \geq 0$,

$$\frac{1}{b}e^{-\alpha't}d^-(w_1, w_2) \le d^-(\phi_t w_1, \phi_t w_1) \le be^{-\alpha t}d^-(w_1, w_2).$$

(3) For any small enough $\varepsilon > 0$, there exists a non-negative symmetric function $d_{\varepsilon}^+: \tilde{\Omega}_{\psi} \times \tilde{\Omega}_{\psi} \to \mathbb{R}$ such that for $z \in \tilde{\Omega}_{\psi}$, the restriction of d_{ε}^+ defines a metric on $\tilde{W}^+(z)$. Moreover, for any compact subset $Q \subset \tilde{\Omega}_{\psi}$, there exists a constant $c_Q \geq 1$ such that for any $w_1, w_2 \in Q$,

$$\frac{1}{c_Q} d^+(w_1, w_2)^{\varepsilon} \le d_{\varepsilon}^+(w_1, w_2) \le c_Q d^+(w_1, w_2)^{\varepsilon}.$$

³A semi-metric on \mathcal{X} is a non-negative symmetric function $\mathcal{X} \times \mathcal{X} \to \mathbb{R}$ that vanishes precisely on the diagonal.

Remark 8.2. Even though Theorem 8.1 states the exponential expansion and contraction for $t \geq 0$, replacing w_1 and w_2 with $\phi_{-t}w_1$ and $\phi_{-t}w_2$ implies the corresponding estimates for negative-time flow.

The proof of Theorem 8.1 is based on our coarse reparameterization (Theorem 6.1) and the coarse geometry of the Groves-Manning cusp space as a Gromov hyperbolic space.

Groves-Manning cusp space as a Gromov hyperbolic space. Let X_{GM} be the associated Groves-Manning cusp space of (Γ, \mathcal{P}) , which is a proper geodesic Gromov hyperbolic space ([15, Theorem 3.25], Theorem 5.1). We refer to [8, Chapter III.H] for general facts about Gromov hyperbolic spaces.

Recall that \mathcal{G} is the space of all parameterized bi-infinite geodesics in X_{GM} . We define $d^{\pm}: \mathcal{G} \times \mathcal{G} \to [0, \infty)$ as follows: for $\sigma_1, \sigma_2 \in \mathcal{G}$,

(8.1)
$$d^{+}(\sigma_{1}, \sigma_{2}) := \limsup_{t \to \infty} e^{d_{GM}(\sigma_{1}(t), \sigma_{2}(t)) - 2t};$$
$$d^{-}(\sigma_{1}, \sigma_{2}) := \limsup_{t \to \infty} e^{d_{GM}(\sigma_{1}(-t), \sigma_{2}(-t)) - 2t}.$$

Their well-definedness follows once we explain another formula for d^{\pm} using Gromov products and Busemann functions on X_{GM} . We recall that for $x, p, q \in X_{GM}$, the Gromov product of p, q with respect to x is

$$(p|q)_x := \frac{1}{2}(d_{GM}(x,p) + d_{GM}(x,q) - d_{GM}(p,q)) \ge 0,$$

and this extends to ∂X_{GM} as follows: for $\xi, \eta \in \partial X_{GM}$, we set

$$(\xi|\eta)_x := \sup \lim_{i,j\to\infty} \inf(p_i|q_j)_x$$

where the supremum is taken over all sequences $p_i, q_j \in X_{GM}$ such that $p_i \to \xi$ and $q_j \to \eta$ as $i, j \to \infty$. Since X_{GM} is Gromov hyperbolic, there exists a uniform constant $\delta > 0$ such that for any $x \in X_{GM}$, $\xi, \eta \in \partial X_{GM}$, and sequences $p_i, q_j \in X_{GM}$ with $\xi = \lim_{i \to \infty} p_i$ and $\eta = \lim_{j \to \infty} q_j$, we have

(8.2)
$$(\xi|\eta)_x - \frac{\delta}{2} \le \liminf_{i,j \to \infty} (p_i|q_j)_x \le (\xi|\eta)_x.$$

For $\sigma \in \mathcal{G}$ and $p, q \in X_{GM}$, the following Busemann function is well-defined:

$$\beta_{\sigma^+}(p,q) := \lim_{t \to \infty} d_{GM}(p,\sigma(t)) - d_{GM}(q,\sigma(t)).$$

We note that the Busemann function is defined for each geodesic $\sigma \in \mathcal{G}$, not for a point in ∂X_{GM} . The notation + in $\beta_{\sigma^+}(p,q)$ is to indicate that the limit is taken along $t \to \infty$. Indeed, this makes the above limit well-defined since the function $f_p : \mathbb{R} \to \mathbb{R}$ defined as

$$f_p(t) = d_{GM}(p, \sigma(t)) - d_{GM}(\sigma(0), \sigma(t))$$

is non-increasing and bounded from above by $d_{GM}(p, \sigma(0))$, and we have $d_{GM}(p, \sigma(t)) - d_{GM}(q, \sigma(t)) = f_p(t) - f_q(t)$.

We have for any $x \in X_{GM}$ that

(8.3)
$$d^{+}(\sigma_{1}, \sigma_{2}) = e^{\beta_{\sigma_{1}^{+}}(x, \sigma_{1}(0)) + \beta_{\sigma_{2}^{+}}(x, \sigma_{2}(0))} \limsup_{t \to \infty} e^{-2(\sigma_{1}(t)|\sigma_{2}(t))_{x}}.$$

Since $(\sigma_1(t)|\sigma_2(t))_x \geq 0$ for all t, it follows that $d^+(\sigma_1,\sigma_2) < \infty$. Since

(8.4)
$$d^{-}(\sigma_1, \sigma_2) = d^{+}(I\sigma_1, I\sigma_2),$$

 d^- is well-defined as well. The definition of d^{\pm} is motivated by the Hamenstädt distance in a negatively curved compact manifold [16].

Since Γ acts on X_{GM} by isometries, both d^+ and d^- are Γ -invariant. The geodesic flow on \mathcal{G} exponentially expand and contract d^+ and d^- respectively:

Lemma 8.3. Let $\sigma_1, \sigma_2 \in \mathcal{G}$ and $s_1, s_2 \in \mathbb{R}$. Then we have

$$e^{-\delta}e^{s_1+s_2}d^+(\sigma_1,\sigma_2) \le d^+(\varphi_{s_1}\sigma_1,\varphi_{s_2}\sigma_2) \le e^{\delta}e^{s_1+s_2}d^+(\sigma_1,\sigma_2);$$

$$e^{-\delta}e^{-(s_1+s_2)}d^-(\sigma_1,\sigma_2) \le d^-(\varphi_{s_1}\sigma_1,\varphi_{s_2}\sigma_2) \le e^{\delta}e^{-(s_1+s_2)}d^-(\sigma_1,\sigma_2).$$

Proof. Fix $x \in X_{GM}$. By (8.3) and (8.2), we have

(8.5)
$$d^{+}(\sigma_{1}, \sigma_{2}) \geq e^{\beta_{\sigma_{1}^{+}}(x, \sigma_{1}(0)) + \beta_{\sigma_{2}^{+}}(x, \sigma_{2}(0))} e^{-2(\sigma_{1}^{+}|\sigma_{2}^{+})_{x}};$$

$$d^{+}(\sigma_{1}, \sigma_{2}) \leq e^{\delta} e^{\beta_{\sigma_{1}^{+}}(x, \sigma_{1}(0)) + \beta_{\sigma_{2}^{+}}(x, \sigma_{2}(0))} e^{-2(\sigma_{1}^{+}|\sigma_{2}^{+})_{x}}.$$

By the definition of β , we have

(8.6)
$$\beta_{\sigma_1^+}(x, (\varphi_{s_1}\sigma_1)(0)) = \beta_{\sigma_1^+}(x, \sigma_1(0)) + \beta_{\sigma_1^+}(\sigma_1(0), \sigma_1(s_1)) \\ = \beta_{\sigma_1^+}(x, \sigma_1(0)) + s_1,$$

and similarly

(8.7)
$$\beta_{\sigma_2^+}(x, (\varphi_{s_2}\sigma_2)(0)) = \beta_{\sigma_2^+}(x, \sigma_2(0)) + s_2.$$

Since $\varphi_{s_1}\sigma_1^+ = \sigma_1^+$ and $\varphi_{s_2}\sigma_2^+ = \sigma_2^+$, it follows from (8.5), (8.6), and (8.7) that

$$e^{-\delta}e^{s_1+s_2}d^+(\sigma_1,\sigma_2) \le d^+(\varphi_{s_1}\sigma_1,\varphi_{s_2}\sigma_2) \le e^{\delta}e^{s_1+s_2}d^+(\sigma_1,\sigma_2).$$

The exponential contraction of d^- follows from the exponential expansion of d^+ shown above and (8.4).

We fix a basepoint $x \in X_{GM}$. It is a standard fact about Gromov hyperbolic spaces that for $\varepsilon > 0$ small enough, there exists $0 < c_{\varepsilon} < 1$ and a metric d_{ε} on ∂X_{GM} such that

(8.8)
$$c_{\varepsilon}e^{-2\varepsilon(\xi|\eta)_x} \le d_{\varepsilon}(\xi,\eta) \le e^{-2\varepsilon(\xi|\eta)_x}$$

for all $\xi, \eta \in \partial X_{GM}$, with the convention that $e^{-\infty} = 0$ [8, Proposition 3.21]. We fix one such $\varepsilon > 0$ and a metric d_{ε} as above.

Lemma 8.4. For any compact subset $Q \subset \mathcal{G}$, there exists a constant $b_Q \geq 1$ such that for any $\sigma_1, \sigma_2 \in Q$, we have

$$\frac{1}{b_Q}d^+(\sigma_1, \sigma_2)^{\varepsilon} \le d_{\varepsilon}(\sigma_1^+, \sigma_2^+) \le b_Q d^+(\sigma_1, \sigma_2)^{\varepsilon}.$$

Proof. First note that for any $\sigma \in \mathcal{G}$,

$$|\beta_{\sigma^+}(x,\sigma(0))| \leq d_{GM}(x,\sigma(0)).$$

Given a compact subset $Q \subset \mathcal{G}$, we set

$$b' := \sup_{\sigma \in \Omega} d_{GM}(x, \sigma(0)) < \infty.$$

Then it follows from (8.8) and (8.5) that

$$d_{\varepsilon}(\sigma_1^+, \sigma_2^+) \le e^{-\varepsilon \left(\beta_{\sigma_1^+}(x, \sigma_1(0)) + \beta_{\sigma_2^+}(x, \sigma_2(0))\right)} d^+(\sigma_1, \sigma_2)^{\varepsilon}$$
$$\le e^{2\varepsilon b'} d^+(\sigma_1, \sigma_2)^{\varepsilon}.$$

Similarly, we also have

$$d_{\varepsilon}(\sigma_1^+, \sigma_2^+) \ge c_{\varepsilon} e^{-\varepsilon(\delta + 2b')} d^+(\sigma_1, \sigma_2)^{\varepsilon}$$

where $0 < c_{\varepsilon} < 1$ is given in (8.8). Setting $b_Q := e^{\varepsilon(\delta + 2b')}/c_{\varepsilon}$ completes the proof.

Reparameterization revisited. Recall the reparameterization $\Psi : \Gamma \backslash \mathcal{G} \to \Omega_{\psi}$ in Theorem 6.1, which is induced from the Γ-equivariant map $\tilde{\Psi} : \mathcal{G} \to \tilde{\Omega}_{\psi}$. Since $\tilde{\Psi}$ is proper and surjective, for $w_1, w_2 \in \tilde{\Omega}_{\psi}$, we define

(8.9)
$$d^{+}(w_{1}, w_{2}) := \sup_{\substack{\sigma_{1} \in \tilde{\Psi}^{-1}(w_{1}), \ \sigma_{2} \in \tilde{\Psi}^{-1}(w_{2}) \\ d^{-}(w_{1}, w_{2}) := \sup_{\substack{\sigma_{1} \in \tilde{\Psi}^{-1}(w_{1}), \ \sigma_{2} \in \tilde{\Psi}^{-1}(w_{2})}} d^{-}(\sigma_{1}, \sigma_{2}).$$

Since $\tilde{\Psi}$ is Γ -equivariant, if $\sigma_1 \in \tilde{\Psi}^{-1}(w_1)$ and $\sigma_2 \in \tilde{\Psi}^{-1}(w_2)$, then $\gamma \sigma_1 \in \tilde{\Psi}^{-1}(\gamma w_1)$ and $\gamma \sigma_2 \in \tilde{\Psi}^{-1}(\gamma w_2)$ for all $\gamma \in \Gamma$. Since $d^{\pm}(\gamma \sigma_1, \gamma \sigma_2) = d^{\pm}(\sigma_1, \sigma_2)$ as well, we have

(8.10)
$$d^{\pm}(\gamma w_1, \gamma w_2) = d^{\pm}(w_1, w_2)$$
 for all $\gamma \in \Gamma$.

We also have the following expansion and contraction of d^+ and d^- via the flow $\{\phi_t\}$ respectively:

Lemma 8.5. There exist $\alpha, \alpha' > 0$ and $b \ge 1$ such that for any $w_1, w_2 \in \tilde{\Omega}_{\psi}$ and $t \ge 0$, we have

(8.11)
$$\frac{1}{b}e^{\alpha t}d^{+}(w_{1}, w_{2}) \leq d^{+}(\phi_{t}w_{1}, \phi_{t}w_{2}) \leq be^{\alpha't}d^{+}(w_{1}, w_{2});$$

$$\frac{1}{b}e^{-\alpha't}d^{-}(w_{1}, w_{2}) \leq d^{-}(\phi_{t}w_{1}, \phi_{t}w_{2}) \leq be^{-\alpha t}d^{-}(w_{1}, w_{2}).$$

Proof. Let $w_1, w_2 \in \tilde{\Omega}_{\psi}$ and $t \geq 0$. Let $\sigma_1 \in \tilde{\Psi}^{-1}(w_1)$ and $\sigma_2 \in \tilde{\Psi}^{-1}(w_2)$. By Theorem 6.1, there exist $s_1, s_2 \in \mathbb{R}$ such that

$$\varphi_{s_1}\sigma_1 \in \tilde{\Psi}^{-1}(\phi_t w_1)$$
 and $\varphi_{s_2}\sigma_2 \in \tilde{\Psi}^{-1}(\phi_t w_2)$,

and moreover, for constants a, a', B > 0 in Theorem 6.1, we have:

(1) if $s_1 \geq 0$, then

$$as_1 - B < t < a's_1 + B$$

(resp. if $s_2 \ge 0$, then $as_2 - B \le t \le a's_2 + B$).

(2) if $s_1 \leq 0$, then

$$a's_1 - B < t < as_1 + B$$

(resp. if
$$s_2 \le 0$$
, then $a's_2 - B \le t \le as_2 + B$).

By Lemma 8.3, we have

$$(8.12) e^{-\delta}e^{s_1+s_2}d^+(\sigma_1,\sigma_2) \le d^+(\varphi_{s_1}\sigma_1,\varphi_{s_2}\sigma_2) \le e^{\delta}e^{s_1+s_2}d^+(\sigma_1,\sigma_2).$$

Suppose first that $s_1, s_2 \ge 0$. Then by (1) above, we deduce from (8.12) that

$$d^{+}(\varphi_{s_{1}}\sigma_{1},\varphi_{s_{2}}\sigma_{2}) \leq e^{\delta}e^{\frac{2B}{a}}e^{\frac{2t}{a}}d^{+}(\sigma_{1},\sigma_{2}) \leq e^{\delta}e^{\frac{2B}{a}}e^{\frac{2t}{a}}d^{+}(w_{1},w_{2}).$$

Since $\sigma_1 \in \tilde{\Psi}^{-1}(w_1)$ and $\sigma_2 \in \tilde{\Psi}^{-1}(w_2)$ are arbitrary, $\varphi_{s_1}\sigma_1$ and $\varphi_{s_2}\sigma_2$ are arbitrary elements of $\tilde{\Psi}^{-1}(\phi_t w_1)$ and $\tilde{\Psi}^{-1}(\phi_t w_2)$ respectively. Hence we have

(8.13)
$$d^{+}(\phi_{t}w_{1}, \phi_{t}w_{2}) \leq e^{\delta}e^{\frac{2B}{a}}e^{\frac{2t}{a}}d^{+}(w_{1}, w_{2}).$$

Similarly, we deduce from (1) and (8.12) that

$$d^{+}(\phi_{t}w_{1},\phi_{t}w_{2}) \ge d^{+}(\varphi_{s_{1}}\sigma_{1},\varphi_{s_{2}}\sigma_{2}) \ge e^{-\delta}e^{-\frac{2B}{a'}}e^{\frac{2t}{a'}}d^{+}(\sigma_{1},\sigma_{2}).$$

Since $\sigma_1 \in \tilde{\Psi}^{-1}(w_1)$ and $\sigma_2 \in \tilde{\Psi}^{-1}(w_2)$ are arbitrary, we have

(8.14)
$$d^{+}(\phi_{t}w_{1}, \phi_{t}w_{2}) \geq e^{-\delta}e^{-\frac{2B}{a'}}e^{\frac{2t}{a'}}d^{+}(w_{1}, w_{2}).$$

Now consider the case when at least one of s_1 and s_2 is negative. Then by (2), we must have $0 \le t \le B$, and hence we deduce from (1) and (2) that $s_1, s_2 \in [-B/a, 2B/a]$. It then follows from (8.12) that

$$d^+(\varphi_{s_1}\sigma_1, \varphi_{s_2}\sigma_2) \le e^{\delta} e^{\frac{4B}{a}} d^+(\sigma_1, \sigma_2) \le e^{\delta} e^{\frac{4B}{a}} d^+(w_1, w_2)$$

and that

$$d^+(\phi_t w_1, \phi_t w_2) \ge d^+(\varphi_{s_1} \sigma_1, \varphi_{s_2} \sigma_2) \ge e^{-\delta} e^{-\frac{2B}{a}} d^+(\sigma_1, \sigma_2).$$

Again, since $\sigma_1 \in \tilde{\Psi}^{-1}(w_1)$ and $\sigma_2 \in \tilde{\Psi}^{-1}(w_2)$ are arbitrary, these imply

$$e^{-\delta}e^{-\frac{2B}{a}}d^+(w_1, w_2) \le d^+(\phi_t w_1, \phi_t w_2) \le e^{\delta}e^{\frac{4B}{a}}d^+(w_1, w_2).$$

Since $0 \le t \le B$, we in particular have

$$e^{-\delta}e^{-\frac{2B}{a}-\frac{2B}{a'}}e^{\frac{2t}{a'}}d^+(w_1,w_2) \le d^+(\phi_t w_1,\phi_t w_2) \le e^{\delta}e^{\frac{4B}{a}}e^{\frac{2t}{a}}d^+(w_1,w_2).$$

Combining (8.13), (8.14), and (8.15), the inequalities for d^+ in (8.11) follows. The inequalities for d^- in (8.11) can be shown by a similar argument. \square

For $w_1, w_2 \in \tilde{\Omega}_{\psi}$, we also define

$$(8.16) d_{\varepsilon}^+(w_1, w_2) := d_{\varepsilon}(\sigma_1^+, \sigma_2^+)$$

where $\sigma_1 \in \tilde{\Psi}^{-1}(w_1)$ and $\sigma_2 \in \tilde{\Psi}^{-1}(w_2)$. Since every elements of $\tilde{\Psi}^{-1}(w)$ has the common forward endpoint for each $w \in \tilde{\Omega}_{\psi}$, this is well-defined.

Lemma 8.6. For any compact subset $Q \subset \tilde{\Omega}_{\psi}$, there exists a constant $c_Q \geq 1$ such that for any $w_1, w_2 \in Q$, we have

$$\frac{1}{c_Q}d^+(w_1, w_2)^{\varepsilon} \le d_{\varepsilon}^+(w_1, w_2) \le c_Q d^+(w_1, w_2)^{\varepsilon}.$$

Proof. Let $Q \subset \tilde{\Omega}_{\psi}$ be a compact subset. Since $\tilde{\Psi}$ is proper, it follows from Lemma 8.4 that there exists a uniform constant $c_Q \geq 1$ such that if $w_1, w_2 \in Q$ and $\sigma_1 \in \tilde{\Psi}^{-1}(w_1)$ and $\sigma_2 \in \tilde{\Psi}^{-1}(w_2)$, then

$$\frac{1}{c_Q}d^+(\sigma_1,\sigma_2)^{\varepsilon} \le d_{\varepsilon}^+(w_1,w_2) \le c_Qd^+(\sigma_1,\sigma_2)^{\varepsilon} \le c_Qd^+(w_1,w_2)^{\varepsilon}.$$

Since $\sigma_1 \in \tilde{\Psi}^{-1}(w_1)$ and $\sigma_2 \in \tilde{\Psi}^{-1}(w_2)$ are arbitrary, the claim follows.

Proof of Theorem 8.1. Let $d^{\pm}: \tilde{\Omega}_{\psi} \times \tilde{\Omega}_{\psi} \to \mathbb{R}$ be functions defined in (8.9). From the definition, d^{\pm} are non-negative and symmetric. Moreover, they are Γ -invariant by (8.10).

Let $z \in \tilde{\Omega}_{\psi}$. We show that the restriction on d^+ defines a semi-metric on $\tilde{W}^+(z)$; the corresponding statement for d^- can be shown by the same argument. It suffices to show that for $w_1, w_2 \in \tilde{W}^+(z)$, $d^+(w_1, w_2) = 0$ if and only if $w_1 = w_2$. Suppose first that $w_1 = w_2$. Then for any $\sigma_1, \sigma_2 \in \tilde{\Psi}^{-1}(w_1) = \tilde{\Psi}^{-1}(w_2)$, we have $\sigma_1^+ = \sigma_2^+$. This implies $(\sigma_1|\sigma_2)_x = \infty$. Hence, by (8.5), we have $d^+(\sigma_1, \sigma_2) = 0$. Since $\sigma_1, \sigma_2 \in \tilde{\Psi}^{-1}(w_1) = \tilde{\Psi}^{-1}(w_2)$ are arbitrary, we have $d^+(w_1, w_2) = 0$. Conversely, suppose that $d^+(w_1, w_2) = 0$. Let $\sigma_1 \in \tilde{\Psi}^{-1}(w_1)$ and $\sigma_2 \in \tilde{\Psi}^{-1}(w_2)$. We then have $d^+(\sigma_1, \sigma_2) = 0$, and hence $(\sigma_1^+|\sigma_2^+)_x = \infty$ by (8.5), from which we deduce $\sigma_1^+ = \sigma_2^+$. Since $\tilde{\Psi}(\sigma_1) = w_1$ and $\tilde{\Psi}(\sigma_2) = w_2$, it follows from $w_1, w_2 \in \tilde{W}^+(z)$ and Lemma 4.5 that $w_1 = w_2$, showing the claim.

The inequalities in (1) and (2) follow from Lemma 8.5, finishing the proofs of (1) and (2).

We now show (3). For small enough $\varepsilon > 0$, we consider the function $d_{\varepsilon}^+: \tilde{\Omega}_{\psi} \times \tilde{\Omega}_{\psi} \to \mathbb{R}$ defined in (8.16), that is, for $w_1, w_2 \in \tilde{\Omega}_{\psi}$,

$$d_{\varepsilon}^{+}(w_1, w_2) = d_{\varepsilon}(\sigma_1^{+}, \sigma_2^{+})$$

where $\sigma_1 \in \tilde{\Psi}^{-1}(w_1)$ and $\sigma_2 \in \tilde{\Psi}^{-1}(w_2)$, and d_{ε} is the visual metric on ∂X_{GM} given in (8.8). Since d_{ε} is a metric, d_{ε}^+ is symmetric and satisfies the triangle inequality. Let $z \in \tilde{\Omega}_{\psi}$ and $w_1, w_2 \in \tilde{W}^+(z)$. As discussed above, for $\sigma_1 \in \tilde{\Psi}^{-1}(w_1)$ and $\sigma_2 \in \tilde{\Psi}^{-1}(w_2)$, we have $w_1 = w_2 \Leftrightarrow \sigma_1^+ = \sigma_2^+$ since $w_1, w_2 \in \tilde{W}^+(z)$. Hence $d_{\varepsilon}^+(w_1, w_2) = 0$ if and only if $w_1 = w_2$, and

therefore the restriction of d_{ε}^+ defines a metric on $\tilde{W}^+(z)$. The inequality stated in (3) is proved in Lemma 8.6. This completes the proof.

9. Finiteness of Bowen-Margulis-Sullivan measures

Let $\Gamma < G$ be a θ -Anosov subgroup relative to \mathcal{P} and X_{GM} the associated Groves-Manning cusp space. Let $\psi \in \mathfrak{a}_{\theta}^*$ be a (Γ, θ) -proper linear form tangent to the θ -growth indicator ψ_{Γ}^{θ} . By [11], there exists a unique (Γ, ψ) -Patterson-Sullivan measure ν_{ψ} on Λ_{θ} and a unique $(\Gamma, \psi \circ i)$ -Patterson-Sullivan measure $\nu_{\psi \circ i}$ on $\Lambda_{i(\theta)}$. Let m_{ψ} be the Bowen-Margulis-Sullivan measure on Ω_{ψ} associated with the pair (ν, ν_i) defined in (3.2).

The relatively Anosov subgroups are regarded as the higher-rank generalization of geometrically finite subgroups. Indeed, same as geometrically finite subgroups, relatively Anosov subgroups have finite Bowen-Margulis-Sullivan measures:

Theorem 9.1. We have

$$|m_{\psi}| := m_{\psi}(\Omega_{\psi}) < \infty.$$

We prove this finiteness of the Bowen-Margulis-Sullivan measure as a consequence of our reparameterization theorem (Theorem 6.1).

Thick-thin decomposition of Ω_{ψ} . Let $\Psi : \Gamma \backslash \mathcal{G} \to \Omega_{\psi}$ be the reparameterization given in Theorem 6.1. Via Ψ , the decomposition $\mathcal{G} = \mathcal{G}_{thick} \cup \mathcal{G}_{thin}$ gives the thick-thin decomposition

$$\Omega_{\psi} = \Psi(\Gamma \backslash \mathcal{G}_{thick}) \cup \Psi(\Gamma \backslash \mathcal{G}_{thin})$$

into the compact thick part $\Psi(\Gamma \setminus \mathcal{G}_{thick})$ and the thin part $\Psi(\Gamma \setminus \mathcal{G}_{thin})$. The followings are extra ingredients in the proof:

Lemma 9.2 (Shadow lemma). [18, Lemma 7.2] For all large enough R > 0, there exists $c_0 = c_0(\psi, R) \ge 1$ such that for all $\gamma \in \Gamma$,

$$c_0^{-1}e^{-\psi(\mu_\theta(\gamma))} \le \nu_\psi(O_R^\theta(o,\gamma o)) \le c_0e^{-\psi(\mu_\theta(\gamma))}.$$

We denote by $0 \le \delta_{\psi}(\Gamma) \le \infty$ the abscissa of convergence of the Poincaré series $s \mapsto \sum_{\gamma \in \Gamma} e^{-s\psi(\mu_{\theta}(\gamma))}$; this is well-defined by the (Γ, θ) -properness hypothesis on ψ . Indeed, the (Γ, θ) -properness implies $\delta_{\psi}(\Gamma) < \infty$ as shown in [11, Theorem 1.3]. Since ψ is tangent to ψ_{Γ}^{θ} , we furthermore have

$$\delta_{\psi}(\Gamma) = 1$$

[18, Theorem 4.5]. On the other hand, we have the following:

Theorem 9.3 (Canary-Zhang-Zimmer, [11, Lemma 8.2, Corollary 7.2]). If $\psi \in \mathfrak{a}_{\theta}^*$ is (Γ, θ) -proper and tangent to ψ_{Γ}^{θ} , then the Patterson-Sullivan measure ν_{ψ} is atomless and for each $P \in \mathcal{P}$, we have

$$\delta_{\psi}(P) < 1.$$

Proof of Theorem 9.1. As before, we identify Λ_{θ} and $\Lambda_{i(\theta)}$ with ∂X_{GM} through the boundary maps. Recall the norm $\|\cdot\|_{\sigma}$ on \mathbb{R}_+ for each $\sigma \in \mathcal{G}$ and the Γ -equivariant surjective proper map $\tilde{\Psi}: \mathcal{G} \to \tilde{\Omega}_{\psi}, \ \sigma \mapsto (\sigma^+, \sigma^-, \log v_{\sigma}),$ defined in the proof of Theorem 6.1 where $v_{\sigma} \in \mathbb{R}_+$ is the unique vector such that $\|v_{\sigma}\|_{\sigma} = 1$. We then have

$$\tilde{\Omega}_{\psi} = \tilde{\Psi}(\mathcal{G}_{thick}) \cup \tilde{\Psi}(\mathcal{G}_{thin}).$$

We will use this specific decomposition to show the finiteness of m_{ψ} . Since Γ acts cocompactly on $\tilde{\Psi}(\mathcal{G}_{thick})$, it suffices to show that the measure of thin part $m_{\psi}(\Gamma \setminus \tilde{\Psi}(\mathcal{G}_{thin}))$ is finite. Moreover, since $\mathcal{G}_{thin} = \Gamma \cdot \bigcup_{P \in \mathcal{P}} \mathcal{G}_P$ and \mathcal{P} is a finite collection, it suffices to show $m_{\psi}(P \setminus \tilde{\Psi}(\mathcal{G}_P)) < \infty$ for each $P \in \mathcal{P}$.

Let us fix $P \in \mathcal{P}$ and denote by $\xi_P \in \partial X_{GM}$ the parabolic limit point fixed by P. Since ξ_P is bounded parabolic, we have a compact fundamental domain for the P-action on $\partial X_{GM} - \{\xi_P\}$, which we denote by D. Since ν_{ψ} and $\nu_{\psi \circ i}$ are atomless by Theorem 9.3, we have

$$(9.1) m_{\psi}(P \setminus \tilde{\Psi}(\mathcal{G}_P)) = \sum_{\gamma \in P} \int_{(\gamma D \times D \times \mathbb{R}) \cap \tilde{\Psi}(\mathcal{G}_P)} e^{\psi(\langle \xi, \eta \rangle)} d\nu_{\psi}(\xi) d\nu_{\psi \circ i}(\eta) dt.$$

We first estimate the integration with respect to dt. We claim that there exists C > 0 such that for any $\gamma \in P$ and $\sigma \in \mathcal{G}_P$ such that $\sigma^- \in D$ and $\sigma^+ \in \gamma D$, we have

(9.2)
$$-C \le \log v_{\sigma} \le C + \psi(\mu_{\theta}(\gamma)).$$

Let us fix $\gamma \in P$ and let $\sigma \in \mathcal{G}_P$ be such that $\sigma^+ \in \gamma D$ and $\sigma^- \in D$. Recalling that H_P denotes the open horoball in X_{GM} associated to P, this implies that the following two constants are well-defined:

$$s_0 := \min\{s < 0 : \sigma(s) \in \partial H_P\}$$

$$s_1 := \max\{s > 0 : \sigma(s) \in \partial H_P\}.$$

In other words, s_0 is the first time that σ enters into ∂H_P and s_1 is the last time that σ exits ∂H_P . We then have from (6.4) and Theorem 6.4 that

$$v_{\varphi_{s_0}\sigma} = \|v_{\varphi_{s_0}\sigma}\|_{\sigma}v_{\sigma} = \kappa_{-s_0}(\varphi_{s_0}\sigma)v_{\sigma}$$

$$\leq be^{as_0}v_{\sigma} \leq bv_{\sigma};$$

$$v_{\varphi_{s_1}\sigma} = \frac{1}{\|v_{\sigma}\|_{\varphi_{s_1}\sigma}}v_{\sigma} = \frac{1}{\kappa_{s_1}(\sigma)}v_{\sigma}$$

$$\geq b^{-1}e^{as_1}v_{\sigma} \geq b^{-1}v_{\sigma}.$$

Therefore, we have

$$(9.3) -\log b + \log v_{\varphi_{s_0}\sigma} \le \log v_{\sigma} \le \log b + \log v_{\varphi_{s_1}\sigma}.$$

Now fix $x \in \partial H_P$. Then there exists R > 0 with the following property: for any $\sigma_0 \in \mathcal{G}_P$ such that $\sigma_0^- \in D$, the entering point of σ_0 into ∂H_P , i.e. $\sigma_0(s) \in \partial H_P$ with minimal s, must be contained in the R-ball $B_{GM}(x, R)$. Indeed, if not, then there exists a sequence $\sigma_n \in \mathcal{G}_P$ such that $\sigma_n^- \in D$

and the entering point of σ_n into ∂H_P is not contained in $B_{GM}(x,n)$ for all $n \geq 1$. However, since $\sigma_n \in \mathcal{G}_P$ and $\sigma_n^- \in D$ for all $n \geq 1$, two sequences σ_n^+ and σ_n^- converge to two distinct points in ∂X_{GM} as $n \to \infty$, after passing to a subsequence. Hence the images of the bi-infinite geodesics σ_n intersect a single ball centered at x, which contradicts the choice of the sequence σ_n .

Hence we have $(\varphi_{s_0}\sigma)(0) = \sigma(s_0) \in B_{GM}(x,R)$. Since $I(\gamma^{-1}\sigma) \in \mathcal{G}_P$ also satisfies that $I(\gamma^{-1}\sigma)^- = \gamma^{-1}\sigma^+ \in D$ and its entering point into ∂H_P is given by $I(\gamma^{-1}\sigma)(-s_1) = \gamma^{-1}\sigma(s_1)$, we also have $\gamma^{-1}\sigma(s_1) \in B_{GM}(x,R)$. In other words, we have $(\gamma^{-1}\varphi_{s_0}\sigma)(s_1-s_0) \in B_{GM}(x,R)$. Hence we can apply Lemma 6.5 to $\varphi_{s_0}\sigma$ by setting $Q = \overline{B_{GM}(x,R)}$ and obtain

(9.4)
$$\frac{1}{C_O} e^{-\psi(\mu_{\theta}(\gamma))} \le \kappa_{s_1 - s_0}(\varphi_{s_0} \sigma) \le C_Q e^{-\psi(\mu_{\theta}(\gamma))}.$$

Since

$$v_{\varphi_{s_1}\sigma} = \frac{1}{\|v_{\varphi_{s_0}\sigma}\|_{\varphi_{s_1}\sigma}} v_{\varphi_{s_0}\sigma} = \frac{1}{\kappa_{s_1-s_0}(\varphi_{s_0}\sigma)} v_{\varphi_{s_0}\sigma}$$

by (6.4), it follows from (9.4) that

$$\log v_{\varphi_{s_1}\sigma} \le \log C_Q + \log v_{\varphi_{s_0}\sigma} + \psi(\mu_{\theta}(\gamma)).$$

Hence we deduce from (9.3) that

$$-\log b + \log v_{\varphi_{s_0}\sigma} \le \log v_{\sigma} \le \log(bC_Q) + \log v_{\varphi_{s_0}\sigma} + \psi(\mu_{\theta}(\gamma)).$$

Since $(\varphi_{s_0}\sigma)(0) \in B_{GM}(x,R)$ where x is fixed and R is determined by x and P, the constant $\log v_{\varphi_{s_0}\sigma}$ is also uniformly bounded. Therefore, the claim (9.2) follows.

By the claim (9.2), we deduce from (9.1) that

 $m_{\psi}(P\backslash \tilde{\Psi}(\mathcal{G}_P))$

$$\leq \sum_{\gamma \in P} (2C + \psi(\mu_{\theta}(\gamma))) \int_{(\gamma D \times D) \cap \{(\sigma^+, \sigma^-) : \sigma \in \mathcal{G}_P\}} e^{\psi(\langle \xi, \eta \rangle)} d\nu_{\psi}(\xi) d\nu_{\psi \circ i}(\eta).$$

As we already observed, for $x \in \partial H_P$ and R > 0 above, we have that if $\sigma \in \mathcal{G}_P$ is such that $\sigma^- \in D$ and $\sigma^+ \in \gamma D$, then the image of the bi-infinite geodesic σ must intersect $B_{GM}(x,R)$ and $B_{GM}(\gamma x,R)$. Hence it follows from Lemma 5.10 that

(9.5)
$$\psi(\langle \sigma^+, \sigma^- \rangle)$$
 is uniformly bounded.

Moreover, we also have that $\sigma^+ \in O_{R'}^{GM}(x, \gamma x)$ for some R' > 0 depending on x and R. By Proposition 5.7, we then have for some uniform r > 0 that

(9.6)
$$\sigma^+ \in O_r^{\theta}(o, \gamma o).$$

By (9.5) and (9.6), we now have

$$m_{\psi}(P \setminus \tilde{\Psi}(\mathcal{G}_P)) \ll {}^{4} \sum_{\gamma \in P} (2C + \psi(\mu_{\theta}(\gamma))) \nu_{\psi}(O_r^{\theta}(o, \gamma o)).$$

⁴The notation $f \ll g$ means that there is a constant c > 0 such that $f \leq cg$

Applying the shadow lemma (Lemma 9.2), we finally obtain

$$m_{\psi}(P \backslash \tilde{\Psi}(\mathcal{G}_P)) \ll \sum_{\gamma \in P} (2C + \psi(\mu_{\theta}(\gamma)))e^{-\psi(\mu_{\theta}(\gamma))}.$$

Let $0 < \varepsilon < 1$. Since ψ is (Γ, θ) -proper, $\liminf_{\gamma \in P} \psi(\mu_{\theta}(\gamma)) = \infty$, and hence $\psi(\mu_{\theta}(\gamma)) \ll e^{\varepsilon \psi(\mu_{\theta}(\gamma))}$. Hence

$$m_{\psi}(P \setminus \tilde{\Psi}(\mathcal{G}_P)) \ll \sum_{\gamma \in P} (2C + \psi(\mu_{\theta}(\gamma))) e^{-\psi(\mu_{\theta}(\gamma))} \ll \sum_{\gamma \in P} e^{-(1-\varepsilon)\psi(\mu_{\theta}(\gamma))}.$$

By Theorem 9.3, for $\varepsilon > 0$ sufficiently small, we have

$$m_{\psi}(P \setminus \tilde{\Psi}(\mathcal{G}_P)) \ll \sum_{\gamma \in P} e^{-(1-\varepsilon)\psi(\mu_{\theta}(\gamma))} < \infty.$$

This completes the proof of Theorem 9.1.

10. Unique measure of maximal entropy

Let Γ be a relatively θ -Anosov subgroup and $\psi \in \mathfrak{a}_{\theta}^*$ a (Γ, θ) -proper form tangent to ψ_{Γ}^{θ} . Let m_{ψ} be the Bowen-Margulis-Sullivan measure on Ω_{ψ} . This section is devoted to the proof of the following: by Theorem 9.1, m_{ψ} is of finite measure.

Theorem 10.1. Let m be a probability $\{\phi_t\}$ -invariant measure on Ω_{ψ} . Then the metric entropy $h_m(\{\phi_t\})$ is at most $\delta_{\psi} = 1$, and $h_m(\{\phi_t\}) = 1$ if and only if $m = m_{\psi}/|m_{\psi}|$, the normalized probability measure of m_{ψ} .

We recall some basic notions about entropy; we refer to ([17], [14]) for details.

Measurable partitions and entropy. Let $(\mathcal{X}, \mathcal{M}, m)$ be a probability space, where \mathcal{M} is a σ -algebra and m is a probability measure. By a partition ζ of \mathcal{X} , we mean a collection of disjoint non-empty measurable subsets of \mathcal{X} whose union is \mathcal{X} . For a partition ζ of \mathcal{X} and $x \in \mathcal{X}$, we denote by $\zeta(x)$ the element of ζ containing x, called the atom at x. Let $\mathcal{M}_{\zeta} \subset \mathcal{M}$ be the sub σ -algebra generated by the atoms of ζ . A partition ζ of \mathcal{X} is called m-measurable if it admits a separation by countably many elements in \mathcal{M}_{ζ} . More precisely, ζ is m-measurable if there exist a m-conull subset $\mathcal{Y} \subset \mathcal{X}$ and a sequence $\{Y_i \in \mathcal{M}_{\zeta} : i \in \mathbb{N}\}$ such that for any distinct atoms z, z' of ζ , there exists $i \in \mathbb{N}$ such that either $z \cap \mathcal{Y} \subset Y_i$ and $z' \cap \mathcal{Y} \subset \mathcal{X} - Y_i$, or $z \cap \mathcal{Y} \subset \mathcal{X} - Y_i$ and $z' \cap \mathcal{Y} \subset Y_i$.

For an *m*-measurable partition ζ and *m*-a.e. $x \in \mathcal{X}$, we denote by $m_{\zeta(x)}$ the *conditional measure* on the atom $\zeta(x)$ so that the following holds [14, Theorem 5.9]: for any measurable $Y \subset \mathcal{X}$, we have

- $x \mapsto m_{\zeta(x)}(Y \cap \zeta(x))$ is measurable;
- $m(Y) = \int_{\mathcal{X}} m_{\zeta(x)}(Y \cap \zeta(x)) \ dm(x).$

For two *m*-measurable partitions ζ, ζ' , we say that ζ is *finer* than ζ' and write $\zeta \succ \zeta'$ if for *m*-a.e. $x \in \mathcal{X}, \zeta(x) \subset \zeta'(x)$. For a sequence of *m*-measurable partitions ζ_i , we denote by $\bigvee_i \zeta_i$ the smallest *m*-measurable partition finer than all ζ_i .

Given an m-measurable partition ζ and an m-measurable map $\varphi: \mathcal{X} \to \mathcal{X}$, the pull-back $\varphi^{-1}\zeta$ is an m-measurable partition with atoms $(\varphi^{-1}\zeta)(x) = \varphi^{-1}(\zeta(\varphi(x)))$. We say that ζ is φ -decreasing if $\varphi^{-1}\zeta \succ \zeta$ and φ -generating if $\bigvee_{i \in \mathbb{N}} \varphi^{-i}\zeta$ is m-equivalent to the partition consisting of points.

Let $\varphi: \mathcal{X} \to \mathcal{X}$ be an *m*-measure-preserving transformation. For a countable partition ζ , the *entropy of* ζ *relative to* m is

$$H_m(\zeta) := \int_{\mathcal{X}} -\log m(\zeta(x)) \ dm(x)$$

with the convention that $\infty \cdot 0 = 0$. The average entropy of ζ is defined as

$$H_m(\varphi,\zeta) := \lim_{n \to \infty} \frac{1}{n} H_m \left(\bigvee_{i=0}^{n-1} \varphi^{-i} \zeta \right).$$

The metric entropy of φ with respect to m is defined as

$$h_m(\varphi) := \sup H_m(\varphi, \zeta)$$

where the supremum is taken over all countable partitions ζ with $H_m(\zeta) < \infty$. For a flow $\{\phi_t\}_{t\in\mathbb{R}}$ on \mathcal{X} , we have $h_m(\phi_t) = |t|h_m(\phi_1)$ for all $t \neq 0$. The metric entropy of the flow $\{\phi_t\}$ with respect to m is defined as

$$h_m(\{\phi_t\}) := h_m(\phi_1).$$

For a φ -decreasing m-measurable partition ζ , we also define

$$h_m(\varphi,\zeta) := \int_{\mathcal{X}} -\log m_{\zeta(x)}((\varphi^{-1}\zeta)(x)) \ dm(x).$$

Partition realizing the entropy. Recall the foliations \tilde{W}^{\pm} of $\tilde{\Omega}_{\psi}$ and W^{\pm} of Ω_{ψ} from (4.1) and (4.2). Let m be a probability measure on Ω_{ψ} and \tilde{m} the Γ -invariant lift of m to $\tilde{\Omega}_{\psi}$. A Γ -invariant partition $\tilde{\zeta}$ of $\tilde{\Omega}_{\psi}$ is called \tilde{m} -measurable if the induced partition ζ on Ω_{ψ} is m-measurable. We say that an \tilde{m} -measurable partition $\tilde{\zeta}$ is subordinated to \tilde{W}^+ if for \tilde{m} -a.e. $\tilde{x} \in \tilde{\Omega}_{\psi}$, there exist precompact open neighborhoods $\tilde{\mathcal{U}}_1$ and $\tilde{\mathcal{U}}_2$ of \tilde{x} in $\tilde{W}^+(\tilde{x})$ such that

$$\tilde{\mathcal{U}}_1 \subset \tilde{\zeta}(\tilde{x}) \subset \tilde{\mathcal{U}}_2$$

Proposition 10.2. Let $\tau > 0$. Let m be a probability measure on Ω_{ψ} which is invariant and ergodic under ϕ_{τ} and \tilde{m} its lift to $\tilde{\Omega}_{\psi}$. Then there exists a Γ -invariant \tilde{m} -measurable partition $\tilde{\zeta}$ of $\tilde{\Omega}_{\psi}$ subordinated to \tilde{W}^+ such that its projection ζ is an m-measurable ϕ_{τ} -decreasing and generating partition of Ω_{ψ} which satisfies

$$h_m(\phi_\tau) = h_m(\phi_\tau, \zeta) < \infty.$$

The most delicate part of the proof of this proposition lies in the construction of the partition which is subordinated to the unstable foliation \tilde{W}^+ . The exponential expansion property of the flow $\{\phi_t\}$ on Ω_{ψ} (Theorem 8.1) was obtained precisely for this purpose. Other parts of Proposition 10.2 can be obtained by similar argument in [24].

Proof of Proposition 10.2. Let d^{\pm} and d_{ε}^{+} be functions on $\tilde{\Omega}_{\psi} \times \tilde{\Omega}_{\psi}$ given in Theorem 8.1 for some fixed $\varepsilon > 0$. Fix $u \in \tilde{\Omega}_{\psi}$. For r > 0, we set

$$\tilde{C}(u,r) = \left\{ v \in \tilde{\Omega}_{\psi} : \exists s \in (-r,r), w \in \tilde{W}^{-}(\phi_{s}u) \text{ with } d^{-}(\phi_{s}u,w) < r \\ \text{s.t. } v \in \tilde{W}^{+}(w) \text{ and } d_{\varepsilon}^{+}(w,v) < r \right\}.$$

Fix $\rho > 0$ small enough so that the projection $\tilde{\Omega}_{\psi} \to \Omega_{\psi}$ is injective on $\tilde{C}(u,4\rho)$. For $0 < r < 4\rho$, we denote by C(u,r) the image of $\tilde{C}(u,r)$ under the projection $\tilde{\Omega}_{\psi} \to \Omega_{\psi}$.

We define a function $\ell: \Omega_{\psi} \to \mathbb{R}$ as follows: for each $x \in C(u, \rho)$, let $\tilde{x} \in \tilde{C}(u, \rho)$ be the unique lift of x. It follows from the description of \tilde{W}^{\pm} in Lemma 4.5 that there exist unique $s \in (-\rho, \rho)$ and $\tilde{y} \in \tilde{W}^{-}(\phi_{s}u)$ such that $\tilde{x} \in \tilde{W}^{+}(\tilde{y}), d^{-}(\phi_{s}u, \tilde{y}) < \rho$ and $d_{\varepsilon}^{+}(\tilde{y}, \tilde{x}) < \rho$. We set

$$\ell(x) := \max(s, d^{-}(\phi_s u, \tilde{y}), d_{\varepsilon}^{+}(\tilde{y}, \tilde{x})).$$

For $x \in \Omega_{\psi} - C(u, \rho)$, we then set $\ell(x) := \rho$.

For each $0 < r < \rho$, let $\tilde{\zeta}'_r$ be the partition of $\tilde{\Omega}_{\psi}$ with atoms $\gamma \tilde{C}(u,r) \cap \tilde{W}^+(\tilde{x})$ for $\tilde{x} \in \tilde{\Omega}_{\psi}$, $\gamma \in \Gamma$ and $\tilde{\Omega}_{\psi} - \Gamma \tilde{C}(u,r)$. We then define

$$\tilde{\zeta}_r := \bigvee_{i=0}^{\infty} \phi_{\tau}^i \tilde{\zeta}_r'.$$

Let ζ_r' and ζ_r be the partitions obtained by projecting $\tilde{\zeta}_r'$ and $\tilde{\zeta}_r$ to Ω_ψ respectively. Then $\zeta_r = \bigvee_{i=0}^\infty \phi_\tau^i \zeta_r'$ since the Γ -action commutes with the flow $\{\phi_t\}$. It is clear that ζ_r is ϕ_τ -decreasing. In view of the construction of $\tilde{\zeta}$ which uses atoms $\gamma \tilde{C}(u,r) \cap W^+(\tilde{x})$, we can verity that ζ_r is m-measurable by a same argument as in [24, Proposition 1]. Denote by \tilde{m} is the lift of m to $\tilde{\Omega}_\psi$. Let d be the metric on Ω_ψ considered in Proposition 4.6. By the ergodicity of m, we have that for m-a.e. $x \in \Omega_\psi$, $\phi_\tau^k x \in C(u,r)$ for infinitely many $k \in \mathbb{N}$, and hence $\zeta_r'(\phi_\tau^k x)$ is contained in a uniformly bounded set $C(u,r) \cap W^+(\phi_\tau^k x)$ with respect to d. Since $(\phi_\tau^{-k}\zeta_r)(x) \subset \phi_\tau^{-k}(\zeta_r'(\phi_\tau^k x))$, it follows from Proposition 4.6 that ζ_r is ϕ_τ -generating. Similarly, for \tilde{m} -a.e. $\tilde{x} \in \tilde{\Omega}_\psi$, we have $\phi_\tau^{-k} \tilde{x} \in \gamma \tilde{C}(u,r)$ for some $k \in \mathbb{N}$ and $\gamma \in \Gamma$. Hence we have $\tilde{\zeta}_r(\tilde{x}) \subset \phi_\tau^k(\tilde{\zeta}_r'(\phi_\tau^{-k} \tilde{x})) \subset \phi_\tau^k \gamma \tilde{C}(u,r) \cap \tilde{W}^+(\tilde{x})$, and therefore $\tilde{\zeta}_r(\tilde{x})$ is a precompact subset of $\tilde{W}^+(\tilde{x})$.

We now show the most delicate part of the proof that we can take r > 0 so that $\tilde{\zeta}_r(\tilde{x})$ contains an open neighborhood of \tilde{x} in $W^+(\tilde{x})$ for \tilde{m} -a.e. $\tilde{x} \in \tilde{\Omega}_{\psi}$. We use Theorem 8.1 in a crucial way.

Consider the push-forward ℓ_*m of the measure m by ℓ , which is a probability measure on $[0, \rho] \subset \mathbb{R}$. For any $\varepsilon_0 \in (0, 1)$, we have that

Leb
$$\left(\left\{ r \in (0, \rho) : \sum_{k=0}^{\infty} (\ell_* m) ([r - \varepsilon_0^k, r + \varepsilon_0^k]) < \infty \right\} \right) = \rho$$

by [20, Proposition 3.2]. Since m is ϕ_{τ} -invariant, this is same to say that

Leb
$$\left(\left\{r \in (0, \rho) : \sum_{k=0}^{\infty} m(\left\{x : |\ell(\phi_{\tau}^{-k}x) - r| < \varepsilon_0^k\right\}) < \infty\right\}\right) = \rho.$$

We fix a constant $e^{-\varepsilon \alpha \tau} < \varepsilon_0 < 1$ where $\alpha > 0$ is a constant given in Theorem 8.1. We can therefore choose $0 < r < \rho/2$ so that $m(\partial C(u,r)) = 0$ and that

$$\sum_{k=0}^{\infty} m(\{x : |\ell(\phi_{\tau}^{-k}x) - r| < \varepsilon_0^k\}) < \infty.$$

Let Ω'_{ψ} be the set of all $x \in \Omega_{\psi} - \bigcup_{k=0}^{\infty} \phi^k \partial C(u, r)$ satisfying that for some $N_0 = N_0(x) > 0$, we have

(10.1)
$$\ell(\phi_{\tau}^{-k}x) < r - \varepsilon_0^k \quad \text{or} \quad \ell(\phi_{\tau}^{-k}x) > r + \varepsilon_0^k$$

for all $k \geq N_0$. Since $m(\partial C(u,r)) = 0$, it follows from the classical Borel-Cantelli lemma that $m(\Omega'_{\psi}) = 1$. Let $x \in \Omega'_{\psi}$ be an arbitrary point and corresponding $N_0 = N_0(x)$. We fix a lift $\tilde{x} \in \tilde{\Omega}_{\psi}$ of x.

For $\tilde{y} \in \tilde{\Omega}_{\psi}$, we write y for its projection to Ω_{ψ} . Fix a compact subset $Q \subset \tilde{\Omega}_{\psi}$ containing

$$\bigcup_{v_0 \in \tilde{C}(u,\rho)} \{ v \in \tilde{W}^+(v_0) : d^+(v,v_0) \le b \}$$

where $b \ge 1$ is the constant given in Theorem 8.1.

We set

$$r_1 := \min\left(\frac{1}{2}, \frac{1}{b(2c)^{1/\varepsilon}}\right) > 0$$

where $c = c_Q \ge 1$ is as given in Theorem 8.1(3). Let

$$\tilde{\mathcal{U}} = \{ \tilde{y} \in \tilde{W}^+(\tilde{x}) : d^+(\tilde{x}, \tilde{y}) < r_1 \};$$

this is a precompact neighborhood of \tilde{x} in $\tilde{W}^+(\tilde{x})$. Let \mathcal{U} be the image of $\tilde{\mathcal{U}}$ in Ω_{ψ} . We claim that for each $k \geq N_0$, either

(10.2)
$$\phi_{\tau}^{-k}(\tilde{\mathcal{U}}) \subset \gamma^{-1}\tilde{C}(u,r)$$
 for some $\gamma \in \Gamma$ or $\phi_{\tau}^{-k}(\tilde{\mathcal{U}}) \cap \Gamma\tilde{C}(u,r) = \emptyset$.

Fix $k \geq N_0$. Recall that x satisfies either $\ell(\phi_{\tau}^{-k}x) < r - \varepsilon_0^k$ or $\ell(\phi_{\tau}^{-k}x) > r + \varepsilon_0^k$. Consider the first case. This implies that there exists $\gamma \in \Gamma$ such that $\gamma \phi_{\tau}^{-k} \tilde{x} \in \tilde{C}(u, r - \varepsilon_0^k)$. We then have

$$d^+(\gamma\phi_\tau^{-k}\tilde{x},\gamma\phi_\tau^{-k}\tilde{y}) = d^+(\phi_\tau^{-k}\tilde{x},\phi_\tau^{-k}\tilde{y}) \le be^{-\alpha\tau k}d^+(\tilde{x},\tilde{y}).$$

by (8.10) and Theorem 8.1(1). In particular, we have $\gamma \phi_{\tau}^{-k} \tilde{y} \in Q$ and hence

$$(10.3) d_{\varepsilon}^{+}(\gamma\phi_{\tau}^{-k}\tilde{x},\gamma\phi_{\tau}^{-k}\tilde{y}) \leq cd^{+}(\gamma\phi_{\tau}^{-k}\tilde{x},\gamma\phi_{\tau}^{-k}\tilde{y})^{\varepsilon} \leq cb^{\varepsilon}e^{-\varepsilon\alpha\tau k}d^{+}(\tilde{x},\tilde{y})^{\varepsilon}$$

by Theorem 8.1(3). Let $\tilde{y} \in \tilde{\mathcal{U}}$, and hence $d^+(\tilde{x}, \tilde{y}) < r_1$. Since $e^{-\varepsilon \alpha \tau} < \varepsilon_0$, we then have

$$d_{\varepsilon}^+(\gamma\phi_{\tau}^{-k}\tilde{x},\gamma\phi_{\tau}^{-k}\tilde{y})<\varepsilon_0^k$$

by (10.3), and therefore $\gamma \phi_{\tau}^{-k} \tilde{y} \in \tilde{C}(u,r)$. Hence

$$\phi_{\tau}^{-k}(\tilde{\mathcal{U}}) \subset \gamma^{-1}\tilde{C}(u,r),$$

proving (10.2) in this case.

Now consider the case when $\ell(\phi_{\tau}^{-k}x) > r + \varepsilon_0^k$. In this case, we claim that $\phi_{\tau}^{-k}(\tilde{\mathcal{U}}) \cap \Gamma \tilde{C}(u,r) = \emptyset$. Suppose not. Then there exists $\gamma \in \Gamma$ and some $\tilde{y} \in \tilde{W}^+(\tilde{x})$ such that $d^+(\tilde{x},\tilde{y}) < r_1$ and $\gamma \phi_{\tau}^{-k} \tilde{y} \in \tilde{C}(u,r)$. By the same argument as above, $\gamma \phi_{\tau}^{-k} \tilde{x} \in Q$ and hence

$$d_{\varepsilon}^{+}(\gamma\phi_{\tau}^{-k}\tilde{x},\gamma\phi_{\tau}^{-k}\tilde{y}) \leq cb^{\varepsilon}e^{-\varepsilon\alpha\tau k}d^{+}(\tilde{x},\tilde{y})^{\varepsilon}.$$

Since $d^+(\tilde{x}, \tilde{y}) < r_1$, we have $\gamma \phi_{\tau}^{-k} \tilde{x} \in \tilde{C}(u, r + \varepsilon_0^k)$. This is a contradiction since $\ell(\phi_{\tau}^{-1}x) > r + \varepsilon_0^k$, proving the claim.

The claim (10.2) implies that $\phi_{\tau}^{-k}(\tilde{\mathcal{U}})$ lies in a single atom of $\tilde{\zeta}'_r$ for each $k \geq N_0$.

Since $\phi_{\tau}^{-k}\tilde{x} \notin \partial \gamma^{-1}\tilde{C}(u,r)$ for all $k \in \mathbb{N}$ and $\gamma \in \Gamma$, we can find a small neighborhood $\tilde{\mathcal{U}}' \subset \tilde{\mathcal{U}}$ of \tilde{x} in $\tilde{W}^+(\tilde{x})$ such that $\phi_{\tau}^{-k}(\tilde{\mathcal{U}}')$ is entirely contained in some $\gamma^{-1}\tilde{C}(u,r)$, $\gamma \in \Gamma$ or disjoint from $\Gamma C(u,r)$ for each $0 \leq k \leq N_0$. Therefore $\phi_{\tau}^{-k}(\tilde{\mathcal{U}}')$ is contained in a single atom of $\tilde{\zeta}'_r$ for all $k \in \mathbb{N}$. This proves that the atom of $\tilde{\zeta}_r$ containing \tilde{x} also contains $\tilde{\mathcal{U}}'$. Since $x \in \Omega'_{\psi}$ is arbitrary, $\tilde{\zeta}_r$ is subordinated to \tilde{W}^+ .

The rest of the argument is a similar entropy computation as in the deduction of [24, Proposition 4] from [24, Proposition 1].

Proof of Theorem 10.1. The deduction of Theorem 10.1 from Proposition 10.2 can be done similarly to [24].

First, note that $\delta_{\psi} = 1$ since ψ is tangent to ψ_{Γ}^{θ} ([11, Theorem 10.1], [18, Theorem 4.5]). For $g \in G$ such that $[g] \in \tilde{\Omega}_{\psi}$, we consider the measure $\mu_{\tilde{W}^+([g])}$ on $\tilde{W}^+([g])$ given by

$$d\mu_{\tilde{W}^+([g])}([gn]) = e^{\psi(\beta^{\theta}_{(gn)^+}(e,gn))} d\nu((gn)^+)$$

for $n \in N_{\theta}^+$. It follows from the definition that for all $a \in A_{\theta}$, we have

(10.4)
$$\frac{da_* \mu_{\tilde{W}^+([g])}}{d\mu_{\tilde{W}^+([ga])}}(x) = e^{-\psi(\log a)}.$$

We write m^{pr} for the normalized probability measure $m_{\psi}/|m_{\psi}|$. Denote by \tilde{m}^{pr} its lift to $\tilde{\Omega}_{\psi}$. The following can be obtained by directly checking the condition for conditional measures:

Lemma 10.3. Let $\tilde{\zeta}$ be an \tilde{m}^{pr} -measurable partition of $\tilde{\Omega}_{\psi}$ subordinated to \tilde{W}^+ . Then the family of conditional measures of \tilde{m}^{pr} with respect to $\tilde{\zeta}$ is given by

$$d\tilde{m}^{pr}_{\tilde{\zeta}(\tilde{x})}(w) := \frac{\mathbb{1}_{\tilde{\zeta}(\tilde{x})}(w)}{\mu_{\tilde{W}^{+}(\tilde{x})}(\tilde{\zeta}(\tilde{x}))} d\mu_{\tilde{W}^{+}(\tilde{x})}(w) \quad for \ \tilde{x} \in \tilde{\Omega}_{\psi}.$$

By Theorem 9.1, m_{ψ} is finite, and hence it follows from Theorem 4.2 that m^{pr} is $\{\phi_t\}$ -ergodic. It is a general fact that m^{pr} is ergodic for the transformation ϕ_t for uncountably many t [24, Lemma 7]. Fix $\tau > 0$ so that m^{pr} is ϕ_{τ} -ergodic. Now let m be a probability $\{\phi_t\}$ -invariant measure on Ω_{ψ} . Considering the ergodic decomposition of m, we may assume that m is ϕ_{τ} -ergodic without loss of generality [14, (3.5a)].

We now consider the partition ζ given by Proposition 10.2 for the measure m, its lift \tilde{m} , and the transformation ϕ_{τ} . Since $\tilde{\zeta}$ is subordinated to \tilde{W}^+ , the measure

$$d\tilde{m}_{\tilde{\zeta}(\tilde{x})}^{pr}(w) := \frac{\mathbb{1}_{\tilde{\zeta}(\tilde{x})}(w)}{\mu_{\tilde{W}^{+}(\tilde{x})}(\tilde{\zeta}(\tilde{x}))} d\mu_{\tilde{W}^{+}(\tilde{x})}(w)$$

and the function

$$\tilde{G}(\tilde{x}) := -\log \mu_{\tilde{W}^+(\tilde{x})}(\tilde{\zeta}(\tilde{x}))$$

are well-defined for \tilde{m} -a.e. $\tilde{x} \in \tilde{\Omega}_{\psi}$. Note that since $\tilde{\zeta}$ is a partition for the measure \tilde{m} , it may not be \tilde{m}^{pr} -measurable and hence Lemma 10.3 does not apply to $\tilde{\zeta}$. It follows from (10.4) that for \tilde{m} -a.e. $\tilde{x} \in \tilde{\Omega}_{\psi}$, we have

$$(10.5) -\log \tilde{m}_{\tilde{\zeta}(\tilde{x})}^{pr}((\phi_{\tau}^{-1}\tilde{\zeta})(\tilde{x})) = \tau + (\tilde{G} \circ \phi_{\tau})(\tilde{x}) - \tilde{G}(\tilde{x}).$$

This implies

$$\tilde{G} \circ \phi_{\tau} - \tilde{G} \ge -\tau$$

 \tilde{m} -a.e. Since \tilde{G} is Γ-invariant, it induces the function $G: \Omega_{\psi} \to \mathbb{R}$. By [24, Lemme 8], we have $\int G \circ \phi_{\tau} - G \ dm = 0$ and therefore

(10.6)
$$\int -\log m_{\zeta(x)}^{pr}((\phi_{\tau}^{-1}\zeta)(x)) \ dm(x) = \tau.$$

where $m^{pr}_{\zeta(x)}$ is the measure on $\zeta(x)$ induced by $\tilde{m}^{pr}_{\tilde{\zeta}(\tilde{x})}$.

We can now show $h_{m^{pr}}(\{\phi_t\}) = 1$. Indeed, if we consider the special case that $m = m^{pr}$, then the partition ζ becomes an m^{pr} -measurable partition given by Proposition 10.2. Hence by Lemma 10.3, the measure $m_{\zeta(x)}^{pr}$ forms the family of conditional measure for m^{pr} . Therefore the above identity (10.6) yields

$$h_{m^{pr}}(\phi_{\tau}) = h_{m^{pr}}(\phi_{\tau}, \zeta) = \int -\log m_{\zeta(x)}^{pr}((\phi_{\tau}^{-1}\zeta)(x)) \ dm(x) = \tau.$$

Hence

$$h_{m^{pr}}(\{\phi_t\}) = h_{m^{pr}}(\phi_\tau)/\tau = 1.$$

It remains to show that for a general m, $h_m(\{\phi_t\}) \leq 1$ and that $h_m(\{\phi_t\}) = 1$ implies $m = m^{pr}$. We define the following function: for m-a.e. $x \in \Omega_{\psi}$,

$$F(x) := \frac{m_{\zeta(x)}^{pr}((\phi_{\tau}^{-1}\zeta)(x))}{m_{\zeta(x)}((\phi_{\tau}^{-1}\zeta)(x))} \quad \text{if} \quad m_{\zeta(x)}((\phi_{\tau}^{-1}\zeta)(x)) > 0,$$

and F(x) := 0 otherwise. By [24, Fait 9], both functions F and $\log F$ are m-integrable and $\int F \ dm < 1$. Since

$$\int \log F \ dm = -\tau + h_m(\phi_\tau, \zeta) = -\tau + h_m(\phi_\tau) = -\tau + \tau h_m(\{\phi_t\})$$

by (10.6) and the choice of ζ , we apply Jensen's inequality and obtain

$$-\tau + \tau h_m(\{\phi_t\}) \le \log\left(\int F \ dm\right) \le 0.$$

This proves

$$h_m(\{\phi_t\}) \le 1.$$

Now suppose that $h_m(\{\phi_t\})=1$. This implies that the equality holds in Jensen's inequality, that is, $\log\left(\int F\ dm\right)=0$, which means that F=1 m-a.e. It follows that the two conditional measures $m_{\zeta(x)}^{pr}$ and $m_{\zeta(x)}$ coincide on the σ -algebra generated by $(\phi_{\tau}^{-1}\zeta)(x)$ for m-a.e. x. Since this holds after replacing ϕ_{τ} with ϕ_{τ}^k for any $k\in\mathbb{N}$ and the partition ζ is ϕ_{τ} -generating, we have

$$m_{\zeta(x)}^{pr} = m_{\zeta(x)}$$
 for m-a.e. $x \in \Omega_{\psi}$.

Then the equality between measures $m=m^{pr}$ follows from the Hopf argument. Indeed, let $f:\Omega_{\psi}\to\mathbb{R}$ be a compactly supported continuous function. By the Birkhoff ergodic theorem, the set

$$\mathcal{Z} := \left\{ x \in \Omega_{\psi} : \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} f(\phi_{s}x) ds = m^{pr}(f) \right\}$$

has a full m^{pr} -measure. Then \mathcal{Z} is invariant under the flow $\{\phi_t\}$ and moreover, since f is uniformly continuous, $x \in \mathcal{Z}$ implies $W^-(x) \subset \mathcal{Z}$ by Proposition 4.6. By the quasi-product structure of the BMS measure m^{pr} , this implies that for all $x \in \Omega_{\psi}$, $\mathcal{Z} \cap W^+(x)$ has full $\mu_{W^+(x)}$ -measure. Hence $\mathcal{Z} \cap \zeta(x)$ has full $m^{pr}_{\zeta(x)}$ -measure for m-a.e. $x \in \Omega_{\psi}$ by the definition of $m^{pr}_{\zeta(x)}$. Hence $\mathcal{Z} \cap \zeta(x)$ has full $m_{\zeta(x)}$ -measure for m-a.e. $x \in \Omega_{\psi}$. Since $m_{\zeta(x)}$ is a conditional measure for m, this implies $m(\mathcal{Z}) = 1$, and therefore $m(f) = m^{pr}(f)$ by applying the Birkhoff ergodic theorem again to m. This finishes the proof.

References

- [1] M. Babillot. On the mixing property for hyperbolic systems. *Israel J. Math.*, 129:61–76, 2002.
- [2] Y. Benoist. Propriétés asymptotiques des groupes linéaires. Geom. Funct. Anal., 7(1):1–47, 1997.

- [3] Y. Benoist. Propriétés asymptotiques des groupes linéaires. II. In Analysis on homogeneous spaces and representation theory of Lie groups, Okayama-Kyoto (1997), volume 26 of Adv. Stud. Pure Math., pages 33–48. Math. Soc. Japan, Tokyo, 2000.
- [4] P.-L. Blayac, R. Canary, F. Zhu, and A. Zimmer. Counting, mixing and equidistribution for GPS systems with applications to relatively Anosov groups. *Preprint arXiv:2404.09718*, 2024.
- [5] B. Bowditch. Convergence groups and configuration spaces. In *Geometric group theory down under (Canberra, 1996)*, pages 23–54. de Gruyter, Berlin, 1999.
- [6] B. Bowditch. Relatively hyperbolic groups. Internat. J. Algebra Comput., 22(3):1250016, 66, 2012.
- [7] M. Bridgeman, R. Canary, F. Labourie, and A. Sambarino. The pressure metric for Anosov representations. Geom. Funct. Anal., 25(4):1089–1179, 2015.
- [8] M. Bridson and A. Haefliger. Metric spaces of non-positive curvature, volume 319 of Grundlehren der mathematischen Wissenschaften: Fundamental Principles of Mathematical Sciences. Springer-Verlag, Berlin, 1999.
- [9] R. Canary, T. Zhang, and A. Zimmer. Cusped Hitchin representations and Anosov representations of geometrically finite Fuchsian groups. Adv. Math., 404(part B):Paper No. 108439, 67, 2022.
- [10] R. Canary, T. Zhang, and A. Zimmer. Patterson-Sullivan measures for transverse subgroups. J. Mod. Dyn., 20:319–377, 2024.
- [11] R. Canary, T. Zhang, and A. Zimmer. Patterson-Sullivan measures for relatively Anosov groups. Math. Ann., 392(2):2309–2363, 2025.
- [12] M. Chow and P. Sarkar. Local mixing of one-parameter diagonal flows on Anosov homogeneous spaces. *Int. Math. Res. Not. IMRN*, (18):15834–15895, 2023.
- [13] K. Corlette and A. Iozzi. Limit sets of discrete groups of isometries of exotic hyperbolic spaces. Trans. Amer. Math. Soc., 351(4):1507–1530, 1999.
- [14] M. Einsiedler and E. Lindenstrauss. Diagonal actions on locally homogeneous spaces. In *Homogeneous flows, moduli spaces and arithmetic*, volume 10 of *Clay Math. Proc.*, pages 155–241. Amer. Math. Soc., Providence, RI, 2010.
- [15] D. Groves and J. Manning. Dehn filling in relatively hyperbolic groups. Israel J. Math., 168:317–429, 2008.
- [16] U. Hamenstädt. A new description of the Bowen-Margulis measure. Ergodic Theory Dynam. Systems, 9(3):455–464, 1989.
- [17] A. Katok and B. Hasselblatt. Introduction to the modern theory of dynamical systems, volume 54 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza.
- [18] D. M. Kim, H. Oh, and Y. Wang. Properly discontinous actions, growth indicators and conformal measures for transverse subgroups. *Preprint arXiv:2306.06846*, 2023.
- [19] D. M. Kim, H. Oh, and Y. Wang. Ergodic dichotomy for subspace flows in higher rank. Commun. Am. Math. Soc., 5:1–47, 2025.
- [20] F. Ledrappier and J.-M. Strelcyn. A proof of the estimation from below in Pesin's entropy formula. Ergodic Theory Dynam. Systems, 2(2):203–219, 1982.
- [21] M. Lee and H. Oh. Invariant measures for horospherical actions and Anosov groups. Int. Math. Res. Not. IMRN, (19):16226–16295, 2023.
- [22] M. Lee and H. Oh. Dichotomy and Measures on Limit Sets of Anosov Groups. Int. Math. Res. Not. IMRN, (7):5658-5688, 2024.
- [23] G. D. Mostow. Self-adjoint groups. Ann. of Math. (2), 62:44–55, 1955.
- [24] J.-P. Otal and M. Peigné. Principe variationnel et groupes Kleiniens. *Duke Math. J.*, 125(1):15–44, 2004.
- [25] J.-F. Quint. Divergence exponentielle des sous-groupes discrets en rang supérieur. Comment. Math. Helv., 77(3):563–608, 2002.

- [26] J.-F. Quint. Mesures de Patterson-Sullivan en rang supérieur. Geom. Funct. Anal., 12(4):776–809, 2002.
- [27] A. Sambarino. Quantitative properties of convex representations. Comment. Math. Helv., 89(2):443–488, 2014.
- [28] A. Sambarino. A report on an ergodic dichotomy. Ergodic Theory Dynam. Systems, 44(1):236–289, 2024.
- [29] D. Sullivan. Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Math., 153(3-4):259-277, 1984.
- [30] K. Tsouvalas. Anosov representations, strongly convex cocompact groups and weak eigenvalue gaps. Preprint arXiv:2008.04462, 2020.
- [31] D. Winter. Mixing of frame flow for rank one locally symmetric spaces and measure classification. *Israel J. Math.*, 210(1):467–507, 2015.
- [32] F. Zhu and A. Zimmer. Relatively Anosov representations via flows I: theory. *Preprint*, arXiv:2207.14737, 2022. To appear in Groups Geom. Dyn.

Department of Mathematics, Yale University, New Haven, CT 06511 $\it Email\ address: {\tt dongryul.kim@yale.edu}$

Department of Mathematics, Yale University, New Haven, CT 06511 $Email\ address$: hee.oh@yale.edu