RELATIVELY ANOSOV GROUPS: FINITENESS,
MEASURE OF MAXIMAL ENTROPY, AND
REPARAMETERIZATION

DONGRYUL M. KIM AND HEE OH

ABSTRACT. For a geometrically finite Kleinian group I', the Bowen-
Margulis-Sullivan measure is finite and is the unique measure of maxi-
mal entropy for the geodesic flow, as shown by Sullivan and Otal-Peigné
respectively. Moreover, it is strongly mixing by a result of Babillot.
We obtain a higher-rank analogue of this theorem. Given a relatively
Anosov subgroup I' of a semisimple real algebraic group, there is a fam-
ily of flow spaces parameterized by linear forms tangent to the growth
indicator. We construct a reparameterization of each flow space by the
geodesic flow on the Groves-Manning space of I' which exhibits exponen-
tial expansion along unstable foliations. Using this reparameterization,
we prove that the Bowen-Margulis-Sullivan measure of each flow space
is finite and is the unique measure of maximal entropy. Moreover, it is
strongly mixing.
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For a geometrically finite Kleinian group I' of SO°(n, 1) = Isom™ (H"),
n > 2, it is a classical result of Sullivan ([29], see also [13]) that the asso-

ciated Bowen-Margulis-Sullivan measure mBMS

on the unit tangent bundle

TYT\H") is finite, and the measure-theoretic entropy of the geodesic flow
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with respect to mPMS equals the topological entropy. Hence the Bowen-
Margulis-Sullivan measure is the measure of maximal entropy. Moreover,
Otal-Peigné [24] showed that this measure is the unique measure of maxi-
mal entropy. It is also strongly mixing by a theorem of Babillot [I].

In this paper, we obtain higher-rank analogues of these theorems. Let G
be a connected semisimple real algebraic group. Anosov subgroups and rel-
atively Anosov subgroups of G are regarded as higher-rank generalizations
of convex cocompact and geometrically finite rank-one groups, respectively.
There is an even broader class of discrete subgroups called transverse sub-
groups, which are viewed as generalizations of rank-one discrete subgroups.
For a transverse subgroup I', we have a family of Bowen-Margulis-Sullivan

measures mgMS parameterized by a distinguished collection of linear forms

1. Each such measure mgMS lives on a fibered dynamical system over a
canonical one-dimensional base flow space (£, my, ¢¢) where the fiber is
the kernel of ¢ and mEMS is equal to the product measure m, ® Lebyer -
We refer to my, as the base Bowen-Margulis-Sullivan measure on {1,

We prove that if T' is a relatively Anosov subgroup, then the base BMS
measure my, is finite and is the unique measure of maximal entropy for the
flow {¢;}. Moreover, we show that for any transverse subgroup for which
my is finite, the dynamical system (€, my, ¢¢) is strongly mixing. In par-
ticular, both entropy-maximization and strong mixing holds for (£2y, my,, ¢¢)
associated with relatively Anosov subgroups.

To formulate these results precisely, we fix a Cartan decomposition G =
KATK, where K is a maximal compact subgroup of G and AT = expa™
is a positive Weyl chamber of a maximal split torus A of G. We denote by
p: G — at the Cartan projection defined by the condition g € K exp u(g)K
for g € G. Let II be the set of all simple roots for (Lie G,a™). Given a non-
empty subset § C II, there is the notion of relatively Anosov and transverse
subgroup. Let Fy = G /Py where Py is the standard parabolic subgroup
associated with §. Let I' < G be a discrete subgroup and let Ay denote
the limit set of I' in Fy as defined in , which we assume contains at
least 3 points, that is, I' is non-elementary. In the rest of the introduction,
we assume that I' is a @-transverse (or simply, transverse) subgroup. This
means that I" satisfies

o regularity: liminf,cr a(u(y)) = oo for all a € 0;

e antipodality: any § # 1 € Agu(g) are in general position (see (2.3)).
Here i = — Ady,, : II — II denotes the opposition involution where wy is the
longest Weyl element.

Fibered dynamical systems. Let ay = naenfe ker o and Ay = exp ag.
The centralizer of Ay is a Levi subgroup of Py which is a direct product
AySy where Sy is a compact central extension of a semisimple algebraic
subgroup. The right translation action of Ay on the quotient space G/Sy is

equivariantly conjugate to the ap-translation action on .7-"9(2) x ag where ]:6(2)
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consists of all pairs (£,7) € Fy X Fi(g) in general position. The left I'-action
on (G/Sy is not properly discontinuous in general. On the other hand, if we
set A(SQ) = (Mg x Ajpy) N ]'—(;(?2)’ then it is shown in [I8, Theorem 9.1] that T’
acts properly discontinuously on the following space:

Qp = A((QQ) x ag =~ {gSy € G/Sp : gPy € Ny, gwoPyg) € Ajp)}-
Hence ~
Qp :=T\Qr.
is a second countable locally compact Hausdorff space on which ag acts by
translations. Moreover, for each (T, 9)-propeIE| linear form v € ay, the space

Qr fibers over a one-dimensional flow space €2, := F\(AéQ) x R).
More precisely, via the projection (&,m,v) — (§,7n,9(v)), the T'-action

on QU descends to a proper discontinuous action on Qd, = A((f) x R [18,

Theorem 9.2]. Therefore €2y := F\Qw is a second countable locally compact
Hausdorff space over which Qr is a trivial ker ¢-bundle:

(Qr,ag) ~ Qy x ker1p

|

(th R)

The translation flow ¢¢(§,n,s) = (&,n,s +t) on Qw = AéQ) x R descends to
a translation flow on €, which we also denote by {¢:} by abuse of notation.
The (I, §)-properness of ¢ € aj is crucial for the proper discontinuity of the
I'-action on Qw. See Remark for examples.

For a pair of a (T, ¢)-Patterson-Sullivan measure v on Ay and a (I', ¢ oi)-
Patterson-Sullivan measure 14 on Aj), we denote by mgMS = mE?ffS the asso-
ciated Ag-invariant Bowen-Margulis-Sullivan measure on Qr, locally equiva-
lent to the product v ®v; ® Lebg,. Similarly, we denote by m,, the associated
{¢:}-invariant Bowen-Margulis-Sullivan measure on €y, locally equivalent

to the product v ® 1; ® Lebr. Then mgMS = my @ Lebyery . As we are not

assuming the uniqueness of v and v; for a given v, mi’MS and my, are not

necessarily determined by 1. Nevertheless, it is convenient to refer to them
as BMS measures associated to .

Relatively Anosov groups. A transverse subgroup I' < G is called rel-
atively Anosov (more precisely relatively 6-Anosov) if T is a relatively hy-
perbolic group and there exists a I'-equivariant homeomorphism between
the Bowditch boundary of I' and the limit set Ag. When I' is hyperbolic,
its Bowditch boundary is the Gromov boundary of I', and in this case,
the relatively Anosov subgroup I' is simply an Anosov subgroup. When G
has rank-one, relatively Anosov subgroups coincide with geometrically fi-
nite Kleinian groups. Recall that for a geometrically finite Kleinian group

lw is called (T, @)-proper if ¥ oy : I' — [—&, 00) is a proper map for some ¢ > 0.
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I', there exists a unique Patterson-Sullivan measure of dimension equal to
the critical exponent dr. In higher-rank, we consider the growth indicator
1/1? of ', a generalization of the critical exponent (see for the defini-
tion). A linear form ¢ is said to be tangent to wle if ¢ > wIQ and equality
holds at some non-zero u € ag. For a relatively Anosov subgroup I' and a
(T, 8)-proper linear form v € aj tangent to 1/1?, there exists a unique (T', 9)-
Patterson-Sullivan measure on Ay, and hence a unique BMS measure my,
associated with ¢ (see [21], [28] for Anosov groups and [II] for relatively
Anosov groups).

For Anosov subgroups, the associated base space 1, is known to be home-
omorphic to the Gromov geodesic flow space and is compact ([12], [7], [28]).
In fact, for a transverse subgroup, I' is Anosov if and only if {2, is compact
[18]. In particular, €2y is non-compact for relatively Anosov subgroups that
are not Anosov. Analogous to the classical result on the finitness of the
Bowen-Margulis-Sullivan measure for a geometrically finite Kleinian group,
we prove the following:

Theorem 1.1 (Finiteness and mixing). Let I' be a relatively Anosov sub-
group of G. For any (', 0)-proper linear form v € aj tangent to the growth
indicator of I', the BMS measure my, is finite:

|my| < 0.
Moreover, the system (Qy, My, 1) is strongly mizing.

In fact, we establish strong mixing in a broader setting of transverse
subgroups, which can be regarded as a higher-rank analogue of Babillot’s
mixing theorem (see Theorem [4.1J).

Given the finiteness of m,, the metric entropy hm,({¢:}) of the nor-
malized measure my/|my| is well-defined. For a (I', §)-proper linear form
Y € ay, the associated 1)-critical exponent is given by

5, — lim sup log#{y el :T¢(u(v)) <T} _
T—o0

(0,00)

and one has ¢, = 1 if and only if ) is tangent to ¢ ([I1, Theorem 10.1],
[18, Theorem 4.5]).

Theorem 1.2 (Unique measure of maximal entropy). Let I' be a relatively
Anosov subgroup of G. For any (I',0)-proper linear form 1 € aj tangent to
the growth indicator of T,

my is the unique measure of mazximal entropy for (Sy, {¢:})

and the entropy hm,,({¢1}) is equal to 6y = 1.

For Anosov subgroups, this theorem is due to Sambarino ([27], [2§]),
as a consequence of thermodynamic formalism. Owur proof, by constrast,
does not use the thermodynamic formalism and thus provides an alternative
argument even in the Anosov case.
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Remark 1.3. The identity d,, = 1 follows from the normalization that 1) is
tangent to %9“- In rank-one, ¢; corresponds to the time-changed geodesic flow
gt/ and mg. is the unique measure of maximal entropy for g;, satisfying

himg. ({g¢}) = or. Hence s ({61}) = by ({9:3)/0r = 1.

A key technical ingredient of Theorems [I.1] and [T.2]is the following coarse
reparameterization theorem, which is also of independent interest. Let
(Xaar, daar) denote the Groves-Manning cusp space of I' and let G denote
the space of all parameterized bi-infinite geodesics in the Groves-Manning
cusp space [15]. Define the geodesic flow @5 : G — G by (ps0)(-) = o (- + s).

Theorem 1.4 (Reparameterization). There ezists a continuous, surjective,
proper I'-equivariant map ~ ~

v . g — Qw
together with a continuous cocycle t : G x R — R such that for all o € G and
s €R,

(1) \il((pso') = (pf(o,s)@(a);

(2) {(07 S) = —E(QDSO', _5);
(3) there exists an absolute constant B > 0 such that

als| — B <t(o,|s|) < d'|s| + B
where

0<a:= liminfM and o = 3limsup M
ver dan(e, ) ver  dam(e,”)

(4) all fibers {0(0) € Xgum = 0 € U1 (x)}, 2 € Qy, have uniformly
bounded diameter.

< 0Q;

Moreover, the flow ¢, is exponentially expanding along unstable foliations of
Qw = Aé2) X R, as described in Theorem .

The map ¥ : T'\G — Q, induced from U, provides a thick-thin decom-
position of €2, that plays a crucial role in the proof of the finiteness of my,
(Theorem [L.1)). This decomposition is used in conjunction with the work of
Canary-Zhang-Zimmer [I1], which analyzes the critical exponents of periph-
eral subgroups of I'. The exponentially expanding property of ¢; is essential
in constructing a measurable partition of Qd) subordinated to unstable foli-
ations (Proposition , a key step in the proof of Theorem concerning

the uniqueness of the measure of maximal entropy.

Remark 1.5. Recently, Blayac-Canary-Zhu-Zimmer [4] showed that for 6-
transverse I' and ¢ € aj, if there exists a (I', §)-Patterson-Sullivan measure
on Ay, then ¥ must be (I',6)-proper. This result implies that the (T, 6)-
properness condition is not a genuinely restrictive assumption when studying
dynamics associated to Bowen-Margulis-Sullivan measures.

Acknowledgements. We were informed that the ongoing work of Blayac,
Canary, Zhu and Zimmer [4] contains a different proof of Theorem |1.1
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2. PRELIMINARIES

We review some basic facts about Lie groups, following [I8, Section. 2]
which we refer for more details. Throughout the paper, let G be a con-
nected semisimple real algebraic group. Let P < G be a minimal parabolic
subgroup with a fixed Langlands decomposition P = M AN where A is a
maximal real split torus of G, M is the maximal compact subgroup of P com-
muting with A and N is the unipotent radical of P. Let g and a respectively
denote the Lie algebras of G and A. Fix a positive Weyl chamber a® < a so
that log N consists of positive root subspaces and set AT = expa™. We fix
a maximal compact subgroup K < G such that the Cartan decomposition
G = KATK holds. We denote by p : G — a™ the Cartan projection defined
by the condition g € Kexpu(g)K for g € G. Let X = G/K be the asso-
ciated Riemannian symmetric space and o = [K| € X. Fix a K-invariant
norm || - || on g. This induces the left G-invariant Riemannian metric d on
X.

Let ® = ®(g, a) denote the set of all roots, @ C ® the set of all positive
roots, and II C ®* the set of all simple roots. Fix a Weyl element wy € K
of order 2 in the normalizer of A representing the longest Weyl element so
that Ady, a™ = —a™. The map

i=—Ady,:a—a
is called the opposition involution. It induces an involution & — ® preserv-
ing II, for which we use the same notation i, such that i(«) o Ad,,, = —a for
all a € .

Henceforth, we fix a non-empty subset § C II. Let Py denote a standard
parabolic subgroup of G corresponding to 6; that is, Py is generated by M A
and all root subgroups U,, where a ranges over all positive roots which are
not Z-linear combinations of II — 8. Hence Py = P. Let

ay = ﬂ ker o, a;“:agﬁcﬁ,
acll-0

Ay =expag, and Af =expay.
Let pg : a — ag denote the projection invariant under all Weyl elements
fixing ag pointwise. We write pug = pgopu : G — ag'. The space a; =
Hom(ag, R) can be identified with the subspace of a* which is pp-invariant:
ay = {¢ € a* : popy = ¢}. We have the Levi-decomposition Py = LgNy
where Ly is the centralizer of Ay and Ny = R,(Fy) is the unipotent radical
of Py. We set My = KN Py C Ly.

Limit set Ay. We set
Fo =G/ Py.
The subgroup K acts transitively on Fy, and hence Fy ~ K /My.

Definition 2.1. For a sequence g; € G and & € Fy, we write lim; o0 g; = &
and say g; converges to & if
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e for each o € 0, a(pu(g;)) — o0 as g; — oo;
o lim; ,o k;&p = £ in Fy for some k; € K such that g; € k;ATK.

The 6-limit set of a discrete subgroup I' can be defined as follows:
(2.1) Ag = AQ(F) = {Iim Yi € Fo iy € F}
where lim; is defined as in Definition If I' is Zariski dense, this is the
unique I'-minimal subset of Fy ([2], [26]).

Jordan projections. Any g € G can be written as the commuting product
g = gngegu Where gp is hyperbolic, g is elliptic and g, is unipotent. The
hyperbolic component g, is conjugate to a unique element exp A\(g) € A"
and A(g) is called the Jordan projection of g. We write g := pg o A.

Theorem 2.2. [3] For any Zariski dense subgroup I' < G, the subgroup
generated by {\(y) € at : vy €'} is dense in a.

Busemann map and Gromov product. The a-valued Busemann map
B JFn X G x G — ais defined as follows: for £ € F and g,h € G,

Belg,h) ==0o(g~ ", &) —a(h™1,¢)

where o(g 1, £) € ais the unique element such that g~k € K exp(o(g~1,&))N
for any k € K with £ = kP. For (§,g,h) € Fp x G x G, we define

(2.2) 82(g, ) = po(Bey (9, 1)
for any & € Ji1 projecting to . This is well-defined independent of the
choice of &y [26, Lemma 6.1]. Moreover, since product map K Xx Ax N — G
is a diffeomorphism, Busemann maps are continuous.
Two points § € Fy and 1 € Fj) are said to be in general position if
(2.3) § = gPy and 1 = gwo P, for some g € G.
We set
(2.4) ]:9(2) = {(&m) € Fo x Fi(p) : &, are in general position}
which is the unique open G-orbit in Fy X Fj) under the diagonal G-action.
For (§,n) € .7-"(§2), we define the ag-valued Gromov product as

(2.5) (€.n) = Bl(e.g) +i(BL? (e, 9))
where g € G satisfies (9P, gwoPg)) = (§,1). This does not depend on the
choice of g [18, Lemma 9.13].

Patterson-Sullivan measures. For ¢ € aj, a (I', ¥)-conformal measure is
a Borel probability measure on Fy such that

drysv
dv
where v,v(D) = v(y~1D) for any Borel subset D C Fy and Bg denotes
the ag-valued Busemann map defined in (2.2). A (I, 1)-conformal measure
supported on Ay is called a (I', ¥)-Patterson Sullivan measure.

(2.6) &) = Y BEEN)  for all ~veTl and € € Fy
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Growth indicator. Let I' < G be a 6-discrete subgroup, that is, ug|r is
a proper map. The 0-growth indicator ¢1€ :ap — [—00,00) is a higher-rank
version of the critical exponent, which is defined as follows: If u € ag is
NON-zero,

(2.7 V() = [Jul inf 78

where 78 is the abscissa of convergence of the series slo )l

~€eT g (v)eC €
and C C ay ranges over all open cones containing u. Set 1%(0) = 0. This
definition was given in [I8], extending Quint’s growth indicator [25] to a
general 6.

For T' transverse and v (I',0)-proper, it is proved in [I§] that if there
exists a (I, ¢)-conformal measure on Fy, then

¢ > P

We say that ¢ € aj is tangent to ¢19“ if ¢ > 7,!1? and ¢(u) = @bl@(u) for
some u € ag — {0}. In the rank-one case, if dr is the critical exponent of
the Poincaré series Zyer e=%479) and v € at is the unique vector with
d(o,expvo) = 1, then ¢ on a* = R, v is given by ¢ (tv) = drt. As &
itself is the restriction of a linear form to a™, it is the unique linear form
tangent to itself. In higher-rank, w{i is typically non-linear but concave and
there are abundant tangent linear forms in general. As in the rank-one
setting, interesting geometry and dynamics occur for tangent linear forms.

3. VECTOR BUNDLE STRUCTURE OF THE NON-WANDERING SET {p

We fix a non-empty subset 8 of II. In this section, we assume that I' < G
is a non-elementary 6-transverse subgroup, that is, I' satisfies
o (non-elementary): #Ag > 3;
o (regularity): liminf,er a(u(y)) = oo for all a € #; and
e (antipodality): any two distinct £, 7 € Agyj(g) are in general position

as in (2.3)).

We will define a locally compact Hausdorff space Qr which is the non-
wandering set for the action of Ag. Recall that the centralizer of Ay is the
direct product AySy where Sy is a compact central extension of a connected
semisimple real algebraic subgroup. Note that Sy is compact if and only if
6 =TI.

The homogeneous space G/Sy can be identified with the space .7-"(52) X ag
via the map

gS@ = (gP97 ngR(9)7 Bng (6, g))v
recalling that wg € K is the longest Weyl element, and the left G-action on
.7:6(2) X ag given by

9(& m,v) = (g€ gn, v+ (g™ e))
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makes the above identification G-equivariant. Since Sy commutes with Ag,
the diagonal subgroup Ay acts on G/Sp on the right, and this action is

conjugate to the action of ag on .7-"(32) X ag by the translation on the last

component. Since Sy is not compact in general, the action of I" on ]-"9(2) X g 18
not properly discontinuous. However for I" transverse, the I'-action restricted

to the subspace Qp := AE,Q) X gy turns out to be properly discontinuous where

AéQ) = ]—“69) N (Ag x Ajp)) [18, Theorem 9.1]. Hence we obtain the locally
compact second countable Hausdorff space

Qr = F\Qp,

which is the non-wandering set for the right Ag-action.
For each (I',0)-proper form 1 € aj, Qr admits a ker¢-bundle structure
over a non-wandering set 2, for a one-dimensional flow. More precisely,

Theorem 3.1. [I8, Theorem 9.2] The T-action on the space Qb := AéQ) xR
given by

V(& n,8) = (v&, . s +(BL(v ' e)))
is properly discontinuous. Thus the space

(3.1) 0, :=T\Qy, =T\(AP x R)

is a locally compact second countable Hausdorff space equipped with the trans-
lation flow {¢1} on the R-component.

Remark 3.2. Any linear form which is positive on a™ N ay — {0}, e.g., any
non-negative linear combination of the fundamental weights w,, a € 6, is
(T, 8)-proper. On the other hand, a linear form which takes negative values
on some part of the #-limit cone is never (I', §)-proper (see [1§]).

Explicitly, the translation flow {¢+} is defined as follows: for ¢ € R and

(5’ 7, 5) € QL/M
¢t(§7 m, S) - (57 n,s + t)'

This flow {¢;} on Q, commutes with the T-action, and hence induces the
one-dimensional flow on €2, which we also denote by ¢; by abusing notations.

Consider the projection {dr — €2, induced by the I'-equivariant projection
Qr — Qd, given by (&,n,v) — (£,1,%(v)). This is a principal ker ¢)-bundle,
which is trivial since ker ) is a vector space. It follows that there exists a
ker 1)-equivariant homeomorphism between Qr and €2, x ker 1.

QF’: Qw X keI”tﬂ

|

Qy

Let v and v; be a pair of (I',¢) and (I', ¢ oi)-Patterson-Sullivan measures

on Ag and A;) respectively. The Bowen-Margulis-Sullivan measure mgMS

on Qr associated with the pair (v, 14) is the Ap-invariant measure induced
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by the I'-invariant measure deMS(E,n,v) = V&M dy(€)dv;(n)d Lebg, (v)

on Qr, where (-,-) denotes the Gromov product and d Lebg, denotes
the Lebesgue measure on ay.

We also have a {¢;}-invariant Radon measure m,, on €2y, induced by the
I'-invariant measure

(3.2) dinng(€,n, 8) = e* UM dy(€)ds(n)ds

on §~2¢ where ds denotes the Lebesgue measure on R. The measure m,, is
also referred to as Bowen-Margulis-Sullivan measure on {1y, associated with
the pair (v,14). By the ker¢-equivariant homeomorphism Qr ~ €, x ker v,
mEMS disintegrates over the measure m, with conditional measure being
the Lebesgue measure Lebye,,, so that
mgMS = My, @ Lebyerqp -
4. STRONG MIXING FOR TRANSVERSE GROUPS WITH FINITE BMS
MEASURE

Let I" < G be a non-elementary #-transverse subgroup. Fix a (I', f)-proper
form 1 € aj and a pair (v,14) of (I',%) and (I',% o i)-Patterson-Sullivan
measures on Ag and Aj respectively. Let €2y be as in Theorem and
my = My (v, 1) denote a BMS measure on 2, associated to a pair (v,14).

This section is devoted to the proof of the following:

Theorem 4.1. If |my| < oo, then (S, my, ¢¢) is strongly mizing. That is,
for any f1, f2 € L*(Qy, my),
\t1|1m /fl ¢1(z)) f2(z) dmy(x /fl dmw/fz dmy.
We begin by observing the ergodicity of Mgy
Theorem 4.2. If |my| < oo, then (Sdy, my, ¢¢) is ergodic.

Proof. By the Poincaré recurrence theorem, the dynamical system (£, my, ¢¢)
is conservative. Hence it follows from the higher-rank Hopf-Tsuji-Sullivan
dichotomy [18, Theorem 10.2] that (Qy, my, ¢;) is ergodic. O

Although the flow space €y, was not considered, Theorem can also be
deduced from [I0] once €, is shown to make sense. See also [22] and [2§]
for Anosov cases.

f-transitivity subgroups. For g € G, we set g := gPy € Fy and g~ :=
gwoPg) € Fi). Set N; = ’UJ()Ni(g)wal. We use the following notion of
f-transitivity subgroup:

Definition 4.3. For g € G with (g7, ¢7) € A((f), we define the subset H%(g)
of Ay as follows: for a € Ay, a € 7—[1@(9) if and only if there exist v € T,
s € Sg and a sequence ni,--- ,n; € Ny UN,", such that

(1) ((gn1---ny)*,(gn1---n,)7) € AéQ) for all 1 <r < k; and
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(2) gni---ng =~ygas.
It is not hard to see that H%(g) is a subgroup (cf. [3I, Lemma 3.1]). We
call ’Hl(i the -transitivity subgroup for I'.

In the following, we prove that the #-transitivity subgroup 7—[1@ contains
exp A\g(Ip) for some Schottky subgroup I'g < T".

Proposition 4.4. For any g € G such that (g7,97) € A((f), the subgroup
Y(log HY(g)) is dense in R.

Proof. It was shown in [I9, Proposition 8.3] that if I" is a Zariski dense 6-
transverse subgroup and if g € G is such that (¢7,g7) € Aéz), then the
subgroup Hle(g) is dense in Ay, by proving that for a Schottky subgroup
[y < T, the set of Jordan projections A\g(I'g) is contained in log H%(g). The
Zariski dense hypothesis was used to guarantee that I'y can be taken to
be Zariski dense, and hence A\g(I'g) generates a dense subgroup in ag ([3],

Theorem .

In general, let H be the Zariski closure of I' and consider the Levi de-
composition of H: H = LU where L is a reductive algebraic subgroup and
U the unipotent radical of H. Moreover, we have a Cartan decomposition
G=KAT"K sothat L= (KNL)(ATNL)Y(KNL)by 23]. If 7 : H — L
denotes the projection, then m(I') is Zariski dense in L and hence its Jor-
dan projection generates a dense subgroup of a N Lie L. This allows the
same proof of [I9, Proposition 8.3] to work within L, and hence the claim
follows. [l

Contractions by flow on 2. For g € G, we write
9] = (g%, 97, (B0 (e,9))) € Fy? x R.

We mainly consider the case when [g] € Q, = A((f) x R, that is, when
(97,97) € AéQ). For [g] € Qy, we denote by T'[g] € Qy the element of Q,
obtained as the projection of [g] by (~2¢ — Q.
We set for g € G such that [g] € Q,
" W (lg]) = {lgn] € Dy : m € N}
W= (lg]) = {lg

The elements of W+ ([g]) can be described as follows:

n] € Qy :n € Ng}.

Lemma 4.5. [19, Lemma 8.4] Let g € G, n € N, and n’ € Ny. Then

lgn] = ((gn)*, 97, ¢ (81 (e,9) + {(gn) T, 97) = ((gT97))) )
lgn'1 = (97 ()"0 (B (e ) ) -
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These are leaves of foliations W= := {IW*+([g]) : [g] € Qy}. For z € Qy,
we set
(4.2) W*(z) :=T\W*([g]), and W~ (z):=T\W~([g])
where g € G is such that I'[g] = z. The following proposition says that we
may consider Wt := {W7*(z): 2 € Qp}and W™ := {W(2) : z € Qy} as
unstable and stable foliations for the flow ¢; in y: note that since €1y, is
a locally compact second countable Hausdorff space by Theorem So is
its one-point compactification €. Hence Q;Z is metrizable. Therefore, we
can choose a metric d on {2, which is a restriction of a metric on QZ That

we can use this kind of metric d to prove the following proposition was first
observed in [4].

Proposition 4.6. [19, Proposition 8.6] Let z € Q. We have
(1) if 2,y € WH(2), then
d(p_i(x),d—+(y)) = 0 ast — 4o0.
(2) if v,y € W (2), then
d(¢e(z), d¢(y)) = 0 ast — +oo.

Moreover, the convergence is uniform on compact subsets.

Proof of Theorem We are now ready to prove the strong mixing.
We recall the following lemma proved by Babillot:

Lemma 4.7. [Il Lemma 1] Let (X, m,{T;}1cr) be a probability measure-
preserving system. Let f € L*(X,m) be such that J fdm = 0. Suppose that
foTly, #0 weaklgﬂ for some t; — oco. Then there exists a non-constant
function F such that by passing to a subsequence,

foly, = F and foT_.; —F weakly asi— oo.
The following is an easy observation in measure theory:

Lemma 4.8. Let (X, m) be a probability measure space. If f; — F weakly in
L?(X,m), then there exists a subsequence fi; such that the Cesaro average
converges:

@2

1

ﬁzfij = F m-a.e.
=1

Now going back to our setting, let fi, fo € LQ(Qw, my). We may assume
that my, is a probability measure. By replacing fi with fi — [ fidmy, it
suffices to show that for any f € L%(Qy,my) with [ fdmy = 0, we have
fog¢ — 0 weakly as [t| — oo. Since C.(€2y) is dense in L%(Qy,my), we
may assume without loss of generality that f is a continuous function with
compact support on . Suppose that f o ¢; 4 0 weakly as t — oo. By

2f, — 0 weakly if and only if [ fngdm — 0 for all g € L*(X, m)
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Lemma@and Lemma there exists a non-constant function F : Q,, — R
and a subsequence t; — oo such that
1 & 1 &
(4.3) 72 Z fo¢y, = F and 72 Z fod_y, = F my-ae. as { — oo.
i=1 i=1

We claim that F' is invariant under the flow ¢;; this yields a contradiction
to the ergodicity of (£, my, ¢¢) obtained in Theorem

Let Wy = {z € Qy : holds}, which is m,;-conull. Since f is uniformly
continuous, it follows from Proposition that if g€ G and n € Ng U N(j'
are such that [g], [gn] € Qy and T[g],T[gn] € Wy, then

F(Ig]) = F(I'[gn]).
Denote by Wy and F the I-invariant lifts of Wy and F to Qw respectively.

We set 3
Wi = {(&,n) : (§,m,t) € Wo for Leb-a.e. t}.

We also set
W ={(&mn) e Wy :(&n),(E,n) € Wy for v-a.e. £ and y-a.e. 7'}

Recall that we also denote by {¢;} the translation flow on Q¢. For any
e>0and x € Qy, let

Fa) = 1/8 Flo(z)) ds.

€J—¢

Then F; is continuous on each {¢;}-orbit and as ¢ — 0, we have the conver-
gence F, — F my-a.e. Hence it suffices to show that F} is invariant under
the flow ¢;.

By the definition of W and the observation on Wy made above, we have
that if g € G and n € Ny U N, are such that [g],[gn] € W x R C Qy,
then F:([g]) = F:(lgn]). Fix g € G such that [g] € W x R and let
to € ¥(logH%(g)) and a € H%(g) such that 1 (loga) = tyo. We then have
¢1,([g]) = [ga]. By the definition of the #-transitivity subgroup, there exist
v €T, s € Sy, and a sequence n,--- ,n, € Ng U N, ", such that

(1) ((gna---no)*, (gna---n)~) € AP forall 1 < < k;
(2) gna -y = ygas.
As in the proof of [19, Proposition 8.8], there exist a sequence a; € Ag

and a sequence of k-tuples (nqj,--- ,ng ;) € Hle Ny U N(j converging to a
and (ni,---,nk) respectively as j — oo, and such that for each j > 1, we
have

gnij---ne;l € W xR forall 1 <r <k and [gni;---nk;] = [v9a4].
Therefore, we have for each j > 1 that
Fo(lg]) = Felgnag) = -+ = Felgna -+ ni—14]) = Fellgna - - nyl)
= F([vga;i]) = Fe(lgaj)).
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Taking the limit j — oo, it follows from the continuity of F. on each {¢;}-
orbit that

Fe(lg]) = Fe(lgal) = (Fz o ¢)([9])-
Since v(log HY(g)) is dense in R by Proposition this implies that

F(lg) = (F0¢)(g]) forall € R.

Since [g] € W x R is arbitrary and (v ® v3)(W) = 1, this completes the
proof. O

5. RELATIVELY ANOSOV GROUPS

Relatively Anosov groups are relatively hyperbolic groups as abstract
groups, which we now define. Let I' be a countable group acting on a
compact metrizable space X by homeomorphisms. This action is called a
convergence group action if for any sequence of distinct elements v, € T,
there exist a subsequence v, and a,b € X such that as k — oo, v, () con-
verges to a for all x € X — {b}, uniformly on compact subsets. An element
~v € I of infinite order fixes either exactly two points in X or exactly one
point in X. In the former case, we call v lozodromic, and parabolic other-
wise. An infinite subgroup P < T is called parabolic if P fixes some point in
X and every infinite order element of P is parabolic.

A point £ € X is called a conical limit point if there exist a sequence of
distinct elements v, € I' and distinct points a,b € X such that as n — oo,
& — aand y,n — bforallp € X —{£}. A point £ € X is called a parabolic
limit point if £ is fixed by a parabolic subgroup of I'. We say that a parabolic
limit point £ € X is bounded if Stabp(z)\(X — {{}) is compact. The action
of I' on X is called a geometrically finite convergence group action if every
point of X is either conical or bounded parabolic limit point. A typical
example of geometrically finite convergence group action is the action of a
geometrically finite Kleinian group on its limit set.

Let I be a finitely generated group and P a finite collection of finitely
generated infinite subgroups of I'. We say that I' is hyperbolic relative to
P (or that (', P) is relatively hyperbolic), if I' admits a geometrically finite
convergence group action on some compact perfect metrizable space X and
the collection of maximal parabolic subgroups is

Pl={yPy 1. PeP,yeT}.

Bowditch [6] showed that for I" hyperbolic relative to P, the space X satis-
fying the above hypothesis is unique up to a I'-equivariant homeomorphism.
Hence this space is called Bowditch boundary and denoted by O(T', P).

The Groves-Manning cusp space. Let I' be a hyperbolic group relative
to P. The Groves-Manning cusp space for (I',P) is a proper geodesic Gro-
mov hyperbolic space constructed by Groves-Manning [I5] on which I' acts
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properly discontinuously and by isometries. We briefly review the construc-
tion of the Groves-Manning cusp space. We first need a notion of combina-
torial horoballs: for a graph Y equipped with a simplicial distance dy, the
combinatorial horoball H(Y) is the graph with the vertex set Y(*) x N and
two types of edges: vertical edges between vertices (y,n) and (y,n + 1) for
y € Y and n € N, and horizontal edges between vertices (y1,n) and (y2,n)
for y1,y2 € Y and n € N if dy (y1,y2) < 2!, We also equip H(Y) with the
simplicial distance.

Now fix a finite generating set S of I' such that for each P € P, SN P
generates P. We denote by C(T',S) and C(P,S N P) the Cayley graphs of
I" and P with respect to S and S N P respectively. For each v € ' and
P € P, we glue the horoball H(~C(P,S N P)) to C(T',S), by identifying
~C(P, SN P) c C(I',S) with vC(P,S N P) x {1} € H(rC(P,S N P)). The
resulting graph equipped with the simplicial distance is called the Groves-
Manning cusp space for (I',P) and S, which we denote by Xgas (I, P, S).

Theorem 5.1. [I5] Theorem 3.25] The space Xy (T, P,S) is a proper
geodesic Gromov hyperbolic space.

From the construction, the natural action of I' on the Cayley graph
C(T', S) induces the isometric action of I' on Xgps(T', P, S) which is prop-
erly discontinuous. Hence the induced I'-action on the Gromov boundary
0Xem (T, P,S) is a convergence group action [5, Lemma 2.11], and more-
over is a geometrically finite convergence group action by the construction
of Xgum (I, P,S). Therefore the Gromov boundary of Xqa (I, P, S) is the
Bowditch boundary:

0Xeum (D, P, S) = a(T, P).

Relatively Anosov subgroups. Let I' < G be a finitely generated non-
elementary @-transverse subgroup with the limit set Ag and P a finite col-
lection of finitely generated infinite subgroups of I'.

Definition 5.2. We say that T" is 6-Anosov relative to P if T' is hyperbolic
relative to P and there exists a I'-equivariant homeomorphism 9(I", P) — Ag.

Let I' be a 6-Anosov relative to P in the rest of the section. We denote by
Xom = Xau (L, P, S) the associated Groves-Manning cusp space for some
fixed generating set S. We then have the I'-equivariant homeomorphism

f : 8XGM — Ag,

which has the following property: Noting that the action of I' is faithful
on Xgpr, we have a well-defined map 't — T'o given by yx — ~o for any
z e Xam.

Proposition 5.3. [11, Proposition 4.3] Let x € Xgun. Then the map
I'z — To extends continuously to a unique I'-equivariant homeomorphism
f : aXGM — Ag.
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By the antipodality of T', the canonical projections mg : Aguie) — Ao
and 7y(g) : Agui(e) — Aj(p) are I'-equivariant homeomorphisms. This implies
that being relatively #-Anosov implies being relatively 6 U i(#)-Anosov as
well as relatively i(6)-Anosov. In particular, setting the composition f; :=
Ti(g) © wgl o f, two maps

f : BXGM — Ag and fi : aXGM — Ai(e)
have the property that if £, n € Xy are distinct, then (f(€), fi(n)) € .7:9(2).

Compatibility of shadows. We first define the shadows in the symmetric
space X: for p € X and R > 0, let B(p, R) denote the metric ball {z € X :
d(xz,p) < R}. For ¢ € X, the 0-shadow O%(q,p) C Fy of B(p, R) viewed
from ¢ is defined as

O%(q,p) ={gPy € Fo: g € G, go=gq, gAT0N B(p, R) # 0}.
The following two lemmas will be useful:

Lemma 5.4. [21, Lemma 5.7] There exists k > 0 such that for any g,h € G
and R > 0, we have

sup  [|6¢(9,h) — palg"h)|| < KR
fEO%(go,ho)

Lemma 5.5. [I8, Lemma 9.9] Let g, € G and &, € Fy be sequences both
converging to some & € Fy. Suppose that there exists a sequence n, €
Fig) converging to some n € Fyg) such that (& n) € }"(52) and the sequence

9 (&ny M) is precompact in f9(2). Then there exists R > 0 such that
&n € O%(o,gno) for alln > 1.

We also consider shadows in Groves-Manning cusp space. Let dgas be
the simplicial distance on X¢qpy.

The following theorem is obtained in [II, Theorem 10.1]; although it
stated only the lower bound, the upper bound also follows from its proof:

Theorem 5.6. For any (I, 8)-proper linear form 1 € ay, there exists posi-
tive constants ¢, and C such that for all v € T,

cdgu(e,y) — C < Y(ua(v)) < ¢ daule,y) + C.
For y € Xgn and R > 0, we denote the R-ball centered at y by

Beu(y, R) == {2 € Xgum : dam(y,2) < R}
For 2,y € Xga and R > 0, we define the shadow of Bga(y, R) viewed from
x as follows:

oM . _there exists a geodesic ray from x to £ }
O (2,y) := {5 € 0Xam : passing through Bg(y, R)
Note that £ € X is a conical limit point if and only if there exists R > 0

such that £ € OgM (0,7n0) for an infinite sequence -, €T
We prove the following compatibility of shadows under f : 0Xagn — Ag:
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Proposition 5.7. Letx € Xgy and o € X. For all sufficiently large R > 1,
there exist 11 = r1(R),ro = r2(R) > 0 such that for any v € T, we have

O7,(0,70) N Ay C F(OFY (7)) C O], (0,70) N Ap.
Moreover, we can take ri(R) — oo as R — oo.
We begin with some lemmas:

Lemma 5.8. For anyx € Xq, there exists Ry > 0 such that Ogy(x, yx) #
0 for any v €.

Proof. Suppose not. Then there exists an infinite sequence v, € I' so that
OSM (z,y,2) = 0, and hence OSM (v 12, 2) = ) for all n > 1. This forces
00Xy to be a singleton, which contradicts the perfectness of 0 Xgay. [l

Lemma 5.9. Let x € Xgy and R > 0. Let v, € T' and &, € 0Xgpn be
sequences such that &, € OgM(x,’ynx) forallm > 1. If vpx — &£ € 0Xam
as n — 0o, then &, — £ as n — oo.

Proof. Suppose to the contrary that the sequence &,, after passing to a
subsequence, converges to & € 0Xgy distinet from £. Since v,z — £ as
n — oo and Xgps is Gromov hyperbolic (Theorem , this implies that
there exist a constant R’ > 0 and a sequence of geodesic rays [y,z,&,] from
Y to &, such that dga(z, [ynx,&n]) < R’ for all n > 1. On the other
hand, since &, € O%M (z,7,x), there exists a geodesic ray [z,&,] from z
to &, and a point ¢, € [z,&,] such that dgas(cn, mx) < R for all n > 1.
Since the distance between v,z and ¢, is uniformly bounded, the Haus-
dorff distance between two geodesic rays [ynz,&,] and [cn,&n] C [2,6)]
is uniformly bounded, by the Gromov hyperbolicity of Xgas (Theorem
[.1). Since the distance dga(, [Yn®,&,]) is uniformly bounded, this im-
plies that the distance dgas(z, [cn, &n]) is uniformly bounded as well. Since
[cn, €] 1s the geodesic ray contained in the geodesic ray [z, &,], we have that
deyi(z,¢n) = day(z, [en, &]) is uniformly bounded. Therefore, it follows
from the uniform boundedness of dgas(cpn, vnx) that dgar(x,vpx) is uni-
formly bounded, which contradicts the hypothesis that v,z — £ as n — oc.
This finishes the proof. O

Proof of Proposition Note that the first inclusion and the last claim
follow once we show that for any ¢ > 0, there exists C' > 0 such that
0%(0,70) C f(OEM (z,vx)) for all v € I'. Suppose not. Then there exist se-
quences v, € I'and &, € 0Xgnr —OSM (2, vuw) such that f(&,) € 0% (o, ,0)
for all n > 1. After passing to a subsequence, we may assume that the
sequence v, 'z converges to some point € dXgy as n — oo. Since
vt & OGM (y—1a, 2) for all n > 1, we have that

(5.1) lim 76, = n.

n—oo
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On the other hand, by Proposition we have lim,, . v,! = fi(n) € Aip)-
Since f(v;1¢,) € O%(y;t0,0) for all n > 1 and lim, o0 v, * = fi(n), it fol-
lows from and the continuity of higher-rank shadows on viewpoints [19,
Proposition 3.4] that f(n) = lim, o f(7,, &) € Ay is in general position
with fi(n). This yields contradiction.

We now prove the second inclusion. Let Ry > 0 be as given by Lemma
and fix R > Ry. Let x € Xgp and o € X. Suppose on the contrary
that there exists a sequence vy, € I' such that

FOSM (2, ~v,2)) ¢ O%(0,ym0) for all n > 1.

This means that there exists a sequence &, € OgM (z,ynz) such that f(&,) &
Ofl(o,%o) for all n > 1. After passing to a subsequence, we may assume
that the sequence 7y,x converges to a point £ € 0 Xgy. By Proposition [5.3]
we have

(5.2) Yo — f(E) asn — oo.

In addition, it follows from Lemma that £, — £ as n — oo. For each
n > 1, we choose a point 7, € OgM (Yo, z) which is possible by Lemma
We may assume that the sequence 7, converges to n € 0Xgu, after
passing to a subsequence. Since y,x — £ as n — oo and 7, € OgM (Y, )
for all n > 1, we have & # n. Therefore, we have the following convergence

of the sequence in ]-"9(2):

(5.3) (&), fi(m)) = (F(E), fi(m)) € FP asn— oo

On the other hand, we also have v,1¢, € O%M (v, 1z, 2) and ~, 'n, €
OgM (x,v,z) for all n > 1. Together with the I'-equivariance of f and f;,
a similar argument as above implies that

(5.4) the sequence 7, *(f(&n), fi(nn)) is precompact in ]-"(52).
By (5.2)), (5.3)), and (5.4)), we apply Lemma and deduce that there exists

R’ > 0 so that f(&,) € O%,(o,’yno) for all n > 1. This contradicts to
the choice of the sequence &, that f(£,) & OY(0,7,0) for all n > 1. This
completes the proof. O

Lemma 5.10. Let x € Xgp and R > 0. Then there exists a compact
subset QQ C ag satisfying the following: if £&,n € 0Xgm are such that
dey(z,[€,1]) < R for some bi-infinite geodesic [€,n)], then

(). filn)) € Q
where (-, ) is the Gromov product defined in (2.5).

Proof. Suppose not. Then there exists a sequence of bi-infinite geodesics
[€n, nn] for some &, n, € 0Xapr such that we have sup,, daa(x, [€n, mn]) <
R and the Gromov products (f(&y,), fi(n,)) escape every compact subset
of ag as n — oo. After passing to a subsequence, we may assume that
& — & and 1, — 1 in 0Xgp. The hypothesis sup,, dgar(z, [§n,mn]) < R
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implies & # 7, since Xgps is Gromov hyperbolic (Theorem [5.1)). Therefore

(f(€), filn)) € Aé ) and hence (f(&), fi(n)) € ag is well-defined. On the other
hand, by the continuity of the Gromov product, we have (f(&,), fi(nm)) —
(f(&), fi(n)) € ag as n — oco. This yields a contradiction. O

6. REPARAMETERIZATION FOR RELATIVELY ANOSOV GROUPS

Let I" < G be a #-Anosov subgroup relative to P and Xy = Xem (X, P, S)
the associated Groves-Manning cusp space for a fixed generating set S.
Fix a (I',0)-proper linear form ¢ € aj. Recall from section [3| the space

Qw = AéQ) x R equipped with the I'-action given by

(& m,8) = (v&, . s +(BL(v 1 e))).
As stated in Theorem the space

Qy =T\Qy

is a locally compact second countable Hausdorff space. The translation flow
{¢+} on the R-component of €2, commutes with the I'-action, and hence it
induces the translation flow on €, which we also denote by {¢;}. We will

relate Qw and €2y, with the Groves-Manning cusp space X/ in this section.
More precisely, let

G:={0:R — Xgu : bi-infinite geodesic}.

The space G admits the geodesic flow ¢s : G — G defined by (ps0)(:) =
o(-+s) for s € R, and the inversion I : G — G defined by (Io)(s) = o(—s) for
s € R. The canonical isometric action of I' on G commutes with the geodesic
flow and I, and is properly discontinuous. Hence we can also consider the
locally compact Hausdorff space I'\G. This section is devoted to the proof
of the following reparameterization theorem:

Set

) Plao(1))
(6.1) a= hIwneanf m and a = 31113681}@ m

By Theorem we have 0 < a < d’ < oo.

Theorem 6.1 (Reparameterization, Theorem [L.4(1)-(3)). There ezists a
continuous, surjective, proper I'-equivariant map

\if : g — Qw.
Moreover, we have a continuous cocycle t : G x R — R such that for all
oc€GandseR,

(1) ¥(p:0) = b5 B(0):
(2) (0, 5) = ~Hpuo, —5);

2
(3) there exists an absolute constant B > 0 such that
als| — B < t(o,]s|) < d'|s| + B.
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In the above theorem, t : G x R — R being a continuous cocycle means
that it is continuous and for all o € G and s1, 9 € R,

f(O', S1 + 82) = E(m 81) + f(tpsla, 82).

Since ¥ : G — Qw in Theorem is I'-equivariant, this descends to the map
UG — Q. The following is immediate from Theorem 6.1

Corollary 6.2 (Reparameterization). There exists a continuous, surjective,
proper map

v F\g — Q¢.
Moreover, we have a continuous cocycle t : T\G x R — R such that for all
oc€GandseR,

(1) ¥([pso]) = di(o,5) ¥ ([0]);

(2) t(o,s) = —t(pso, —5);

(3) there exists an absolute constant B > 0 such that
als| — B < t(o,s]) < d'|s| + B.

Thick-thin decomposition of G. For P € P, let £p € 0Xgu be the
bounded parabolic limit point fixed by P. We consider the open horoball
Hp C Xgpr based at €p invariant under P, defined as follows: let H j'p -
Xcar be the subgraph induced by the vertices {(g,n) : ¢ € P,n > 2} and
Hp C Xgap be the subgraph induced by the vertices {(g,2) : g € P}. We
then set

For v € T', we also set

H,YP,Y—l = ’)/HP

which is the open horoball based at &, p,-1 := 7{p and invariant under
vP~y~1 € PI'. The boundary OH. p,—1 consists of the vertices v{(g,2) : g €
P}. We then have the I'-invariant family {Hp : P € P} of open horoballs

with disjoint closures.
We define the following subsets of G: for P € pr , let

gp = {O‘ S g : O‘(O) € HP};
0Gp :={oc€G:0(0) € 0Hp}.
We have the thick-thin decomposition of G:
Gunin = | J Gp and  Ginick = G — Gunin.
PePr

Since the Groves-Manning cusp space Xgas is constructed by attaching
combinatorial horoballs to the Cayley graph of I', the I'-action on Xgps —
Upepr Hp is cocompact. Hence the I'-action on Gypicr Which consists of
bi-infinite geodesics based at Xgy — Jpepr Hp is also cocompact.
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We also introduce the following subsets of 9Gp for each P € Pr:

0" Gp := {0 € 8Gp : o(t) € Hp for all sufficiently small ¢ > 0};
0~ Gp :={0o € 9Gp : o(—t) € Hp for all sufficiently small ¢ > 0}.

Note that 07Gp N O~ Gp = 0. For o0 € 07Gp, we set
T :=min{t € (0,00] : o(t) ¢ Hp},
and for o € 9~ Gp, we set

T, :=max{t € [-00,0) : 0(t) ¢ Hp},

(e

which are the escaping times for the horoball Hp. We then have

gp = U U o | U U U o

o€01Gp te(0,T5) 0€0~Gp te(T, ,0)

Construction of the reparameterization. To construct the reparame-
terization, we consider the trivial bundle

QXR+—>Q.

Given o € G, we denote by o7 = o(0) € 0Xgy and 0~ = o(—00) €
0Xay the forward and backward endpoint of the bi-infinite geodesic o.
Noting that we have I'-equivariant homeomorphisms f : dXgy — Ay and
Ji: 0Xam — Ay, we identify 0Xaar, Ag, and Aj(g) in this section via the
homeomorphisms. We define the I'-action on G x Ry as follows: for v € I'
and (o,v) € G x Ry,

y(o,v) = (Va, ve¢(53+(771’6))> .
This action makes the following projection I'-equivariant:
\Ifo 1 G X RJr — Qw
(o,v) = (7,07, logw).

We construct the reparameterization ¥ : I'\G — € in Theorem by
constructing a nice I'-equivariant section v : G — G X R, of the trivial
bundle so that we obtain a T-equivariant map ¥ : G — Qw as follows, with
the desired properties:

QXR+
I?‘l m
\g ******** >Q¢
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Norms on fibers. To construct a section of the trivial bundle G x Ry —
G, we define a continuous family of I'-equivariant norms on fibers. More
precisely, we define a I'-invariant continuous function

I-1:G xRy — Ry

such that for each o € G, ||(o,-)| is the restriction of a norm on R to Ry.
We simply write

Il llo :=|l(o,-)]| foreach o€ g.

Once we define the norm, we will define a section v : G — G x Ry by
u(o) = (0,v,) where v, € Ry is the unique unit vector with respect to the
norm | - ||s, i-e., ||vs]ls = 1. The I'-equivariance and the continuity of the
norms imply that the section w is also I'-equivariant and continuous. To
make the reparameterization ¥ = Wy o u satisfy the conditions in Theorem
our norms should have a property that the contraction rate along the
geodesic flow is bounded from both above and below by uniform exponential
functions.

Our construction of the family of norms is motivated by [32] which con-
sidered flat bundles for relatively Anosov subgroups of SL(n,R) with respect
to a maximal parabolic subgroup. Our proof of the contraction property is
motivated by ([9], [32]) where the upper bound of the contraction rate of
norms on flat bundles for relatively Anosov subgroups of SL(n,R) with re-
spect to a maximal parabolic subgroup was proved. We also remark that the
contraction property was earlier studied in ([30], [12]) for Anosov subgroups.

We now define a family of norms as follows (compare to a similar con-
struction in [32]): first we fix a continuous family of I'-equivariant norms

| - |o for o € Ginick such that || - || = || - || 10 for all o € Gipick- Let 0 € Gipin.
Then o € Gp for some P € PI'. Let
(6.2) c>0

be the constant given by Theorem There are two cases indicated by the
Figures [I] and

Case 1. If 0 = @00 for some 0g € 9TGp and t € (O,T;;), we write T := Tc;t)
and

o ift e (0,%T}, we set
Il = e - lloo-
o ift e [%T, T), we set

- llo == €N - Nlgros-
o ift e (%T, %T), we set

TS PR Y
|- llo =1l - lezs00ll - 1Gar500-
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&p

00

FIGURE 1. Two possible configurations of ¢ € Gp in Case 1
depending on whether ng = oo or not. Only the first item
in Case 1 applies to the left figure.

Case 2. If 0 = 46 for some 69 € 0" Gp and s € (T&_O, 0), we write T := 15,
and
e ifse [%T, O), we set

|- llo == €|l - [|o-
o ifse (T, %T], we set
I llo == e~ - llproo-
o ifse (%T,%T), we set
3 3
ms—1 2— s
- llo = 11 12, s 50 Mo 0
&p Ep

FIGURE 2. Two possible configurations of o € Gp in Case 2
depending on whether T = —oo or not. Only the first item
in Case 2 applies to the left figure.

Note that both cases can happen at the same time, and in that case
two definitions coincide. The resulting family of norms is continuous and
I'-equivariant.
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Contraction rate along geodesic flow. For o € G, there exists a unique
vs € Ry such that ||vs||, = 1. For t € R, we define

(6.3) Kki(o) == HUU”%U?

this measures the contraction rates of norms under the geodesic flow. It is
easy to see that for 0 € G and t, s € R, we have

Vo

(6.4) Voo = and  Kits(0) = ks(@ro)ke(0).

||7)0H<pt0

Moreover, r(-) is ['-invariant.

Lemma 6.3. Foroc € G, t € R, and v € I', we have
ki(yo) = k(o).

Proof. By the I'-equivariance of the norm, we have

/Bg+ (7_173))

1= ||vg|lo = Hvae@“ .
Yo

This implies

(6.5) Uyg = vgew(ﬁzﬂfl’e)).

Since pyyo = ypo, we have

ke(10) = [orollgiya = 10 ]yproe? ot 1)
:Hvaewzﬁ(”’e)) B, (e
Lo
= ollpro = Ke(0)
as desired. 0

The following is the desired estimate on the contraction rate:

Theorem 6.4. There exists b > 1 such that for all c € G and t > 0, we
have

1 ’
e < mi0) < bet
where a = liminf,cp ;/}G(Zg((g,)y)) and ' = 3lim SUPyer %'

We begin by observing that the recurrence to a compact subset implies
the exponential contraction:

Lemma 6.5. For any compact subset Q C Xgu, there exists Cg > 1 such
that if 0 € G, t >0, and v € T satisfy 0(0),y o (t) € Q, then
1

e V) < k(o) < CQefw(um»_
Co o B
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Proof. Suppose not. Then there exist sequences o, € G, t,, > 0, and 7, € I’
such that 0,,(0),7,, on(t,) € Q for all n > 1 while the sequence

(6.6) log (Fctn (Un)ew(ue(%))) = Y (o(yn)) + log ke, (o)  is unbounded.

In particular, v, is an infinite sequence and t, — oo as n — oo.

By the hypothesis that 0,,(0),7;, 'on(t,) € Q, there exist ¢ € Q and R > 0
depending on @ so that we have o, € OgM (q,7nq) for all n > 1. It follows
from Proposition that for some r > 0, we have o, € O(0,7,0) for all
n > 1. By Lemma we deduce from that the sequence

(6.7) 0 (ﬂgi(e,’yn)) + log k¢, (0,)  is unbounded.
On the other hand, by the I'-equivariance of the norms || - ||, we have
P /30 (yn.€)
Ktn(o-n) = ||’U0n||80tn0'n = Uo'ne ( o;t >
’Yglgotn On
qp(ﬂng(%,e))
et el

and therefore
(6.8) ¥ (B (e;9)) +1og k1, (00) =108 Vo, || -1y, -

Since both 0,(0) and v, ', (t,) = (7, ¢1,0,)(0) belong to the compact
subset @) for all n > 1, there exists a compact subset of G containing ¢, and
v Yy, o for all n > 1. Therefore, the sequence is uniformly bounded,
which contradicts . Hence the claim follows. O

We obtain the following estimate of the contraction rate between the
entrance and exit of a horoball.
Corollary 6.6. There exists a constant co > 1 such that if o € OYGp for
some P € PV with T} < oo, then
ieicl
Co

where ¢ and ¢ are given by Theorem .

yaas Tt

< Kyt (0) < coe”

Proof. Let P € P'' and ¢ € 07Gp with T;f < co. By Lemma we
may assume that P € P and o(0) = (e,2) in the combinatorial horoball
attached to a Cayley graph of P. We then have o(T,") = (v,2) for some
v € P. Setting Q) = Bgar(e, 1) which is a compact subset of X, we have
a(0),7"'o(T;}) € Q. Hence by Lemma6.5] we have
Cie—w(w(v)) < it (o) < Cge™ Vo)
Q
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where Cg is the constant therein. On the other hand, it follows from The-
orem [5.6] that

cdam(e,y) —C

c(dam((e,2),(7,2)) —=2) = C
=T —(2¢+0)

with the constants ¢, C in Theorem Therefore, we have

Kot (U) < CQ620+C€—CT;' )

P(po(7))

>
>

Similarly, we have

Y(pe(v)) < ddan(e,v) +C

<
< d(dam((e;2),(,2)) +2) +C
=JT) +(2d +O)
where ¢ is given in Theorem [5.6] Therefore, we have
]. / /
tipg(0) = Cer—(zc +C) =T
This finishes the proof. O

We now estimate the contraction rate in the thin part.

Lemma 6.7. There exists a constant c1 > 1 with the following property: if
0 € Gipin 15 such that wso € Gipin for all 0 < s < t, then

_ — / —
o 1o (3¢'—2c)t < Kt(O') < cre ct
where ¢ < ¢ are given by Theorem .

Proof. We fix o € Gy such that pso € Gipip for all 0 < s < t. Then there
exists P € P so that pso € Gp for all 0 < s <t. There are three cases to
consider:

Case 1. Suppose that o([0,00)) C Gp. Then o = @500 for some ¢ € 0TGp
and s > 0. In this case, by the definition of the norm, we have

—c(t+s) H . H

H : Hapw = H : ||<,0t+.900 =€ oo — e_CtH : ||O"

This implies #¢(0) = e~ .
Case 2. Suppose that o((—00,0]) C Gp. Then o = @46 for some 7y €
0~ Gp and s < 0. We then have

= D gy = e

I Nloeo 5o o

and hence k(o) = e~

Case 3. Suppose that neither o([0,00)) C Gp nor o((—o0,0]) C Gp holds.
In this case, we have o0 = @400 for some s > 0 and o9 € 7 Gp such that
T (;‘(') < 0o. We simply write T := T, ;B and o1 = @rog. We first consider the
following three subcases:
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o ifs,s+t¢€ (0,%T], then
7c(s+t)H

[ - Hcpta =" ”%+wo =e Moo = eictH Mo,
and hence k(o) = e,
e if s,s+1¢€ [%T,T), then
|+ llger = TN g, = ™| - ||,
and hence k(o) = e~
e ifs,s4+1¢€ [%T, %T], then we first observe that
3 3
2—5s ms—1
[ -lle=1" HSOT/j;Uo” ) ||$2T/300
T 2—§S T §8—1
— (e <3 - T (e . T
= e 31 llog e 3 oy
3 3
_ 22— S 7s—1
= e Doy T7) - 14,

and similarly that

. — C2(sH+)=T) | . 2 3 (s+1) ' 2 (s+t)-1
| Hsom e | lloo |- 12 ‘

Combining the above two computations, we obtain

3 3
—t, At
I oo = I No€® - llog™ 11 1, -

Evaluating at v4,, the above becomes

2ct it
/ﬁ'/t_:,_s(O'()) = IiS(O'())e HT(O'())T .

Since kits(00) = ke(0)ks(oo) by (6.4)), it follows from Corollary
andOgtS%tha‘c

3
O’) — 62Ct/€T(UO)Tt

—

KRt

3
< cht (Coe—cT)%t _ e2ctCOTt€—30t
< max(1,cp)e” .
Similarly, we also obtain from Corollary and 0 <t < % that

3¢

20t/€T(O’O)T

k(o) =e
oct( 1 —c'T\Et _ 2ct Tt —3ct
> ey e )T =) e
> min(1, cal)e_(?’cl_zc)t.

We now set ¢; := max(1, ¢o). Note also that ¢ > ¢ and hence e~ (3¢ =20t <
e ¢ for all t > 0. In general, we consider the following three consecutive
subintervals

[s,s+t]N (O, %T] . [s,s+tN [%T, %T] , and [s,s+t]N [%T,T] ,
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and then apply the each of the above three subcases to each subintervals.
Then by (6.4]), we get

Cfle—(3c’—2c)t < Iﬁ:t(O') < Cle—ct
as desired. O

We now combine estimates on the thick and thin parts and prove Theorem
We give proofs of the lower bound and the upper bound separately:

Proof of the lower bound in Theorem Let c € Gand t > 0. If
050 € Gypin for all 0 < s < t, then by Lemma we have
(6.9) ki(0) > ey tem (3200
where constants ¢y, ¢, ¢ are given in Lemma Now suppose that pgso €
Gthick, for some s € [0,t] and set

s1:=min{s € [0,t] : pso € Ginick };

so :=max{s € [0,t] : pso € Ginick }
which are well-defined. It follows from and Lemma that

Kt(0) = Kt—s, (Ps,0)Fisy (0)

= Fit—sy (Ps20)Kisy—s, (Ps510) ks (0)

(6.10) > (TlemBI=20(=s2) g (o )l (320

3¢’ —2¢)t (3¢’ —2¢)(s2—s
Jtel S 1)"%2—51(9051‘7)-

To estimate Ks,—s, (ps,0), we fix a compact fundamental domain @ C
Xam — Upepr Hp for the T'-action. We may assume that e € Q. By the
definition of s; and sy, there exist 71,72 € I' such that (ps,0)(0) € 1Q
and (ps,0)(0) € ¥2Q. In other words, we have (7] 'ps,0)(0) € Q and
(17 0020)(0) € 77 17Q. Since (1704, 0)(0) = 77 "o (s1) and (17 p4,)(0) =
v 10(32), this implies that for some constant ¢ > 0 depending on ), we have
|daar(e, 77 'y2) — (s — s1)| < q. Setting vy := v, 199, this is rephrased as

(6.11) [dan(e, ) — (s2 —s1)| < ¢q.
Moreover, noting that (¢s,0)(0) = (ps,0)(s2 — s1), we have

_ -2
—Cl e

(1 '0510)(0), 7 (7 sy 0) (52 — 1) € Q.
Hence, by Lemma and Lemma [6.5] we have

Ksy—s1 (@810) = KRsg—s1 (7;13081 U)

> L vt
= Co
with the constant Cg given by Lemma By Theorem and (6.11)), we
deduce
1 _dd ( )70 e—C/q—C B /( B )
Ksy—si (Ps,0) > 07Q6 cdan ey > o o—¢(53—51)
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Together with (6.10)), we have

(6.12)
—c'q—C
Iﬁ?t(U) > 61—26—(30’—20)t€(3c’—2c)(32—51)e . e—c’(52—51)
Q
-2 —cdq-C -2 —cq-C
_ € € ef(Sc’fQC)te(Zc’fQC)(32731) > € € 67(30’720)t

Cq - CGq
where the last inequality is due to ¢’ > ¢ and sy > s7.
Now note that a’ > 3¢’ — 2¢ by Theorem and choose b > 1 such that

2 —c'q—C

b~! < min (cl_l, %) Then it follows from and ([6.12)) that

k(o) > et

S| o=

as desired. O

Proof of the upper bound in Theorem Let 0 € Gand t > 0. If
©s0 € Gipin for all 0 < s < t, then by Lemma [6.7, we have

(6.13) Kki(o) < cre™

where ¢; and ¢ are constants given in Lemma We now assume that
050 € Gipick for some s € [0,t]. As in the proof of the lower bound, we set

s1:=min{s € [0,t] : 50 € Ginick };
s9 := max{s € [0,t] : 50 € Gipick }
We then have from (6.4]) and Lemma that
Kt(o-) = Ki—sy (9052 0)552—81 (90810-)’{’51 (U)
(614) 2 —ct c(s2—s1)
< ce e Ksy—s1 ((p510).
By the similar argument as in the proof of the lower bound, we have

Fsy—s, (05,0) < CQeﬂZJ(ue(v))

where @ C Xgn — Upepr Hp is a compact fundamental domain for the
I'-action, Cg is the constant given by Lemma and v € T' is such that
|daar(e,v) — (s2 — s1)| < ¢ for some constant ¢ > 0 depending only on Q.
By Theorem this implies

Ksg—s1 (90310') < CQGdeGM(e:’Y)JrC < CQecq+Cefc(32731)
with the constant C' therein. Plugging this into (6.14)), we have
(615) /{t(g) < C%CQech'_Ce_Ct.

We then choose b > max (c1, c3Cpe®™®). By (6.13) and (6.15), we finally
obtain

k(o) < be .
Since a = ¢ by Theorem this completes the proof. O
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Proof of Theorem As described above, we define the I'-equivariant

continuous section u : G — G x Ry by setting u(o) = (0,v,), and set
U = ¥y ou so that we have the following commutative diagram:
g X R+
|7‘ Po
ul
77777777 0
G -z Gy

In other words, ¥(0) = (oF, 0, 1log vy).

We first prove that U is proper, from which the properness of ¥ follows.
Suppose not. Then there exists a sequence o, € G such that o, escapes every
compact subset of G as n — oo while ¥(0,) = (07, 077, log vs, ) converges in
Qw. Since the sequence (o, 0, ) converges in Aéz), two sequences 0,7 and
o, converge to two distinct points in 0X¢gps. This implies that there exist
a sequence t, € R and a compact subset (Q C G so that ¢, 0, € @ for all
n > 1. Moreover, since the sequence ¥ () = (o;F, 0, ,logv,, ) converges in
Qp, the sequence v,,, converges in R . This implies that, after passing to a
subsequence,

(6.16) the sequence ||vs,, ||, 0, cOnverges to a positive number.

On the other hand, since the sequence o, escapes any compact subset of
G as n — oo, we have either ¢, — oo or t,, =& —o0 as n — 00, after passing
to a subsequence. Suppose first that ¢, — oo as n — oo. It follows from
Theorem [6.4] that for all sufficiently large n > 1,

Vo |lpe,on = Ktn (0n) < be”®" =0 asn — oo.
This contradicts (6.16). We now assume that ¢, — —oco as n — oco. Then
for all sufficiently large n > 1, we have
]' — ]' > b—le—atn

Hvﬁptnan”gn H_tn (Sotno-n) a

by (6.4) and Theorem Therefore, ||vg, |4, s, — 00 as n — 00, contra-

dicting (6.16]). This proves the properness.
We now prove items (1), (2), and (3). Since the I'-action on G and 2y

HUO'nHSDtnUn =

commute with flows on G and €y, it suffices to prove the statement for
U :G — Q. For (0,5) € G x R = R, define a continuous function

t(o, s) :=log vy, — logv,.

By (6.4]), we have

Vo Vo

lvollpe — #s(o)”

Vpyo =
Therefore

(6.17) t(o,s) = —log ks(o),
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is I-invariant (Lemma and hence induces a continuous map t : I'\G x
R — R. The cocycle property of t follows from (6.4). By the definition of
U, we have

\I’(SOSO-) = gbf(o‘,s)\ll(o-)?

from which (1) follows. This also implies (2), noting that

gb—f(a,s)\ij((pso-) = \11(0') = ‘11(9073(,050') = gbf(gosa,—s) (9080-)'
Moreover, by Theorem and (6.17)), we have that for all s > 0,
(6.18) as —logh < t(o,s) < a's+logh

where a,a’ > 0 and b > 1 are given in Theorem This shows (3).
To see the surjectivity of ¥, note first that for each (§,7,t0) € Qy, there

exists 0 € G with o7 = ¢ and 0~ = 5 as Xy is a proper geodesic Gromov
hyperbolic space. For sy > 0, it follows from (6.18)) that

t(o,s0) > asp —logh and t(p_s,0,50) > asg — logb.
Since t(p—_s,0, s0) = —t(o, —sp) due to the cocycle property (6.4), we have
t(o,s0) > asp —logb and t(o,—sp) < —aso + logb.
Since ¥ is continuous, this implies that the image of U restricted on {ps0 :
—s0 < s < so} contains {¢;¥ (o) : —asp +logb < t < asg — logb}. Since

ot =¢and o7 =n, ¥(o) = (£,n,t1) for some t; € R. We then take s
large enough so that

—asg +logb+t; <ty <asg—logb—+t;.

Then (&, n,t) € {qﬁt\i/(a)i —aso+logb <t < asp—log b}, and hence (§,n, to)
belongs to the image of W. Therefore, W is surjective. This completes the
proof. O

7. UNIFORMITY OF FIBERS OF REPARAMETERIZATION

Recall the reparameterization ¥ : G — §~2¢ constructed in section @ The
main goal of this section is to establish a uniform bound on the diameters
of the fibers of W:

Theorem 7.1 (Theorem [1.4(4)). The fibers of U have uniformly bounded
diameter. That is, there exists C > 0 such that for any 0,0’ € G,

U(o) = U(o') = dar(0(0),0'(0)) < C.

We prove this result by analyzing the explicit form of our reparameteri-
zation. For o € G,
V(o) = (07,07 ,loguv,)
where v, € Ry is the unit vector with respect to the norm || - ||, as con-
structed in section [l Thus, Theorem [7.1] follows from the next proposition:
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Proposition 7.2. There exists a constant Cy > 0 such that the following
holds: for any o,0’ € G with o™ = ¢'F, there exists s € R such that

dan(0(0),0'(s)) < Co  and |logvs —logv,, | < Co.
Moreover, the shift parameter s satisfies:
o if s >0, then
(logvy —logv,) — Cop — B . (logvy —logv,s) + Co + B
a’ a ’
o if s <0, then

IN
IA

(logv, —logv, ) — Cy — B . (logvy —logv,r) + Co + B
a a’ '

Here 0 < a < a' and B > 0 are the constants appearing in Theorem .

IN
IN

To prove Proposition [7.2] we require several preparatory lemmas. We
begin by recalling the definition of the Gromov product on Xgpr U X
For x,y, z € Xaum, define

1
(y|2)z == i(dGM(xJ/) +dam (v, 2) —dam(y, 2)).
For y,z € Xgn UOdXan, define
(y|2)z := sup lz{gn_;gof(yilzg')x

where the supremum is taken over all sequences y;, z; € Xgp converging to
Yy, z, respectively. By the Gromov hyperbolicity of Xgas (Theorem , the
Gromov product (y|z), estimates the distance from z to a geodesic [y, 2],
up to a uniformly bounded additive error.

Lemma 7.3. Let 0, € G be a sequence such that {o,(0) € Xgar :m > 1} is
uniformly bounded. Then there do not exist sequences Ty, S, > 0 tending to

oo such that both o, (Ty,) and o,(—S,,) lie in the same horoball Hp for some
PeP.

Proof. Suppose such sequences exist. Then since U;i: belong to the shadows
OfM(5,(0),0,(T},)) and o, € OFM(5,(0),0,(—S,)), and {7,(0) : n >
1} is bounded, we must have lim, a,jf = £p. On the other hand, the
boundedness of 0,,(0) implies that {o,} is relatively compact, yielding a
contradiction. O

It is a standard fact in the Gromov hyperbolic geometry (cf. [8, Theorem
III.H.1.7]) that there exists a constant ¢y > 0 such that any two geodesics
with same endpoints have Hausdorff distance at most cg.

Lemma 7.4. There exists T{ > 0 such that for each P € Pl and o €
0T Gp with T F > 3T}, the co-neighborhood of the segment o ([T}, T, — T}])
is entirely contained in Hp.
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Proof. Suppose not. Since P is finite, there exist P € P and sequences
on € 07Gp with T, > 3n and t,, € [n,T,} — n] such that oy,(t,) is not
contained in the cg-neighborhood of Hp. Hence there exists p,, € P such that
dan (o4 (tn), (Pn, 2)) < co. Replacing o, with p,lo,, we may assume that
Pn = €, 80 oy (ty) lies in a fixed bounded neighborhood of (e,2). Applying
Lemma to ¢, 0, with T, = T} —t, and S,, = t,, yields a contradiction.

U

Lemma 7.5. There exists T > 0 such that Jor any P € P and o € 0T Gp
with o™ = &p, we have o(t) € Hp for allt > T.

Proof. Suppose not. As in the proof of Lemma for some P € P, there
exist o, € 0TGp with o7 = &p and t,, > n such that o, (t,) = (e,2). Since
o7 = &p, there exist T,, > n +t,, such that o,,(T},) € Hp and 0,,(0) € 0Hp.
Applying Lemma [7.3] to ¢, 0, gives a contradiction. O

Let 17, T > 0 be constants given in Lemma and Lemma respec-
tively.

Lemma 7.6. There exists T, > Tj, + T + co + 2 with the following property:
let P € PV, 0 € 0YGp with T} > 5Ty, and t € 2Ty, TS — 2Th]. Suppose
o' € 0Gp satisfies 0'* = oF and dga(0'([0,T]),0(t)) < co. Then

(1) deu(@(0),0'(0)) < T

(2) Tf < oo if and only if T, < oo, and in this case,

dam(o(T,)),0'(T))) < Th.

Proof. Suppose that there exist P € P, 0y,,0}, € 0TGp with T, > 5n and
on(0) = (,2), 0 = o/f, and t,, € 2n, T, —2n], s,, € [0, T, ] such that

dan (on(tn), o0 (sn)) < co and  dan(0,(0),0.,(0)) > n.
Since oy, (tn) € Hp, 0n(0) = (e,2), and dgar(on(tn), on(0)) = t, — 00, we
have oy, (t,) — {p as n — oco. Write o],(0) = (py,2) with p, € P. We claim
that

(7.1) dan (o (tn), 0l (0)) — oo;

n
if not, the sequence p;, 1o, (t,) is contained in a fixed compact subset. Since
pnton(T)),pyton(0) € OHp and T,f — t,,t, — oo, this contradicts
Lemma [7.3
Let s), € R be such that dgpr(0,(0),00,(s))) < co, which exists by the
Gromov hyperbolicity.

We now divide the argument into two cases:

Case 1: s), > 0 for infinitely many n. Then the Gromov product

(01,(0)|07" )6, (0) 18 uniformly bounded, passing to a subsequence. Since
on(0) = (e,2), it follows that after passing to a subsequence, o/, (0) — &
and o)t — & with & # &. But 0,,(0) = (pn,2) with p, € P, and since
dam(0n(0),00,(0)) > n, we conclude that p, — oo in P, hence o7,(0) — &p.

rYn

On the other hand, since o), = o;F € OFM((e,2),0,(T,)) and o, (1)) =
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(qn,2) with ¢, — oo in P, it follows from Lemma that o/ — &p, This
contradicts the distinctness £ # &'.
Case 2: s, < 0 for all but finitely many n > 1. In this case, two geo-
desic segments 0y, ([0, t,,]) and o}, ([s],, sn]) have cp-close endpoints. Hence, by
Gromov hyperbolicity, there exists ¢, € [0,¢,] such that o,(¢],) is uniformly
close to o7,(0). This implies that the Gromov product (¢,(0)|o%(tn))er (0) =
(ppton(0)|p, 1on(tn)) 151 (0 18 uniformly bounded. It follows from p, — oo
that p,l0,(0) = (p,;},2) co nverges to £p, after passing to a subsequence.
Since p, 10!, (0) = (e,2), p, on(t,) must converge to a point distinct from
&p. On the other hand, we have p,'0,(t,) € Hp, and from (7.1), we know
it diverges from (e, 2), thus converging to {p again, which is a contradiction.
Now let T}, > 0 be the constant obtained from the first part. Let P € P,
o € 0TGp with T)f > 5T}, and t € [2T}, T, — 2T,]. Let o/ € 97Gp
satisfy o'* = oF, and suppose that there exists s € [0,7.0] such that
dam(0'(s),o(t)) < co. If o = o'T # &p, then both T, and T, are fi-
nite. So it suffices to consider the case where ot = o't = {p. Since
T, > 5T > T, Lemma implies 77 = co. By the first part, we have
dam(0(0),0°(0)) < Th, and since ¢t > 2T}, we have T, > s >t — Tj, — ¢y >
Ty — ¢o > T, so Lemma again implies T: = oco. Finally, when T} < oo,
and hence T;? < 00, we can apply the same argument to the time-reversed
geodesics of ey and Or o', completing the proof. ([

Proof of Proposition Fix two geodesics 0,0’ € G with the same
endpoints o* = ¢’%. Since the norm || - ||, used to define v, depends on the
position of ¢(0), we divide the proof into cases based on the geometry of
a(0).

Case 1. Suppose that o(0) lies within 5T,-neighborhood of the Cayley
graph of I" in Xgps. That is, dgy (T, 0(0)) < 5T,. By the definition of
co > 0, we can find s € R so that

dGM(U((]), J/(S)) < ¢g.

Let v € T be such that dga(v0(0), e) < 5Th. Then both yo(0) and vo/(s)
lie in the (5T} +c¢p)-neighborhood of the identity. Hence the shifted geodesics
~vo and yps0' = pgyo’ lie in a uniformly compact subset of G. Therefore,
there exists a uniform constant C7 > 0 such that

|log vyo — log vy, 0| < Ch.
By the equivariance formula for v, (see (6.5))), we have
log vy = log v, + Y( g+ (7_17 e))
log Uypso! = log Vpso! + ¢(53/+ (7717 6))

Since o7 = ¢’T, the Busemann maps in both expressions coincide and we
conclude
|log v —logv,, .| < Ch.
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Choosing Cy > max(cg, C1) completes the proof in this case.

Case 2. Suppose that dgy (T, 0(0)) > 5T}, 0(0) € Hp, and ot = £p for
some P € PL. In this case, we can write 0 = pt0p for some o € 07Gp and
t > 0. By hypothesis, t > 57}, > T, and hence T;g = oo by Lemma
Then

(7.2) I llo = el llog
where ¢ > 0 is the constant defined in .

By the definition of ¢y > 0, there exists s € R such that dgas(o’(s),0(0)) <
co. Since t > 5Ty > T, and T = oo, Lemmaimplies o'(s) € Hp. So we
may write 50’ = @poy, for some o) € 97Gp and ¢ > 0. Applying Lemma
to o¢ and o(), we obtain

(7.3) dan(00(0),04(0)) < T, and T;(C) = 00.
This gives
(7.4) I Npsor = €l - llos,-

Combining ([7.2)) and ([7.4)), we compute:

log v, = ct + log vy,
log vp,qr = ct’ +10g Vs .
Hence it suffices to bound [t —#'| and |log vy, — log vy |. First,
t =den(00(0),0(0))
< dgr(00(0),04(0)) + daar(a5(0),0'(s)) + daar (0’ (s),a(0)) < T, + ' + co.
Similarly, t < T}, +t + ¢, and hence
[t —t'| < Th + co.

Since 0y, 0(, € 7Gp and their basepoints o¢(0) and o{,(0) lie in the 2-
neighborhood of the Cayley graph of I', with distance less than T} by (7.3)),
we may apply Case 1 to oy, o(, to obtain

| log vy — log vy | < Co
for some uniform constant Cy > 0. Therefore,
|log vg —log vy, 0| < c¢(Th + co) + Co.
Taking Cy > max(cg, c(Th + ¢o) + C3) verifies the claim in this case.

Case 3. Suppose dgup(I',0(0)) > 5T}, 0(0) € Hp and o~ = &p for some
P € P'. In this case, we apply Lemma to the time reversal of o,
obtaining o = ¢ for some 59 € 9~ Gp with T, = —ocand ¢t < 0. The

norm || - ||, is given by
- lle = e™N - llao-
This case is symmetric to Case 2 and follows by the same argument, which

we omit.
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Case 4. Suppose that none of Cases 1-3 applies. Then for some P € PT,
oo € 0TGp with finite T := TU‘; < 00, and some t € [5Ty, T — 5T}], we have
0 = 0. In particular, ' > 5T}, and t € [2Ty,T — 27},]. We may assume
that P € P and 0¢(0) = (e, 2).

By definition of ¢y > 0, there exists s” € R such that

(7.5) dan(0(0),0'(s")) < co.
By Lemma 7.4 ¢/(s”) € Hp, and hence
(7.6) o’ = pmoly  for some t” >0 and o(, € TGp.
By Lemma [7.6, we have T := T;(?) < oo and
(7.7) dan(00(0),04(0)) < Ty, and  dgar(oo(T),04(T")) < Th.
In particular,
(7.8) T —T'| < 2T;.

Since all points 00(0), 0(,(0), o0(T), and o((T”) lie in the 2-neighborhood of
the Cayley graph of I, we may apply the argument of Case 1 to oy and o,
to obtain a uniform constant C3 > 0 such that

(7.9) |log sy —1og vy | < O3 and  [logvypre, —log vy, ,or| < Cs
As the norm || - ||, is defined according to the time parameter ¢, we now

proceed to subcases depending on how ¢ compares the ends of the segment
[0,T7].

Case 4-1. Suppose that 0 < ¢t < T'/3. By (7.5)), (7.6), (7.7), and (7.8)), we

have
!

T T
—(Th+Co) < t—(Th—i-Co) <t'< t—i—(Th-i—Co) < g—}—(Th—I-CQ) < §+(2Th—|—c(]).
Hence, we can take t' € (" — (2T}, + co),t" + (Th + o)) so that

T/
0<t < —.
3
This implies
(710) ‘t — t/‘ < 3Ty +2¢y and

(7.11)

dem(0(0),00(t) < dam(0(0),0'(s")) + dan (o(t"), o6 (') < 2(Th + co)
where the last inequality follows from (7.5) and |¢' — ¢"| < 2T} + ¢p. From
the construction, we have

_ !
I lle=e"lllop and |- [lypop =€l - lloy-
and hence
log v, = ct +logv,, and logw

Hence, using (7.10)) and ([7.9)), we deduce
(/)| < C(3Th + 260) + Cs.

= ct’' + log Vgt -

/
P90

| log vy —logv,,,q
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Since ps0’ = @poy, for some s € R, we conclude the claim in this case hold
with Cy > max(Q(Th + Co), C(3Th + 260) + Cg)

Case 4-2. Suppose that 27'/3 <t < T'. In this case, the norm || - ||, is given
by

c(T—1) H

| -lle=e : ’|<PT0'O'

This case is symmetric to Case 4-1 and follows by the same argument using
T — t in place of ¢, together with ([7.8). We omit the details.

Case 4-3. Suppose that 7/3 < t < 27'/3. Then from the same bounds

@3). @8). 7). and @3).

!

T T
3—(2Th—|—60)<§—(Th+0())<t—(Th+Co)§t”

!/

2T 2T
St (Th+ o) < 5+ (Th + o) < = + (3Th + co)-

Hence we can find ¢’ € (¢ — (3T + co),t" + (2T}, + o)) so that

r <t < 2—T/

3 3
This gives
(7.12) |t —t'| < 4Ty, +2co and
(7.13)

dan(0(0),00(t) < daa(0(0),0'(s")) + dan (o (t"), o0 (t)) < 3Th + 2¢o

using again (7.5)) and [t/ —t"| < 3T}, + co.
Now using the interpolation formula for the norm, we get

i1 (c(2t=T) T =
H : HU = H ’ HLPT/Q,UOH H<P2T/300 = H Hoo H ”‘PTO'O
3 3 5
Iy = NI T = sr=m 2 et
P10y P! /390 <p2T//300 ol 4PT/CTO
Therefore,

3 3
logv, = T — 2ct + (2 — Tt> log vy, + <Tt — 1> log vyro

3t
= cT — 2ct + 21og vy — 108 Vg + =

T (log Vyroo — 108 Vsy)

/

3t
log vy,,00 = cT" — 2ct’ + 2log Vg1 — log vy, o1 + T (log Vot — 108 UU(/)) .
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Now using the triangle inequality, (7.8), (7.12), (7.9), and the fact that
t' < 2T"/3, we estimate
[ log v —10g vy,,00 |
3t/

3t
< 2¢Tiy + 2¢(4Th +2¢0) +2C3 + O3 + |77 — 77

‘ log Vorog — log UUO|
/ /

+ F’ log Yorialy — 108 Va0 | + F| log Vol — 10g Vg, |

3ol
T 1

Now recall that 0¢(0) = (e, 2) as noted earlier, and denote oo(T") = (7, 2)
for some v € P. Let Q C Xgps denote the closed 2-ball centered at e. Then
00(0) € Q and 0¢(T') € vQ. From (6.3) and (6.4, we have vy,qy = H;E’go).

In particular,

< 2¢(5Th + 2¢9) + 3C5 + |10g Vppoy — log Ve, | + 4Cs.

log Vgpoy — log ve, = —log k7 (00).
By Lemma there exists cg > 0 depending only on @, such that
108 Vproy —log vay — Y (pa(7))] < cq-
Therefore,

[ log v —10g vy,,00 |

3t 3t/ 3t 3t/
< 20(5Th +2¢0) + 703 + | = — 77| c@ + |75 — 77 | W (0 (7)]
3t
< 2¢(5Th + 2¢0) + 7C5 + @ + | = — F ¥ (ko (7))

where the last inequality is from % <t < % and %/ <t < %Tl Estimate
the final term:

33 sl < 2 g+ 3¢ | & — L st
3“ “oaaen + 3¢ Lt
Ylre(v))

9

S (16Th + 600) ‘

T

using ((7.12)), (7.8), and ¢’ < 27"/3. Tt follows from T = dgps(00(0), 00(T)) =
dGM((ev 2)7 (’77 2)) that
T —danm(e, )| < 2.

Then, by Theorem there exist uniform constants c1,ca > 1 such that
cl_lT —ca < YP(pe(v)) < aT + co.
Since T > T},, we conclude:

e ELES
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Combining all altogether,
|log v, — log v%,a(x)| < 2¢(5Th + 2¢9) + 7C3 + cg + (16Th + 6¢o)(c1 + c2/Th).

Since @50’ = ppo|, for some s € R, and using (7.13), the claim follows by
setting

Co > 26(5Th + 200) +7C5 + cqQ + (16Th + 660)(61 + CQ/Th) > 3T + 2¢p.
This completes the proof of the first part of Proposition [7.2]

We now prove the second assertion. Let Cy > 0 be the constant from the
first part and let o, 0’ € G be such that o* = ¢’*. Then for some s € R, we
have

dam(0(0),0'(s)) < Cy and |logv, —logv,,e| < Co.
Therefore,
log v, — log vy — Co < logvy,,or — log vy < logvs —logv, + Co.
Now, from Theorem [6.1}, we have
U(p50”) = 0 (0”)

for some t with as — B<t<ds+ Bifs>0andd's— B<t<as+ B if
s < 0, where 0 < a < a’ and B > 0 are constants in the theorem. Since

log vy,or =t + logv,r,

we deduce the bounds on s as follows

e if s >0,
logv,, ot — logvy — B log vy, — logvsr + B
s < < s .
a’ == a
Therefore,
(log v, — logv,) — Cy — B < (log vy — logv,) +Co + B
a’ - a '
e if s <0,
log vy, — logvy — B < logvy,or —logve + B
a - a’ ’
Therefore,
(logvy — logvg,) — Cy — B s < (logvy — logv,r) + Co + B
a - a’ ’

This completes the proof. O
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Proof of Theorem Let 0,0’ € G be such that

U(o) = U(o).
This implies that o = ¢'* and logv, — logv, = 0. By Proposition
there exist uniform constants a, B, Cy > 0 so that

B B
dan(0(0),0'(s)) < Cp for some s € _Got , Co + .

a a
Therefore,
Co+ B
dan(0(0),0'(0)) < dgar(a(0),0'(s)) + dam (o’ (s),0'(0)) < Co + Oa .
This finishes the proof. ([l

Disjointness of U-images of horoballs. We deduce from Theorem
that U-images of deep horoballs are disjoint. This implies that the repa-
rameterization ¥ : G — Qw and ¥ : I'\G — € respectively give genuine
decompositions of Qw and €2, into the non-cuspidal part and disjoint cusp-
idal components.

To be precise, for each n > 2, we define the depth-n horoballs, similar to
the definition of open horoballs Hp, as follows: for P € P, let Hp(n) C
Xcar be the subgraph induced by the vertices {(g,k) : g € P,k > n} and
Hp(n) € Xgar be the subgraph induced by the vertices {(g,n) : g € P}.
We then set

Hp(n) = H;; - I:Ip.
For v €T, we set
H,p\-1(n) := yHp(n).
This results in the collection of depth-n open horoballs {Hp(n) : P € PI'}.
Note that Hp = Hp(2) for P € P'. For P € P', we consider the set

Gp(n):={c€G:0(0) € Hp(n)}

which consists of bi-infinite geodesics based at Hp(n). We now obtain the
following disjointness:

Corollary 7.7. There exists ng > 2 such that for P, P’ € PT,
P # P = U(Gp(no)) N ¥(Gp(no)) = 0.

Proof. Let C > 0 be the constant given by Theorem We fix ng > % +1
and show that the desired disjointness holds. Suppose on the contrary that
for some distinct P, P' € P', there exist 0 € Gp(ng) and Gp/(ng) such that
(o) = ¥(0’). Since 0(0) € Hp(ng), the distance from o (0) to the Cayley
graph of T' is at least ng — 1. Similarly, the distance from o¢’(0) to the
Cayley graph of T" is at least ng — 1. Since two basepoints ¢(0) and ¢’(0)
are contained in distinct horoballs, a geodesic segment between them must
pass through the Cayley graph. Therefore, we have

dan(0(0),0'(0)) > 2ng —2 > C.
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On the other hand, since ¥(o) = ¥(¢’), we have dgas(o(0),0'(0)) < C by
Theorem which is a contradiction. This shows the claim. O

Remark 7.8. By the above corollary, the reparameterization given in Corol-
lary gives us a thick-thin decomposition of €2, where the thin part is the
disjoint union of ¥-images of bi-infinite geodesics based at the horoballs in
I\ X corresponding to elements of P.

8. EXPONENTIAL EXPANSION ON UNSTABLE FOLIATIONS

Let I' < G be a 6-Anosov subgroup relative to P. Fix a (I',0)-proper

linear form 1 € aj. Recall the space Qw = AéQ) X R equipped with the
T"-action given by

V(& m,s) = (v&, s +(BL(v ' e)))

for v € T and (&,1m,s) € Ag) x R, and Qy = F\Qw as defined in section
Recall from and the unstable and stable foliations W* on
1y, and their lifts W# on 2. The goal of this section is to establish the
following exponential expansion (resp. contraction) property of the flow
{¢+} on unstable (resp. stable) foliations.

Theorem 8.1. We have the following:
(1) There exist a T -invariant non-negative symmetric function d : Qw X
Qy — R and constants o,a’ > 0 and b > 1 such that for z € Qy,

the restriction of d* defines a semi—metm’ on W*(z) and for any
wi,wy € WT(2) and t >0,

1 /
geatd+(w17w2) < dT(grw1, prws) < be® dt (wr, wo).

(2) Similarly, there exists a T'-invariant non-negative symmetric func-
tion d~ : (dy x Qy — R such that for z € §y, the restriction of d—
defines a semi-metric on W~ (z) and for any wi,ws € W~ (z) and
t>0,

1 oy ) et
3¢ td™ (w1, we) < d~ (¢rwr, prwr) < be™*'d™ (wr, wo).

(3) For any small enough € > 0, there exists a non-negative symmetric
function d7 : Q¢ X Qd, — R such that for z € QW the restriction of
dF defines a metric on W*(z) Moreover, for any compact subset
QC Q¢, there exists a constant cg > 1 such that for any w1, w2 € Q,

1
£d+(w1,w2)€ < dg’(wl,wQ) < ch+(w1,w2)€.

3A semi-metric on X is a non-negative symmetric function X x X — R that vanishes
precisely on the diagonal.
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Remark 8.2. Even though Theorem [8:I]states the exponential expansion and
contraction for ¢ > 0, replacing wy and we with ¢_;wi and ¢_;wo implies
the corresponding estimates for negative-time flow.

The proof of Theorem is based on our coarse reparameterization (The-
orem [6.1)) and the coarse geometry of the Groves-Manning cusp space as a
Gromov hyperbolic space.

Groves-Manning cusp space as a Gromov hyperbolic space. Let
Xaum be the associated Groves-Manning cusp space of (I', P), which is a
proper geodesic Gromov hyperbolic space ([I5, Theorem 3.25], Theorem
. We refer to [8, Chapter III.H| for general facts about Gromov hyper-
bolic spaces.

Recall that G is the space of all parameterized bi-infinite geodesics in
Xanr. We define d : G x G — [0, 00) as follows: for 01,09 € G,

dt(o1,09) == limsup 6ch(01(t)702(t))*2t;

d_(ala 02) = lim sup edGM(O'l(
t—o00

—t),02(—t)) =2t

Their well-definedness follows once we explain another formula for d* using
Gromov products and Busemann functions on Xgps. We recall that for
x,p,q € Xgum, the Gromov product of p, ¢ with respect to x is

1
(Pl9)e := 5(dan (@, p) + den (2, 9) = dan(p,9) 2 0,
and this extends to 0 Xqgs as follows: for £, € 0Xanr, we set
(&]m)z := sup lim inf (p;|g;)x
%,j—+00
where the supremum is taken over all sequences p;,q; € Xgu such that
p; — & and ¢; — n as 4,5 — 00. Since Xgps is Gromov hyperbolic, there

exists a uniform constant > 0 such that for any « € Xagur, &€, € 0Xanr,
and sequences p;, q; € Xgp with § = lim; o p; and n = lim;_, ¢;, we have

o ..
(8.2) €Mz — 5 < liminf(pilg;)s < (€]n)a-
1,j—00
For o € G and p, ¢ € Xar, the following Busemann function is well-defined:
Bo+(p,q) = lim daum(p,o(t)) = dawm(g, o(t)).

We note that the Busemann function is defined for each geodesic o € G, not
for a point in 0Xgp. The notation + in S,+(p,q) is to indicate that the
limit is taken along t — oo. Indeed, this makes the above limit well-defined
since the function f, : R — R defined as

fo(t) = dan(p,o(t)) — daa(o(0), o(t))
is non-increasing and bounded from above by dga(p,0(0)), and we have
dan(p, o(t)) — dam (g, 0(t) = f(t) — fo(t).
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We have for any x € Xgjs that

(83) dr (0’1, 0'2) = eﬁ"i’— @01 (O))JF/BU;— (,02(0)) lim sup 672(0'1 (t)|o2(t))x )

t—00
Since (o1 (t)]|o2(t)). > 0 for all ¢, it follows that d* (o1, 02) < co. Since
(8.4) di(O'l,O'g) :dJr(IUl,IO'Q),

d~ is well-defined as well. The definition of d* is motivated by the Hamenstédt
distance in a negatively curved compact manifold [16].

Since I' acts on Xy by isometries, both d* and d~ are I'-invariant. The
geodesic flow on G exponentially expand and contract d* and d~ respec-
tively:

Lemma 8.3. Let 01,09 € G and s1,s2 € R. Then we have
e_5esl+52d+(01,02) < dT (s, 01, Psy02) < 65651+52d+(01,02);

67567(81+82)d7(0'1,0'2) < d (ps,01, Psy02) < 6667(51+s2)d7(0'1,0'2).

Proof. Fix x € Xgpr. By (8.3)) and (8.2)), we have

5(;?_ (z,01 (0))+5U; (513,0'2(0))672(o-f|cr;)z .

d+(01702) Z e

(8.5)
At (o1, 09) < Dot OO TPag (02O —aoio)

By the definition of 3, we have
26 Byt (2, (95,01)(0)) = B,+(x,01(0)) + B,+(01(0), 01(s1))
(8.6) = ﬁar(x,cn(O)) + 81,

and similarly

(8.7) Bt (2. (£2,02)(0)) = B2 (2,05(0)) + 5.

Since ¢s,01f = of and ¢s,08 = o5, it follows from (8.5), (8.6), and (8.7)
that

6_5681+S2d+(0'1,0'2) < d+(g05101,<p5202) < 66681+82d+(0'1,0'2).

The exponential contraction of d~ follows from the exponential expansion
of d* shown above and ({8.4). O

We fix a basepoint x € Xgps. It is a standard fact about Gromov hy-
perbolic spaces that for € > 0 small enough, there exists 0 < ¢. < 1 and a
metric d. on 0 X such that

(8.8) coem M < g (g, ) < e 2EEMe

for all £, € 0Xgr, with the convention that e~ = 0 [8, Proposition 3.21].
We fix one such € > 0 and a metric d. as above.
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Lemma 8.4. For any compact subset Q C G, there exists a constant bg > 1
such that for any 01,09 € Q, we have

de (01,09)° < d.(0],05) < bod*(01,02)°.
Proof. First note that for any o € G,

|Bo+(x,0(0))| < dan(z,0(0)).
Given a compact subset () C G, we set

v = sup dgu(z,0(0)) < co.
ceQR

Then it follows from ({8.8]) and (8.5) that

Lot o) < & ot OV )

< eV dt (o1, 09)°.

dr (01,09)°

Similarly, we also have
de(of,05) > cce” (5+2b/)d+(01,02)5

where 0 < ¢. < 1 is given in (8.8)). Setting bg := e=(0+26) /¢, completes the
proof. O

Reparameterlzatlon revisited. Recall the reparameterization ¥ : I'\G —
Qw in Theorem (6.1}, which is induced from the I'- equwarlant map ¥ : G —
Qw Since U is proper and surjective, for wy, ws € Qw, we define

dt (wy,wy) = sup d*(o1,02);
o1€¥—1(w), ooe¥—1(w
(89) ) 1€ (w1), o2€ (w2) )
d-(wi,w2):=  sup d~ (o1, 02).
0'16\1/_1(11)1), O'QE\I/_l(U)Q)

S}nce U is I'-equivariant, if o1 € \ilfl(wl) and o9 € ﬁl*l(wg), then yo1 €
U~ (ywy) and yog € Ul(ywy) for all v € T. Since d*(yo1,v02) =
d*(o1,09) as well, we have

(8.10) A= (ywy, yws) = d* (w1, we) for all y € T

We also have the following expansion and contraction of d* and d~ via the
flow {¢:} respectively:

Lemma 8.5. There exist a,a’ > 0 and b > 1 such that for any wy,ws € Qw
and t > 0, we have

1 /
—ed" (w1, wa) < d¥ (Prwr, prwa) < be™ dT (w1, wo);
b
(8.11)
—e” Y™ (w1, wa) < d”(prwr, prwz) < be”*d™ (w1, wa).
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Proof. Let wy,wq € Q¢ and ¢t > 0. Let 07 € \T/*l(wl) and oy € \Tl*l(wg).
By Theorem there exist s1, so € R such that

ps,01 € U Hppw1) and  pg,00 € U (rws),

and moreover, for constants a,a’, B > 0 in Theorem [6.1, we have:
(1) if s; > 0, then
asi —B<t<ds +B

(resp. if so > 0, then asg — B <t < a'ss + B).
(2) if s; <0, then

adsg—B<t<as + B
(resp. if so <0, then a’sy — B <t < asg + B).
By Lemma we have
(8.12) 6_6681+52d+(01, 02) S d+(g03101, @32(72) S 65681+52d+(01, 02).

Suppose first that s1,s2 > 0. Then by (1) above, we deduce from (8.12)
that

dt (ps,01, Ps,02) < 666%6%d+(01,02) <e e%e%cﬁ(wl,wg).
Since oy € U~ (wy) and o3 € \fﬁl(u?) are arbitrary, ¢, 01 and 4,09 are
arbitrary elements of ¥~ (¢;w;) and W1 (¢;ws) respectively. Hence we have
(8.13) dt (pyw1, prws) < e‘se?e%cﬁ(wl,wg).
Similarly, we deduce from (1) and that

AF(Grwr, rwz) 2 A (00,01, 05,02) 2 00T el d* (01, 02).
Since o1 € U~ (w;) and o9 € U~ (wy) are arbitrary, we have
(8.14) d* (prwn, prws) > eféef?e%dﬂwl,wg).

Now consider the case when at least one of s; and so is negative. Then
by (2), we must have 0 < ¢ < B, and hence we deduce from (1) and (2) that
s1,52 € [-B/a,2B/al. It then follows from ({8.12)) that

4B 4B
d+((p8101)90520-2) < 666 @ d+(01702) < 666 @ d+(w1’w2)
and that
2B
At (ppwi, prwa) > AV (95,01, ps,02) > e Oe” a d (01, 09).
Again, since o1 € \ilfl(wl) and o9 € \ilfl(wg) are arbitrary, these imply
_5 _2B 4B
e % dF (w1, w2) < dT(prwr, prws) < €’e’a dT (wy,wa).

Since 0 <t < B, we in particular have
(8.15)

67667%72417}’36%d+(w1,w2) < dT (gpwy, drws) < 656%6%d+(’w1,w2).

Combining (8.13)), (8.14]), and (8.15)), the inequalities for d* in (8.11]) follows.

The inequalities for d~ in (8.11)) can be shown by a similar argument. [J
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For wy,ws € Q¢, we also define
(8.16) dt (wy,we) == de (0], 05)

where o; € U~ (w;) and g3 € U~ (wy). Since every elements of T (w)
has the common forward endpoint for each w € €y, this is well-defined.

Lemma 8.6. For any compact subset QQ C Qw, there exists a constant cg >
1 such that for any wy,ws € Q, we have

1

—d+(w1,w2)€ < d;(wl,wg) < chJ“(wl,wQ)E.

cQ
Proof. Let QQ C Q¢ be a compact subset. Since U is proper, it follows
from Lemma that there exists a uniform constant ¢g > 1 such that if
w1, we € Q and o1 € Y~ (wy) and o9 € W1 (wy), then

1
£d+(01702)8 S dj(wl,wg) S CQd+(01,02)€ S ch+(w1,w2)E.

Since o7 € U~ (wy) and o3 € U~ (ws) are arbitrary, the claim follows. [

Proof of Theorem Let d* : Qw X Qw — R be functions defined in
(8.9). From the definition, d* are non-negative and symmetric. Moreover,
they are I'-invariant by .

Let z € Qw. We show that the restriction on d* defines a semi-metric
on W+(z); the corresponding statement for d~ can be shown by the same
argument. It suffices to show that for wi,wy € W (2), dt(wi,wy) = 0 if
and only if w; = we. Suppose first that wy; = we. Then for any 01,09 €
U~ (wy) = U (wq), we have ;" = o3 . This implies (01|02), = oo. Hence,
by (8:5), we have d*(o1,02) = 0. Since a1,00 € U~ H(wy) = T~ (wy) are
arbitrary, we have d* (wy,w2) = 0. Conversely, suppose that d* (w7, ws) = 0.
Let 01 € U~ w;) and o9 € U~ (wy). We then have d*(oy,09) = 0, and
hence (o7 |05)s = oo by (8.5), from which we deduce o = o5 . Since
U(o1) = wy and ¥(oy) = we, it follows from wy, wy € W (z) and Lemma
that w; = ws, showing the claim.

The inequalities in (1) and (2) follow from Lemma 8.5 finishing the proofs
of (1) and (2).

We now show (3). For small enough ¢ > 0, we consider the function
dF : Qy x Qy — R defined in (8-16), that is, for wy,ws € Qy,

df (w1, wg) = d:(o7,0)

where o1 € U~ (w;) and o3 € ¥~ !(wy), and d. is the visual metric on
0Xgy given in . Since d. is a metric, dI is symmetric and satisfies
the triangle inequality. Let z € (~2¢ and wy,wy € W(z). As discussed
above, for o € \if_l(wl) and oy € ‘ii_l(wQ), we have w1 = wy & Ufr = a;

since wi, wy € W(2). Hence dt (wy, wy) = 0 if and only if w; = ws, and
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therefore the restriction of df defines a metric on W*(z). The inequality
stated in (3) is proved in Lemma This completes the proof. O

9. FINITENESS OF BOWEN-MARGULIS-SULLIVAN MEASURES

Let I' < G be a #-Anosov subgroup relative to P and Xgps the asso-
ciated Groves-Manning cusp space. Let ¢ € aj be a (I',#)-proper linear
form tangent to the -growth indicator ¥%. By [I1], there exists a unique
(T, 9)-Patterson-Sullivan measure v, on Ag and a unique (I, 1poi)-Patterson-
Sullivan measure vyo; on Ajg). Let my be the Bowen-Margulis-Sullivan
measure on €1y, associated with the pair (v,1;) defined in (3.2).

The relatively Anosov subgroups are regarded as the higher-rank gener-
alization of geometrically finite subgroups. Indeed, same as geometrically
finite subgroups, relatively Anosov subgroups have finite Bowen-Margulis-
Sullivan measures:

Theorem 9.1. We have
[ | := my (Qy) < o0
We prove this finiteness of the Bowen-Margulis-Sullivan measure as a

consequence of our reparameterization theorem (Theorem [6.1)).

Thick-thin decomposition of Q. Let ¥ : I'\G — €, be the reparame-
terization given in Theorem Via ¥, the decomposition G = Ginick. UGthin
gives the thick-thin decomposition
Qy = V(I\Grhick) U Y (I\Gipin)
into the compact thick part W(I'\Gpicx) and the thin part W(I'\Gipip)-
The followings are extra ingredients in the proof:

Lemma 9.2 (Shadow lemma). [I8, Lemma 7.2] For all large enough R > 0,
there exists co = co(¢, R) > 1 such that for ally € T,

Cale—w(ue(v)) < vy (0%(0,70)) < coe Ve (M)

We denote by 0 < 6,,(I") < oo the abscissa of convergence of the Poincaré
series s — > . e~s¥we(); this is well-defined by the (T, #)-properness
hypothesis on 1. Indeed, the (I', §)-properness implies d,(I") < oo as shown
in [I1, Theorem 1.3]. Since v is tangent to 1/11(2, we furthermore have

dp(I) =1
[18, Theorem 4.5]. On the other hand, we have the following:

Theorem 9.3 (Canary-Zhang-Zimmer, [II, Lemma 8.2, Corollary 7.2]).
If ¢ € aj is (I',0)-proper and tangent to wle, then the Patterson-Sullivan
measure vy, 1is atomless and for each P € P, we have

67/,(P) < 1.
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Proof of Theorem As before, we identify Ag and A;g) with 0Xean
through the boundary maps. Recall the norm ||-||, on Ry for each o € G and
the I'-equivariant surjective proper map U:G— Qw, o (oF,07,logvy),
defined in the proof of Theorem where v, € Ry is the unique vector such
that ||vy|le = 1. We then have

Qp = V(Gtnick) U ¥ (Ginin)-
We will use this specific decomposition to show the finiteness of m,;. Since
I" acts cocompactly on \if(gthick), it suffices to show that the measure of thin
part mw(I‘\\f/(chm)) is finite. Moreover, since Gipin = I' - [ Jpep Gp and P
is a finite collection, it suffices to show my(P\¥(Gp)) < oo for each P € P.
Let us fix P € P and denote by {p € 0X@ga the parabolic limit point
fixed by P. Since {p is bounded parabolic, we have a compact fundamental

domain for the P-action on 0Xgar — {€p}, which we denote by D. Since v
and vyo; are atomless by Theorem we have

(9.1)  mu(P\U(Gp)) =" /  PEM du (€)dugei(n)dt.
~eP (yDxDxR)NW¥(Gp)

We first estimate the integration with respect to dt. We claim that there
exists C' > 0 such that for any v € P and o € Gp such that ¢~ € D and
ot € vD, we have
(9.2) —C <logvs, < O+ ¥(ue(7))-

Let us fix v € P and let 0 € Gp be such that ot € yvD and 0~ € D.

Recalling that Hp denotes the open horoball in X5 associated to P, this
implies that the following two constants are well-defined:

sp:=min{s < 0:0(s) € 0Hp}
s1:=max{s >0:0(s) € 0Hp}.

In other words, sq is the first time that o enters into OHp and s; is the last
time that o exits 0Hp. We then have from (6.4) and Theorem |6.4] that

Vpsgo = ||”90500Hova = K50 (500 Vo
< be®v, < buy;
_ 1 _ 1

1 ol Ra(0)

> b ey, > b,
Therefore, we have
(9.3) —logb +log vy, o <loguv, <logb+logvy, o

Now fix x € Hp. Then there exists R > 0 with the following property:
for any o9 € Gp such that o, € D, the entering point of og into 0Hp, i.e.
oo(s) € 0Hp with minimal s, must be contained in the R-ball Bgas(z, R).
Indeed, if not, then there exists a sequence o, € Gp such that o, € D
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and the entering point of o, into OHp is not contained in Bgps(x,n) for all
n > 1. However, since o, € Gp and o,, € D for all n > 1, two sequences o,
and o, converge to two distinct points in 0Xgps as n — oo, after passing
to a subsequence. Hence the images of the bi-infinite geodesics o, intersect
a single ball centered at x, which contradicts the choice of the sequence o,.

Hence we have (¢s,0)(0) = o(s0) € Bau(x, R). Since I(y~1o) € Gp also
satisfies that I(y"'o)™ = v lot € D and its entering point into OHp is
given by I(y1o)(—s1) = v 'o(s1), we also have y~'o(s1) € Baa(z, R). In
other words, we have (v 1¢s,0)(s1 — s0) € Bgum(z, R). Hence we can apply
Lemma to @s,0 by setting @ = Bgu(z, R) and obtain

1
(9.4) CiQefw(Me(’Y)) < Koy oy (o) < Cpebm0),
Since
1 1
vaSIO' v‘PSOO' = U@SOU

N H%soansla Ksy—s0(Ps00)
by , it follows from that
log vy, o < log Cg + log vy, o + Y (1 (7))
Hence we deduce from that
—logb +logvy, o < logv, < log(bCq) + log Vg0 + Y(pa(7y)).

Since (¢5,0)(0) € Baam(x, R) where z is fixed and R is determined by z and
P, the constant log vy, o is also uniformly bounded. Therefore, the claim

(19.2) follows.
By the claim ({9.2), we deduce from (9.1)) that

my(P\¥(Gp))
< 20 + 1 YUEM) qu, (€)dvpoi (7).
> (2 + () Loy €€ i)

As we already observed, for x € dHp and R > 0 above, we have that if
o € Gp is such that = € D and o© € vD, then the image of the bi-infinite
geodesic o must intersect Bgas(z, R) and Baa(yz, R). Hence it follows
from Lemma [5.10] that

(9.5) Y({(cT,07)) is uniformly bounded.

Moreover, we also have that ot € Og/M (x,vz) for some R’ > 0 depending
on x and R. By Proposition we then have for some uniform r > 0 that

(9.6) ot e 0%o0,~0).
By and , we now have
my(P\¥(Gp)) <Z<2c +1(110(7)))vs (07 (0, 70))-

yeEP

4The notation f < g means that there is a constant ¢ > 0 such that f < cg
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Applying the shadow lemma (Lemma , we finally obtain
my(P\U(Gp)) < Y (2C +(pg(7)))e Vo),

yEP

Let 0 < e < 1. Since % is (I', #)-proper, liminf,ep 1(ug(y)) = oo, and
hence v (pg(7y)) < e=¥#e()). Hence

my(P\B(Gp)) < 3 (2C + v(ug())e P00 <« 3 e (1=2)wla),
YEP ~EP

By Theorem for € > 0 sufficiently small, we have

my(P\E(Gp)) < e (170 < oo
yeP

This completes the proof of Theorem O

10. UNIQUE MEASURE OF MAXIMAL ENTROPY

Let T" be a relatively #-Anosov subgroup and ¢ € aj a (I', §)-proper form
tangent to wle. Let my be the Bowen-Margulis-Sullivan measure on 2,.
This section is devoted to the proof of the following: by Theorem My
is of finite measure.

Theorem 10.1. Let m be a probability { ¢, }-invariant measure on Qy,. Then
the metric entropy hm({¢:}) is at most 6y, = 1, and hpy({¢¢}) = 1 if and
only if m = my/|my|, the normalized probability measure of M.

We recall some basic notions about entropy; we refer to ([17], [14]) for
details.

Measurable partitions and entropy. Let (X, M,m) be a probability
space, where M is a o-algebra and m is a probability measure. By a partition
¢ of X, we mean a collection of disjoint non-empty measurable subsets of
X whose union is X'. For a partition ¢ of X and x € X, we denote by ((x)
the element of ¢ containing z, called the atom at x. Let M, C M be the
sub o-algebra generated by the atoms of (. A partition ¢ of X is called
m-measurable if it admits a separation by countably many elements in M.
More precisely, ( is m-measurable if there exist a m-conull subset Y C X
and a sequence {Y; € M, : i € N} such that for any distinct atoms z, 2’ of
¢, there exists ¢ € N such that either zNY C Y; and 2’ NY C X - Y], or
z2NYCX—-Y,and 2’ NY CY;.

For an m-measurable partition ¢ and m-a.e. z € X', we denote by m ()
the conditional measure on the atom ((z) so that the following holds [14,
Theorem 5.9]: for any measurable Y C X', we have

e T me(y) (Y N¢(x)) is measurable;
o m(Y) = [y ey (Y N () dm(z).
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For two m-measurable partitions ¢, (’, we say that ¢ is finer than ¢’ and
write ¢ > (' if for m-a.e. x € X, {(x) C ¢'(z). For a sequence of m-
measurable partitions (;, we denote by \/, (; the smallest m-measurable par-
tition finer than all ;.

Given an m-measurable partition ¢ and an m-measurable map ¢ : X — X,
the pull-back ¢ !¢ is an m-measurable partition with atoms (p~1¢)(z) =
0 1(¢(p(x))). We say that ( is p-decreasing if ¢~ 1¢ = ¢ and p-generating
if Vien ¢~ is m-equivalent to the partition consisting of points.

Let ¢ : X - X be an m-measure-preserving transformation. For a count-
able partition (, the entropy of ¢ relative to m is

Hon(C) = /X ~logm(¢(z)) dm(x)

with the convention that co -0 = 0. The average entropy of ( is defined as

' 1 n—1 .
Hu(p, () = lm —Hy, (\/0 @ C) :
1=
The metric entropy of ¢ with respect to m is defined as

hum () = sup Hm (e, )

where the supremum is taken over all countable partitions ¢ with H,,({) <
oo. For a flow {¢;}ter on X, we have hy,(¢¢) = [t|hm(¢1) for all ¢ # 0. The
metric entropy of the flow {¢;} with respect to m is defined as

hin({#1}) := hn(61)-

For a yp-decreasing m-measurable partition ¢, we also define
(.0) 1= [ =logme((¢7' Q@) dmi).

Partition realizing the entropy. Recall the foliations W= of Qw and
W of 1y, from and . Let m be a probability measure on €2, and
m the I'-invariant lift of m to Qw. A T-invariant partition ¢ of Qw is called
m-measurable if the induced partition ¢ on €2, is m-measurable. We say that
an m-measurable partition CN is subordinated to W if for m-a.e. & € Qw,

there exist precompact open neighborhoods Uy and Us of Z in W+ () such
that

L~{1 C CN(:Z‘) C L?Q
Proposition 10.2. Let 7 > 0. Let m be a probability measure on $1y, which

is itnvariant and ergodic under ¢, and m its lift to Q¢. Then there exists a

T'-invariant m-measurable partition {" of Q¢ subordinated to W+ such that
1ts projection  is an m-measurable ¢,-decreasing and generating partition
of Qy which satisfies

hm(¢‘r) = hm(¢7’a€) < Q.
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The most delicate part of the proof of this proposition lies in the con-
struction of the partition which is subordinated to the unstable foliation
W. The exponential expansion property of the flow {¢;} on 0y (Theorem
was obtained precisely for this purpose. Other parts of Proposition m
can be obtained by similar argument in [24].

Proof of Proposition Let d* and dt be functions on Qw X Qw given
in Theorem for some fixed € > 0. Fix u € §}y,. For r > 0, we set

~ B = 3se (=), w e W (psu) with d™ (¢psu, w) < r
Clur) = {U €8y st. v e WH(w) and df (w,v) < r '

Fix p > 0 small enough so that the projection Qw — €1y, is injective on
C(u,4p). For 0 < r < 4p, we denote by C(u,r) the image of C(u,r) under
the projection Qw — (.

We define a function ¢ : Q; — R as follows: for each z € C(u,p), let
ieC (u, p) be the unique lift of z. It follows from the description of W in
Lemma [4.5] that there exist unique s € (—p, p) and j € W~ (¢su) such that
T e WH(G), d (¢su,§) < p and dF (§,%) < p. We set

U(x) == max(s,d” (¢su,7), dI (7, 7)).

For x € Qy — C(u, p), we then set {(x) := p.
For each 0 < r < p, let (. be the partition of Qy with atoms yC'(u,r) N
W (z) for € Qy, v € I and Qp — I'C(u,r). We then define

&=\ 6l
=0

Let ¢/ and ¢, be the partitions obtained by projecting ¢’ and (. to Qy
respectively. Then (, = /2, #¢! since the I'-action commutes with the
flow {¢¢}. It is clear that ¢, is ¢,-decreasing. In view of the construction of
¢ which uses atoms vC'(u, 7) "W (%), we can verity that ¢, is m-measurable
by a same argument as in [24, Proposition 1]. Denote by m is the lift of m
to Qw. Let d be the metric on {2y, considered in Proposition By the
ergodicity of m, we have that for m-a.e. x € €y, #Fx € O(u,r) for infinitely
many k& € N, and hence ¢/(¢¥z) is contained in a uniformly bounded set
C(u,r) N W+ (¢kx) with respect to d. Since (¢-7¢.)(z) C ¢7F(CL(PF2)), it
follows from Proposition that (, is ¢r-generating. Similarly, for m-a.e.
NS Qd,, we have ¢-%& € yC(u,r) for some k € N and v € I'. Hence we
have ,.(2) C ¢8(C(¢7%%)) € pFyC(u,r) N WH(&), and therefore (%) is a
precompact subset of W+ (7).

We now show the most delicate part of the proof that we can take r > 0 so
that ¢.(#) contains an open neighborhood of Z in W () for m-a.e. & € Q.
We use Theorem [8.1]in a crucial way.
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Consider the push-forward ¢,m of the measure m by ¢, which is a proba-
bility measure on [0, p] C R. For any ¢¢ € (0,1), we have that

Leb ({T €(0,p):) (tem)([r—ek,r+eb]) < oo}) =p

k=0

by [20, Proposition 3.2]. Since m is ¢,-invariant, this is same to say that

Leb <{’I“ € (0,p) : Zm({x (o Rx) —r| < €k} < oo}) = p.
k=0

We fix a constant e ¢*7 < g9 < 1 where o > 0 is a constant given in
Theorem [8.1] We can therefore choose 0 < r < p/2 so that m(8C(u,r)) =0
and that

Y m{: |6(¢7" ) — | < <G} < oo
k=0

Let €2, be the set of all 2 € Qy — U2, #*OC (u, r) satisfying that for some
Ny = No(z) > 0, we have
(10.1) UpFx) <r—ek or t(ep7Fz) >r+&f
for all K > Ny. Since m(9C(u,r)) = 0, it follows from the classical Borel-
Cantelli lemma that m(€2,) = 1. Let x € €, be an arbitrary point and
corresponding Ng = No(z). We fix a lift & € Q of .

For y € Q, we write y for its projection to 2. Fix a compact subset
Q C € containing

U {veW (w):d"(v,v0) <b}
voeé(u,p)
where b > 1 is the constant given in Theorem [8:1]
We set
NEEER
r1:=min | =,
! 2" b(2c)/e
where ¢ = ¢ > 1 is as given in Theorem [8.1)(3). Let
U={jeW"(7):d" (&5 <n}

this is a precompact neighborhood of Z in W (). Let U be the image of U
in €. We claim that for each k > Ny, either

(10.2) gb;k(Z;{) C ’y_lCN'(u,r) for some vy €T" or gb_k(l;{) N Fé(u, r) = 0.

T

Fix k > Np. Recall that = satisfies either £(¢;¥z) < r —ef or £(¢7Fx) >
T+ 5’0“. Consider the first case. This implies that there exists v € I' such
that y¢7*% € C(u,r — k). We then have

dt (vo: 3,y ) = dY (9757, 77 g) < be AT (2, 7).
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by (8.10) and Theorem (1) In particular, we have y¢-*j € Q and hence
(10.3)  df (77 %,167%G) < cd¥ (v97 8,767 F§)" < cbTe TR (7, §)°
by Theorem (3) Let § € U, and hence dt(&,§) < r1. Since e %7 < &,
we then have

d+(7¢'f z 7¢T ) < 80
by (10.3), and therefore y¢-*§ € C(u,r). Hence

o7 (U) C v Clu,r),
proving (10.2)) in this case.

Now consider the case when £(¢-*z) > r+¢f. In this case, we claim that
¢7*U) NTC(u,r) = 0. Suppose not. Then there exists v € I and some
§ € WH(&) such that d+(~ §) < r1 and v¢;7*§ € C(u,r). By the same
argument as above, 7¢-*# € Q and hence

dZ (7 8,797 "p) < cbfe =TT (2, §)%.

Since d* (Z ,y) <ry, We have v¢; %% € C(u,r + k). This is a contradiction
since £(¢; ;1:) >r —|— ek, proving the claim.

The clalm 2) implies that ¢—* (U 1) lies in a single atom of CT for each
k > NO

Since ¢ % ¢ O~ 1C(u,r) for all k € N and v € T', we can find a small
neighborhood U’ C U of & in W+ (&) such that ¢-*(4’) is entirely contained
in some 'y_lCN'(u r), v € I' or disjoint from I'C(u, ) for each 0 < k < Nj.
Therefore ¢ *(U4') is contained in a single atom of ¢/ for all k € N. This
proves that the atom of Q containing Z also contains U’. Since x € Qd) is
arbitrary, (T is subordinated to W .

The rest of the argument is a similar entropy computation as in the de-
duction of [24, Proposition 4] from [24, Proposition 1]. O

Proof of Theorem The deduction of Theorem[I0.1]from Proposition
can be done similarly to [24].

First, note that d,, = 1 since 1 is tangent to ¥% ([IT, Theorem 10.1], [I8
Theorem 4.5]). For g € G such that [g] € Qy, we consider the measure

Hiyir+ ([g]) O W+([g]) given by

ew(ﬂ(egn)+ (e7gn)) dl/((

dMW+([g])([9n]) = gn)")

forn € N; . It follows from the definition that for all a € Ay, we have

day iz
(10'4) y W(lgl) (1’) — efw(loga)'
Hw+ (lga)
We write m?" for the normalized probability measure m,;/|my|. Denote

by mP" its lift to Qw. The following can be obtained by directly checking
the condition for conditional measures:
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Lemma 10.3. Let ¢ be an mP"-measurable partition of §~2¢ subordinated to

W. Then the family of conditional measures of mP" with respect to ¢ is
given by

_ lgnW)
. NVIH(;C)(E@))

By Theorem my, is finite, and hence it follows from Theorem
that mP" is {¢¢}-ergodic. It is a general fact that mP" is ergodic for the
transformation ¢; for uncountably many ¢ [24] Lemma 7]. Fix 7 > 0 so that
mP" is ¢r-ergodic. Now let m be a probability {¢;}-invariant measure on
1y. Considering the ergodic decomposition of m, we may assume that m is
¢--ergodic without loss of generality [14], (3.5a)].

We now consider the partition C~ given by Proposition for the measure
m, its lift m, and the transformation ¢,. Since 5 is subordinated to W,
the measure

Apigir+ (7 (w) for &€ Q.

and the function

G(%) := —log i+ (3 (C(2))

are well-defined for m-a.e. & € Qw. Note that since ¢ is a partition for the
measure m, it may not be m?’-measurable and hence Lemma does not
apply to (. It follows from (10.4)) that for m-a.e. & € {2y, we have

(105) g, (67°0)(@) =7+ (G o 6:)(&) — O(@)
This implies

Gop, —G > —7
m-a.e. Since G is T-invariant, it induces the function G : Qy — R. By [24]
Lemme 8], we have [ G o ¢, — G dm = 0 and therefore

(10.6) [ 10w (6710 @) dim(a) =

pr T
where m C( @)’

We can now show hpper ({¢¢}) = 1. Indeed, if we consider the special case
that m = m?", then the partition ( becomes an mP"-measurable partition
given by Proposition [10.2 Hence by Lemma the measure m?”; | forms

T

¢(x)
the family of conditional measure for m?". erefore the above identity
(10:6) yields

B (67) = oo (67, C) = / ~logm?” (672¢)(@)) dm(x) = 7.

Hence

) 1s the measure on ((z) induced by mg

hompr ({e}) = hamwr (6r) /7 = 1.
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It remains to show that for a general m, h,,,({¢:}) < 1 and that h,,({¢:}) =
1 implies m = mP". We define the following function: for m-a.e. z € €y,

_ Mg (6710)(2))
me) (670 (2))

and F'(z) := 0 otherwise. By [24, Fait 9], both functions F' and log F' are
m-integrable and [ F dm < 1. Since

mee)((67'¢)(x)) > 0,

/logF dm = —7 4 hp(dr,C) = =T + hin(Pr) = =7 + Thy ({4 })

by (10.6)) and the choice of ¢, we apply Jensen’s inequality and obtain

4 tha({ér}) < log </F am) <0,

This proves

han({9¢}) < 1.
Now suppose that h,,({¢:}) = 1. This implies that the equality holds
in Jensen’s inequality, that is, log ( [F dm) = (0, which means that F' =1
m-a.e. It follows that the two conditional measures mgzx) and my ;) coincide

on the o-algebra generated by (¢, 1¢)(z) for m-a.e. x. Since this holds after
replacing ¢, with ¢ for any k& € N and the partition ¢ is ¢,-generating, we
have

mé’zx) =me¢(y) for m-ae. x € Qy.

Then the equality between measures m = mP" follows from the Hopf
argument. Indeed, let f : ©Q;, — R be a compactly supported continuous
function. By the Birkhoff ergodic theorem, the set

Z = {;1: €y tli)lgoi/otf(%x)ds = mpr(f)}

has a full mP"-measure. Then Z is invariant under the flow {¢;} and more-
over, since f is uniformly continuous, x € Z implies W~ (z) C Z by Propo-
sition By the quasi-product structure of the BMS measure m?", this
implies that for all x € Qy, Z N W (z) has full py +(,)-measure. Hence
Z N {¢(x) has full mé”gx)—measure for m-a.e. x € Qy by the definition of
s

{y
M¢(y) is a conditional measure for m, this implies m(Z) = 1, and therefore
m(f) = mP"(f) by applying the Birkhoff ergodic theorem again to m. This

finishes the proof. O

m Hence Z N ((x) has full m¢(yy-measure for m-a.e. = € Qy. Since
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