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Abstract. For a geometrically finite Kleinian group Γ, the Bowen-
Margulis-Sullivan measure is finite and is the unique measure of maxi-
mal entropy for the geodesic flow, as shown by Sullivan and Otal-Peigné
respectively. Moreover, it is strongly mixing by a result of Babillot.
We obtain a higher-rank analogue of this theorem. Given a relatively
Anosov subgroup Γ of a semisimple real algebraic group, there is a fam-
ily of flow spaces parameterized by linear forms tangent to the growth
indicator. We construct a reparameterization of each flow space by the
geodesic flow on the Groves-Manning space of Γ which exhibits exponen-
tial expansion along unstable foliations. Using this reparameterization,
we prove that the Bowen-Margulis-Sullivan measure of each flow space
is finite and is the unique measure of maximal entropy. Moreover, it is
strongly mixing.
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1. Introduction

For a geometrically finite Kleinian group Γ of SO◦(n, 1) = Isom+(Hn),
n ≥ 2, it is a classical result of Sullivan ([29], see also [13]) that the asso-
ciated Bowen-Margulis-Sullivan measure mBMS on the unit tangent bundle
T1(Γ\Hn) is finite, and the measure-theoretic entropy of the geodesic flow
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with respect to mBMS equals the topological entropy. Hence the Bowen-
Margulis-Sullivan measure is the measure of maximal entropy. Moreover,
Otal-Peigné [24] showed that this measure is the unique measure of maxi-
mal entropy. It is also strongly mixing by a theorem of Babillot [1].

In this paper, we obtain higher-rank analogues of these theorems. Let G
be a connected semisimple real algebraic group. Anosov subgroups and rel-
atively Anosov subgroups of G are regarded as higher-rank generalizations
of convex cocompact and geometrically finite rank-one groups, respectively.
There is an even broader class of discrete subgroups called transverse sub-
groups, which are viewed as generalizations of rank-one discrete subgroups.
For a transverse subgroup Γ, we have a family of Bowen-Margulis-Sullivan
measures mBMS

ψ parameterized by a distinguished collection of linear forms

ψ. Each such measure mBMS
ψ lives on a fibered dynamical system over a

canonical one-dimensional base flow space (Ωψ,mψ, ϕt) where the fiber is

the kernel of ψ and mBMS
ψ is equal to the product measure mψ ⊗ Lebkerψ.

We refer to mψ as the base Bowen-Margulis-Sullivan measure on Ωψ.
We prove that if Γ is a relatively Anosov subgroup, then the base BMS

measure mψ is finite and is the unique measure of maximal entropy for the
flow {ϕt}. Moreover, we show that for any transverse subgroup for which
mψ is finite, the dynamical system (Ωψ,mψ, ϕt) is strongly mixing. In par-
ticular, both entropy-maximization and strong mixing holds for (Ωψ,mψ, ϕt)
associated with relatively Anosov subgroups.

To formulate these results precisely, we fix a Cartan decomposition G =
KA+K, where K is a maximal compact subgroup of G and A+ = exp a+

is a positive Weyl chamber of a maximal split torus A of G. We denote by
µ : G→ a+ the Cartan projection defined by the condition g ∈ K expµ(g)K
for g ∈ G. Let Π be the set of all simple roots for (LieG, a+). Given a non-
empty subset θ ⊂ Π, there is the notion of relatively Anosov and transverse
subgroup. Let Fθ = G/Pθ where Pθ is the standard parabolic subgroup
associated with θ. Let Γ < G be a discrete subgroup and let Λθ denote
the limit set of Γ in Fθ as defined in (2.1), which we assume contains at
least 3 points, that is, Γ is non-elementary. In the rest of the introduction,
we assume that Γ is a θ-transverse (or simply, transverse) subgroup. This
means that Γ satisfies

• regularity: lim infγ∈Γ α(µ(γ)) = ∞ for all α ∈ θ;
• antipodality: any ξ ̸= η ∈ Λθ∪i(θ) are in general position (see (2.3)).

Here i = −Adw0 : Π → Π denotes the opposition involution where w0 is the
longest Weyl element.

Fibered dynamical systems. Let aθ =
⋂
α∈Π−θ kerα and Aθ = exp aθ.

The centralizer of Aθ is a Levi subgroup of Pθ which is a direct product
AθSθ where Sθ is a compact central extension of a semisimple algebraic
subgroup. The right translation action of Aθ on the quotient space G/Sθ is

equivariantly conjugate to the aθ-translation action on F (2)
θ × aθ where F

(2)
θ
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consists of all pairs (ξ, η) ∈ Fθ ×Fi(θ) in general position. The left Γ-action
on G/Sθ is not properly discontinuous in general. On the other hand, if we

set Λ
(2)
θ = (Λθ × Λi(θ)) ∩ F (2)

θ , then it is shown in [18, Theorem 9.1] that Γ
acts properly discontinuously on the following space:

Ω̃Γ := Λ
(2)
θ × aθ ≃ {gSθ ∈ G/Sθ : gPθ ∈ Λθ, gw0Pi(θ) ∈ Λi(θ)}.

Hence
ΩΓ := Γ\Ω̃Γ.

is a second countable locally compact Hausdorff space on which aθ acts by
translations. Moreover, for each (Γ, θ)-proper1 linear form ψ ∈ a∗θ, the space

ΩΓ fibers over a one-dimensional flow space Ωψ := Γ\(Λ(2)
θ × R).

More precisely, via the projection (ξ, η, v) 7→ (ξ, η, ψ(v)), the Γ-action

on Ω̃Γ descends to a proper discontinuous action on Ω̃ψ := Λ
(2)
θ × R [18,

Theorem 9.2]. Therefore Ωψ := Γ\Ω̃ψ is a second countable locally compact
Hausdorff space over which ΩΓ is a trivial kerψ-bundle:

≃ Ωψ × kerψ (ΩΓ, aθ)≃ Ωψ × kerψ

(Ωψ,R)

The translation flow ϕt(ξ, η, s) = (ξ, η, s+ t) on Ω̃ψ = Λ
(2)
θ × R descends to

a translation flow on Ωψ which we also denote by {ϕt} by abuse of notation.
The (Γ, θ)-properness of ψ ∈ a∗θ is crucial for the proper discontinuity of the

Γ-action on Ω̃ψ. See Remark 3.2 for examples.
For a pair of a (Γ, ψ)-Patterson-Sullivan measure ν on Λθ and a (Γ, ψ ◦ i)-

Patterson-Sullivan measure νi on Λi(θ), we denote bymBMS
ψ = mBMS

ν,νi
the asso-

ciated Aθ-invariant Bowen-Margulis-Sullivan measure on ΩΓ, locally equiva-
lent to the product ν⊗νi⊗Lebaθ . Similarly, we denote by mψ the associated
{ϕt}-invariant Bowen-Margulis-Sullivan measure on Ωψ, locally equivalent

to the product ν ⊗ νi ⊗ LebR. Then mBMS
ψ = mψ ⊗ Lebkerψ . As we are not

assuming the uniqueness of ν and νi for a given ψ, mBMS
ψ and mψ are not

necessarily determined by ψ. Nevertheless, it is convenient to refer to them
as BMS measures associated to ψ.

Relatively Anosov groups. A transverse subgroup Γ < G is called rel-
atively Anosov (more precisely relatively θ-Anosov) if Γ is a relatively hy-
perbolic group and there exists a Γ-equivariant homeomorphism between
the Bowditch boundary of Γ and the limit set Λθ. When Γ is hyperbolic,
its Bowditch boundary is the Gromov boundary of Γ, and in this case,
the relatively Anosov subgroup Γ is simply an Anosov subgroup. When G
has rank-one, relatively Anosov subgroups coincide with geometrically fi-
nite Kleinian groups. Recall that for a geometrically finite Kleinian group

1ψ is called (Γ, θ)-proper if ψ ◦ µ : Γ → [−ε,∞) is a proper map for some ε > 0.
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Γ, there exists a unique Patterson-Sullivan measure of dimension equal to
the critical exponent δΓ. In higher-rank, we consider the growth indicator
ψθΓ of Γ, a generalization of the critical exponent (see (2.7) for the defini-

tion). A linear form ψ is said to be tangent to ψθΓ if ψ ≥ ψθΓ and equality
holds at some non-zero u ∈ aθ. For a relatively Anosov subgroup Γ and a
(Γ, θ)-proper linear form ψ ∈ a∗θ tangent to ψ

θ
Γ, there exists a unique (Γ, ψ)-

Patterson-Sullivan measure on Λθ, and hence a unique BMS measure mψ

associated with ψ (see [21], [28] for Anosov groups and [11] for relatively
Anosov groups).

For Anosov subgroups, the associated base space Ωψ is known to be home-
omorphic to the Gromov geodesic flow space and is compact ([12], [7], [28]).
In fact, for a transverse subgroup, Γ is Anosov if and only if Ωψ is compact
[18]. In particular, Ωψ is non-compact for relatively Anosov subgroups that
are not Anosov. Analogous to the classical result on the finitness of the
Bowen-Margulis-Sullivan measure for a geometrically finite Kleinian group,
we prove the following:

Theorem 1.1 (Finiteness and mixing). Let Γ be a relatively Anosov sub-
group of G. For any (Γ, θ)-proper linear form ψ ∈ a∗θ tangent to the growth
indicator of Γ, the BMS measure mψ is finite:

|mψ| <∞.

Moreover, the system (Ωψ,mψ, ϕt) is strongly mixing.

In fact, we establish strong mixing in a broader setting of transverse
subgroups, which can be regarded as a higher-rank analogue of Babillot’s
mixing theorem (see Theorem 4.1).

Given the finiteness of mψ, the metric entropy hmψ({ϕt}) of the nor-
malized measure mψ/|mψ| is well-defined. For a (Γ, θ)-proper linear form
ψ ∈ a∗θ, the associated ψ-critical exponent is given by

δψ = lim sup
T→∞

log#{γ ∈ Γ : ψ(µ(γ)) < T}
T

∈ (0,∞)

and one has δψ = 1 if and only if ψ is tangent to ψθΓ ([11, Theorem 10.1],
[18, Theorem 4.5]).

Theorem 1.2 (Unique measure of maximal entropy). Let Γ be a relatively
Anosov subgroup of G. For any (Γ, θ)-proper linear form ψ ∈ a∗θ tangent to
the growth indicator of Γ,

mψ is the unique measure of maximal entropy for (Ωψ, {ϕt})

and the entropy hmψ({ϕt}) is equal to δψ = 1.

For Anosov subgroups, this theorem is due to Sambarino ([27], [28]),
as a consequence of thermodynamic formalism. Our proof, by constrast,
does not use the thermodynamic formalism and thus provides an alternative
argument even in the Anosov case.
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Remark 1.3. The identity δψ = 1 follows from the normalization that ψ is

tangent to ψθΓ. In rank-one, ϕt corresponds to the time-changed geodesic flow
gt/δΓ and mδΓ is the unique measure of maximal entropy for gt, satisfying
hmδΓ ({gt}) = δΓ. Hence hmδΓ ({ϕt}) = hmδΓ ({gt})/δΓ = 1.

A key technical ingredient of Theorems 1.1 and 1.2 is the following coarse
reparameterization theorem, which is also of independent interest. Let
(XGM , dGM ) denote the Groves-Manning cusp space of Γ and let G denote
the space of all parameterized bi-infinite geodesics in the Groves-Manning
cusp space [15]. Define the geodesic flow φs : G → G by (φsσ)(·) = σ(·+ s).

Theorem 1.4 (Reparameterization). There exists a continuous, surjective,
proper Γ-equivariant map

Ψ̃ : G → Ω̃ψ

together with a continuous cocycle t̃ : G×R → R such that for all σ ∈ G and
s ∈ R,

(1) Ψ̃(φsσ) = ϕt̃(σ,s)Ψ̃(σ);

(2) t̃(σ, s) = −t̃(φsσ,−s);
(3) there exists an absolute constant B > 0 such that

a|s| −B ≤ t̃(σ, |s|) ≤ a′|s|+B

where

0 < a := lim inf
γ∈Γ

ψ(µ(γ))

dGM (e, γ)
and a′ := 3 lim sup

γ∈Γ

ψ(µ(γ))

dGM (e, γ)
<∞;

(4) all fibers {σ(0) ∈ XGM : σ ∈ Ψ̃−1(x)}, x ∈ Ω̃ψ, have uniformly
bounded diameter.

Moreover, the flow ϕt is exponentially expanding along unstable foliations of

Ω̃ψ = Λ
(2)
θ × R, as described in Theorem 8.1.

The map Ψ : Γ\G → Ωψ, induced from Ψ̃, provides a thick-thin decom-
position of Ωψ that plays a crucial role in the proof of the finiteness of mψ

(Theorem 1.1). This decomposition is used in conjunction with the work of
Canary-Zhang-Zimmer [11], which analyzes the critical exponents of periph-
eral subgroups of Γ. The exponentially expanding property of ϕt is essential
in constructing a measurable partition of Ω̃ψ subordinated to unstable foli-
ations (Proposition 10.2), a key step in the proof of Theorem 1.2 concerning
the uniqueness of the measure of maximal entropy.

Remark 1.5. Recently, Blayac-Canary-Zhu-Zimmer [4] showed that for θ-
transverse Γ and ψ ∈ a∗θ, if there exists a (Γ, θ)-Patterson-Sullivan measure
on Λθ, then ψ must be (Γ, θ)-proper. This result implies that the (Γ, θ)-
properness condition is not a genuinely restrictive assumption when studying
dynamics associated to Bowen-Margulis-Sullivan measures.

Acknowledgements. We were informed that the ongoing work of Blayac,
Canary, Zhu and Zimmer [4] contains a different proof of Theorem 1.1.
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2. Preliminaries

We review some basic facts about Lie groups, following [18, Section. 2]
which we refer for more details. Throughout the paper, let G be a con-
nected semisimple real algebraic group. Let P < G be a minimal parabolic
subgroup with a fixed Langlands decomposition P = MAN where A is a
maximal real split torus ofG,M is the maximal compact subgroup of P com-
muting with A and N is the unipotent radical of P . Let g and a respectively
denote the Lie algebras of G and A. Fix a positive Weyl chamber a+ < a so
that logN consists of positive root subspaces and set A+ = exp a+. We fix
a maximal compact subgroup K < G such that the Cartan decomposition
G = KA+K holds. We denote by µ : G→ a+ the Cartan projection defined
by the condition g ∈ K expµ(g)K for g ∈ G. Let X = G/K be the asso-
ciated Riemannian symmetric space and o = [K] ∈ X. Fix a K-invariant
norm ∥ · ∥ on g. This induces the left G-invariant Riemannian metric d on
X.

Let Φ = Φ(g, a) denote the set of all roots, Φ+ ⊂ Φ the set of all positive
roots, and Π ⊂ Φ+ the set of all simple roots. Fix a Weyl element w0 ∈ K
of order 2 in the normalizer of A representing the longest Weyl element so
that Adw0 a

+ = −a+. The map

i = −Adw0 : a → a

is called the opposition involution. It induces an involution Φ → Φ preserv-
ing Π, for which we use the same notation i, such that i(α) ◦Adw0 = −α for
all α ∈ Φ.

Henceforth, we fix a non-empty subset θ ⊂ Π. Let Pθ denote a standard
parabolic subgroup of G corresponding to θ; that is, Pθ is generated by MA
and all root subgroups Uα, where α ranges over all positive roots which are
not Z-linear combinations of Π− θ. Hence PΠ = P . Let

aθ =
⋂

α∈Π−θ
kerα, a+θ = aθ ∩ a+,

Aθ = exp aθ, and A+
θ = exp a+θ .

Let pθ : a → aθ denote the projection invariant under all Weyl elements
fixing aθ pointwise. We write µθ := pθ ◦ µ : G → a+θ . The space a∗θ =
Hom(aθ,R) can be identified with the subspace of a∗ which is pθ-invariant:
a∗θ = {ψ ∈ a∗ : ψ ◦ pθ = ψ}. We have the Levi-decomposition Pθ = LθNθ

where Lθ is the centralizer of Aθ and Nθ = Ru(Pθ) is the unipotent radical
of Pθ. We set Mθ = K ∩ Pθ ⊂ Lθ.

Limit set Λθ. We set

Fθ = G/Pθ.

The subgroup K acts transitively on Fθ, and hence Fθ ≃ K/Mθ.

Definition 2.1. For a sequence gi ∈ G and ξ ∈ Fθ, we write limi→∞ gi = ξ
and say gi converges to ξ if
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• for each α ∈ θ, α(µ(gi)) → ∞ as gi → ∞;
• limi→∞ κiξθ = ξ in Fθ for some κi ∈ K such that gi ∈ κiA

+K.

The θ-limit set of a discrete subgroup Γ can be defined as follows:

(2.1) Λθ = Λθ(Γ) := {lim γi ∈ Fθ : γi ∈ Γ}
where lim γi is defined as in Definition 2.1. If Γ is Zariski dense, this is the
unique Γ-minimal subset of Fθ ([2], [26]).

Jordan projections. Any g ∈ G can be written as the commuting product
g = ghgegu where gh is hyperbolic, ge is elliptic and gu is unipotent. The
hyperbolic component gh is conjugate to a unique element expλ(g) ∈ A+

and λ(g) is called the Jordan projection of g. We write λθ := pθ ◦ λ.

Theorem 2.2. [3] For any Zariski dense subgroup Γ < G, the subgroup
generated by {λ(γ) ∈ a+ : γ ∈ Γ} is dense in a.

Busemann map and Gromov product. The a-valued Busemann map
β : FΠ ×G×G→ a is defined as follows: for ξ ∈ F and g, h ∈ G,

βξ(g, h) := σ(g−1, ξ)− σ(h−1, ξ)

where σ(g−1, ξ) ∈ a is the unique element such that g−1k ∈ K exp(σ(g−1, ξ))N
for any k ∈ K with ξ = kP . For (ξ, g, h) ∈ Fθ ×G×G, we define

(2.2) βθξ (g, h) := pθ(βξ0(g, h))

for any ξ0 ∈ FΠ projecting to ξ. This is well-defined independent of the
choice of ξ0 [26, Lemma 6.1]. Moreover, since product map K×A×N → G
is a diffeomorphism, Busemann maps are continuous.

Two points ξ ∈ Fθ and η ∈ Fi(θ) are said to be in general position if

(2.3) ξ = gPθ and η = gw0Pi(θ) for some g ∈ G.

We set

(2.4) F (2)
θ = {(ξ, η) ∈ Fθ ×Fi(θ) : ξ, η are in general position}

which is the unique open G-orbit in Fθ ×Fi(θ) under the diagonal G-action.

For (ξ, η) ∈ F (2)
θ , we define the aθ-valued Gromov product as

(2.5) ⟨ξ, η⟩ = βθξ (e, g) + i(βi(θ)η (e, g))

where g ∈ G satisfies (gPθ, gw0Pi(θ)) = (ξ, η). This does not depend on the
choice of g [18, Lemma 9.13].

Patterson-Sullivan measures. For ψ ∈ a∗θ, a (Γ, ψ)-conformal measure is
a Borel probability measure on Fθ such that

(2.6)
dγ∗ν

dν
(ξ) = eψ(β

θ
ξ (e,γ)) for all γ ∈ Γ and ξ ∈ Fθ

where γ∗ν(D) = ν(γ−1D) for any Borel subset D ⊂ Fθ and βθξ denotes

the aθ-valued Busemann map defined in (2.2). A (Γ, ψ)-conformal measure
supported on Λθ is called a (Γ, ψ)-Patterson Sullivan measure.
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Growth indicator. Let Γ < G be a θ-discrete subgroup, that is, µθ|Γ is
a proper map. The θ-growth indicator ψθΓ : aθ → [−∞,∞) is a higher-rank
version of the critical exponent, which is defined as follows: If u ∈ aθ is
non-zero,

(2.7) ψθΓ(u) = ∥u∥ inf
u∈C

τ θC

where τ θC is the abscissa of convergence of the series
∑

γ∈Γ,µθ(γ)∈C e
−s∥µθ(γ)∥

and C ⊂ aθ ranges over all open cones containing u. Set ψθΓ(0) = 0. This
definition was given in [18], extending Quint’s growth indicator [25] to a
general θ.

For Γ transverse and ψ (Γ, θ)-proper, it is proved in [18] that if there
exists a (Γ, ψ)-conformal measure on Fθ, then

ψ ≥ ψθΓ.

We say that ψ ∈ a∗θ is tangent to ψθΓ if ψ ≥ ψθΓ and ψ(u) = ψθΓ(u) for
some u ∈ aθ − {0}. In the rank-one case, if δΓ is the critical exponent of

the Poincaré series
∑

γ∈Γ e
−sd(o,γo) and v ∈ a+ is the unique vector with

d(o, exp vo) = 1, then ψΠ
Γ on a+ = R+v is given by ψΠ

Γ (tv) = δΓt. As ψΠ
Γ

itself is the restriction of a linear form to a+, it is the unique linear form
tangent to itself. In higher-rank, ψθΓ is typically non-linear but concave and
there are abundant tangent linear forms in general. As in the rank-one
setting, interesting geometry and dynamics occur for tangent linear forms.

3. Vector bundle structure of the non-wandering set ΩΓ

We fix a non-empty subset θ of Π. In this section, we assume that Γ < G
is a non-elementary θ-transverse subgroup, that is, Γ satisfies

• (non-elementary): #Λθ ≥ 3;
• (regularity): lim infγ∈Γ α(µ(γ)) = ∞ for all α ∈ θ; and
• (antipodality): any two distinct ξ, η ∈ Λθ∪i(θ) are in general position
as in (2.3).

We will define a locally compact Hausdorff space ΩΓ which is the non-
wandering set for the action of Aθ. Recall that the centralizer of Aθ is the
direct product AθSθ where Sθ is a compact central extension of a connected
semisimple real algebraic subgroup. Note that Sθ is compact if and only if
θ = Π.

The homogeneous space G/Sθ can be identified with the space F (2)
θ × aθ

via the map

gSθ 7→ (gPθ, gw0Pi(θ), β
θ
gPθ

(e, g)),

recalling that w0 ∈ K is the longest Weyl element, and the left G-action on

F (2)
θ × aθ given by

g(ξ, η, v) = (gξ, gη, v + βθξ (g
−1, e))
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makes the above identification G-equivariant. Since Sθ commutes with Aθ,
the diagonal subgroup Aθ acts on G/Sθ on the right, and this action is

conjugate to the action of aθ on F (2)
θ × aθ by the translation on the last

component. Since Sθ is not compact in general, the action of Γ on F (2)
θ ×aθ is

not properly discontinuous. However for Γ transverse, the Γ-action restricted

to the subspace Ω̃Γ := Λ
(2)
θ ×aθ turns out to be properly discontinuous where

Λ
(2)
θ = F (2)

θ ∩ (Λθ × Λi(θ)) [18, Theorem 9.1]. Hence we obtain the locally
compact second countable Hausdorff space

ΩΓ := Γ\Ω̃Γ,

which is the non-wandering set for the right Aθ-action.
For each (Γ, θ)-proper form ψ ∈ a∗θ, ΩΓ admits a kerψ-bundle structure

over a non-wandering set Ωψ for a one-dimensional flow. More precisely,

Theorem 3.1. [18, Theorem 9.2] The Γ-action on the space Ω̃ψ := Λ
(2)
θ ×R

given by
γ(ξ, η, s) = (γξ, γη, s+ ψ(βθξ (γ

−1, e)))

is properly discontinuous. Thus the space

(3.1) Ωψ := Γ\Ω̃ψ = Γ\(Λ(2)
θ × R)

is a locally compact second countable Hausdorff space equipped with the trans-
lation flow {ϕt} on the R-component.

Remark 3.2. Any linear form which is positive on a+ ∩ aθ − {0}, e.g., any
non-negative linear combination of the fundamental weights ωα, α ∈ θ, is
(Γ, θ)-proper. On the other hand, a linear form which takes negative values
on some part of the θ-limit cone is never (Γ, θ)-proper (see [18]).

Explicitly, the translation flow {ϕt} is defined as follows: for t ∈ R and

(ξ, η, s) ∈ Ω̃ψ,
ϕt(ξ, η, s) = (ξ, η, s+ t).

This flow {ϕt} on Ω̃ψ commutes with the Γ-action, and hence induces the
one-dimensional flow on Ωψ which we also denote by ϕt by abusing notations.

Consider the projection ΩΓ → Ωψ induced by the Γ-equivariant projection

Ω̃Γ → Ω̃ψ given by (ξ, η, v) 7→ (ξ, η, ψ(v)). This is a principal kerψ-bundle,
which is trivial since kerψ is a vector space. It follows that there exists a
kerψ-equivariant homeomorphism between ΩΓ and Ωψ × kerψ.

≃ Ωψ × kerψ ΩΓ ≃ Ωψ × kerψ

Ωψ

Let ν and νi be a pair of (Γ, ψ) and (Γ, ψ ◦ i)-Patterson-Sullivan measures
on Λθ and Λi(θ) respectively. The Bowen-Margulis-Sullivan measure mBMS

ψ

on ΩΓ associated with the pair (ν, νi) is the Aθ-invariant measure induced
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by the Γ-invariant measure dm̃BMS
ψ (ξ, η, v) := eψ(⟨ξ,η⟩)dν(ξ)dνi(η)dLebaθ(v)

on Ω̃Γ, where ⟨·, ·⟩ denotes the Gromov product (2.5) and dLebaθ denotes
the Lebesgue measure on aθ.

We also have a {ϕt}-invariant Radon measure mψ on Ωψ induced by the
Γ-invariant measure

(3.2) dm̃ψ(ξ, η, s) := eψ(⟨ξ,η⟩)dν(ξ)dνi(η)ds

on Ω̃ψ where ds denotes the Lebesgue measure on R. The measure mψ is
also referred to as Bowen-Margulis-Sullivan measure on Ωψ associated with
the pair (ν, νi). By the kerψ-equivariant homeomorphism ΩΓ ≃ Ωψ × kerψ,

mBMS
ψ disintegrates over the measure mψ with conditional measure being

the Lebesgue measure Lebkerψ so that

mBMS
ψ = mψ ⊗ Lebkerψ .

4. Strong mixing for transverse groups with finite BMS
measure

Let Γ < G be a non-elementary θ-transverse subgroup. Fix a (Γ, θ)-proper
form ψ ∈ a∗θ and a pair (ν, νi) of (Γ, ψ) and (Γ, ψ ◦ i)-Patterson-Sullivan
measures on Λθ and Λi(θ) respectively. Let Ωψ be as in Theorem 3.1 and
mψ = mψ(ν, νi) denote a BMS measure on Ωψ associated to a pair (ν, νi).

This section is devoted to the proof of the following:

Theorem 4.1. If |mψ| <∞, then (Ωψ,mψ, ϕt) is strongly mixing. That is,
for any f1, f2 ∈ L2(Ωψ,mψ),

lim
|t|→∞

∫
f1(ϕt(x))f2(x) dmψ(x) =

1

|mψ|

∫
f1 dmψ

∫
f2 dmψ.

We begin by observing the ergodicity of mψ:

Theorem 4.2. If |mψ| <∞, then (Ωψ,mψ, ϕt) is ergodic.

Proof. By the Poincaré recurrence theorem, the dynamical system (Ωψ,mψ, ϕt)
is conservative. Hence it follows from the higher-rank Hopf-Tsuji-Sullivan
dichotomy [18, Theorem 10.2] that (Ωψ,mψ, ϕt) is ergodic. □

Although the flow space Ωψ was not considered, Theorem 4.2 can also be
deduced from [10] once Ωψ is shown to make sense. See also [22] and [28]
for Anosov cases.

θ-transitivity subgroups. For g ∈ G, we set g+ := gPθ ∈ Fθ and g− :=
gw0Pi(θ) ∈ Fi(θ). Set N+

θ = w0Ni(θ)w
−1
0 . We use the following notion of

θ-transitivity subgroup:

Definition 4.3. For g ∈ G with (g+, g−) ∈ Λ
(2)
θ , we define the subset Hθ

Γ(g)

of Aθ as follows: for a ∈ Aθ, a ∈ Hθ
Γ(g) if and only if there exist γ ∈ Γ,

s ∈ Sθ and a sequence n1, · · · , nk ∈ Nθ ∪N+
θ , such that

(1) ((gn1 · · ·nr)+, (gn1 · · ·nr)−) ∈ Λ
(2)
θ for all 1 ≤ r ≤ k; and
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(2) gn1 · · ·nk = γgas.

It is not hard to see that Hθ
Γ(g) is a subgroup (cf. [31, Lemma 3.1]). We

call Hθ
Γ the θ-transitivity subgroup for Γ.

In the following, we prove that the θ-transitivity subgroup Hθ
Γ contains

expλθ(Γ0) for some Schottky subgroup Γ0 < Γ.

Proposition 4.4. For any g ∈ G such that (g+, g−) ∈ Λ
(2)
θ , the subgroup

ψ(logHθ
Γ(g)) is dense in R.

Proof. It was shown in [19, Proposition 8.3] that if Γ is a Zariski dense θ-

transverse subgroup and if g ∈ G is such that (g+, g−) ∈ Λ
(2)
θ , then the

subgroup Hθ
Γ(g) is dense in Aθ, by proving that for a Schottky subgroup

Γ0 < Γ, the set of Jordan projections λθ(Γ0) is contained in logHθ
Γ(g). The

Zariski dense hypothesis was used to guarantee that Γ0 can be taken to
be Zariski dense, and hence λθ(Γ0) generates a dense subgroup in aθ ([3],
Theorem 2.2).

In general, let H be the Zariski closure of Γ and consider the Levi de-
composition of H: H = LU where L is a reductive algebraic subgroup and
U the unipotent radical of H. Moreover, we have a Cartan decomposition
G = KA+K so that L = (K ∩ L)(A+ ∩ L)(K ∩ L) by [23]. If π : H → L
denotes the projection, then π(Γ) is Zariski dense in L and hence its Jor-
dan projection generates a dense subgroup of a ∩ LieL. This allows the
same proof of [19, Proposition 8.3] to work within L, and hence the claim
follows. □

Contractions by flow on Ωψ. For g ∈ G, we write

[g] := (g+, g−, ψ(βθg+(e, g))) ∈ F (2)
θ × R.

We mainly consider the case when [g] ∈ Ω̃ψ = Λ
(2)
θ × R, that is, when

(g+, g−) ∈ Λ
(2)
θ . For [g] ∈ Ω̃ψ, we denote by Γ[g] ∈ Ωψ the element of Ωψ

obtained as the projection of [g] by Ω̃ψ → Ωψ.

We set for g ∈ G such that [g] ∈ Ω̃ψ,

(4.1)
W̃+([g]) := {[gn] ∈ Ω̃ψ : n ∈ N+

θ };

W̃−([g]) := {[gn] ∈ Ω̃ψ : n ∈ Nθ}.

The elements of W̃±([g]) can be described as follows:

Lemma 4.5. [19, Lemma 8.4] Let g ∈ G, n ∈ N+
θ , and n′ ∈ Nθ. Then

[gn] =
Ä
(gn)+, g−, ψ

Ä
βθg+(e, g) + ⟨(gn)+, g−⟩ − ⟨(g+, g−)⟩

ää
;

[gn′] =
Ä
g+, (gn′)−, ψ

Ä
βθg+(e, g)

ää
.
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These are leaves of foliations W̃± := {W̃+([g]) : [g] ∈ Ω̃ψ}. For z ∈ Ωψ,
we set

(4.2) W+(z) := Γ\W̃+([g]), and W−(z) := Γ\W̃−([g])

where g ∈ G is such that Γ[g] = z. The following proposition says that we
may consider W+ := {W+(z) : z ∈ Ωψ} and W− := {W−(z) : z ∈ Ωψ} as
unstable and stable foliations for the flow ϕt in Ωψ: note that since Ωψ is
a locally compact second countable Hausdorff space by Theorem 3.1, so is
its one-point compactification Ω∗

ψ. Hence Ω∗
ψ is metrizable. Therefore, we

can choose a metric d on Ωψ which is a restriction of a metric on Ω∗
ψ. That

we can use this kind of metric d to prove the following proposition was first
observed in [4].

Proposition 4.6. [19, Proposition 8.6] Let z ∈ Ωψ. We have

(1) if x, y ∈W+(z), then

d(ϕ−t(x), ϕ−t(y)) → 0 as t→ +∞.

(2) if x, y ∈W−(z), then

d(ϕt(x), ϕt(y)) → 0 as t→ +∞.

Moreover, the convergence is uniform on compact subsets.

Proof of Theorem 4.1. We are now ready to prove the strong mixing.
We recall the following lemma proved by Babillot:

Lemma 4.7. [1, Lemma 1] Let (X ,m, {Tt}t∈R) be a probability measure-
preserving system. Let f ∈ L2(X ,m) be such that

∫
fdm = 0. Suppose that

f ◦ Tti ̸→ 0 weakly2 for some ti → ∞. Then there exists a non-constant
function F such that by passing to a subsequence,

f ◦ Tti → F and f ◦ T−ti → F weakly as i→ ∞.

The following is an easy observation in measure theory:

Lemma 4.8. Let (X ,m) be a probability measure space. If fi → F weakly in
L2(X ,m), then there exists a subsequence fij such that the Cesaro average
converges:

1

ℓ2

ℓ2∑
j=1

fij → F m-a.e.

Now going back to our setting, let f1, f2 ∈ L2(Ωψ,mψ). We may assume
that mψ is a probability measure. By replacing f1 with f1 −

∫
f1dmψ, it

suffices to show that for any f ∈ L2(Ωψ,mψ) with
∫
fdmψ = 0, we have

f ◦ ϕt → 0 weakly as |t| → ∞. Since Cc(Ωψ) is dense in L2(Ωψ,mψ), we
may assume without loss of generality that f is a continuous function with
compact support on Ωψ. Suppose that f ◦ ϕt ̸→ 0 weakly as t → ∞. By

2fn → 0 weakly if and only if
∫
fng dm→ 0 for all g ∈ L2(X ,m)
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Lemma 4.7 and Lemma 4.8, there exists a non-constant function F : Ωψ → R
and a subsequence ti → ∞ such that

(4.3)
1

ℓ2

ℓ2∑
i=1

f ◦ ϕti → F and
1

ℓ2

ℓ2∑
i=1

f ◦ ϕ−ti → F mψ-a.e. as ℓ→ ∞.

We claim that F is invariant under the flow ϕt; this yields a contradiction
to the ergodicity of (Ωψ,mψ, ϕt) obtained in Theorem 4.2.

LetW0 = {x ∈ Ωψ : (4.3) holds}, which ismψ-conull. Since f is uniformly

continuous, it follows from Proposition 4.6 that if g ∈ G and n ∈ Nθ ∪N+
θ

are such that [g], [gn] ∈ Ω̃ψ and Γ[g],Γ[gn] ∈W0, then

F (Γ[g]) = F (Γ[gn]).

Denote by W̃0 and F̃ the Γ-invariant lifts of W0 and F to Ω̃ψ respectively.
We set

W1 := {(ξ, η) : (ξ, η, t) ∈ W̃0 for Leb -a.e. t}.
We also set

W = {(ξ, η) ∈W1 : (ξ, η
′), (ξ′, η) ∈W1 for ν-a.e. ξ′ and νi-a.e. η

′}.

Recall that we also denote by {ϕt} the translation flow on Ω̃ψ. For any

ε > 0 and x ∈ Ω̃ψ, let

Fε(x) :=
1

ε

∫ ε

−ε
F̃ (ϕs(x)) ds.

Then Fε is continuous on each {ϕt}-orbit and as ε→ 0, we have the conver-

gence Fε → F̃ mψ-a.e. Hence it suffices to show that Fε is invariant under
the flow ϕt.

By the definition of W and the observation on W0 made above, we have
that if g ∈ G and n ∈ Nθ ∪ N+

θ are such that [g], [gn] ∈ W × R ⊂ Ω̃ψ,
then Fε([g]) = Fε([gn]). Fix g ∈ G such that [g] ∈ W × R and let
t0 ∈ ψ(logHθ

Γ(g)) and a ∈ Hθ
Γ(g) such that ψ(log a) = t0. We then have

ϕt0([g]) = [ga]. By the definition of the θ-transitivity subgroup, there exist
γ ∈ Γ, s ∈ Sθ, and a sequence n1, · · · , nk ∈ Nθ ∪N+

θ , such that

(1) ((gn1 · · ·nr)+, (gn1 · · ·nr)−) ∈ Λ
(2)
θ for all 1 ≤ r ≤ k;

(2) gn1 · · ·nk = γgas.

As in the proof of [19, Proposition 8.8], there exist a sequence aj ∈ Aθ
and a sequence of k-tuples (n1,j , · · · , nk,j) ∈

∏k
i=1Nθ ∪N+

θ converging to a
and (n1, · · · , nk) respectively as j → ∞, and such that for each j ≥ 1, we
have

[gn1,j · · ·nr,j ] ∈W × R for all 1 ≤ r ≤ k and [gn1,j · · ·nk,j ] = [γgaj ].

Therefore, we have for each j ≥ 1 that

Fε([g]) = Fε([gn1,j ]) = · · · = Fε([gn1,j · · ·nk−1,j ]) = Fε([gn1,j · · ·nk,j ])
= Fε([γgaj ]) = Fε([gaj ]).
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Taking the limit j → ∞, it follows from the continuity of Fε on each {ϕt}-
orbit that

Fε([g]) = Fε([ga]) = (Fε ◦ ϕt0)([g]).

Since ψ(logHθ
Γ(g)) is dense in R by Proposition 4.4, this implies that

Fε([g]) = (Fε ◦ ϕt)([g]) for all t ∈ R.

Since [g] ∈ W × R is arbitrary and (ν ⊗ νi)(W ) = 1, this completes the
proof. □

5. Relatively Anosov groups

Relatively Anosov groups are relatively hyperbolic groups as abstract
groups, which we now define. Let Γ be a countable group acting on a
compact metrizable space X by homeomorphisms. This action is called a
convergence group action if for any sequence of distinct elements γn ∈ Γ,
there exist a subsequence γnk and a, b ∈ X such that as k → ∞, γnk(x) con-
verges to a for all x ∈ X − {b}, uniformly on compact subsets. An element
γ ∈ Γ of infinite order fixes either exactly two points in X or exactly one
point in X . In the former case, we call γ loxodromic, and parabolic other-
wise. An infinite subgroup P < Γ is called parabolic if P fixes some point in
X and every infinite order element of P is parabolic.

A point ξ ∈ X is called a conical limit point if there exist a sequence of
distinct elements γn ∈ Γ and distinct points a, b ∈ X such that as n → ∞,
γnξ → a and γnη → b for all η ∈ X −{ξ}. A point ξ ∈ X is called a parabolic
limit point if ξ is fixed by a parabolic subgroup of Γ. We say that a parabolic
limit point ξ ∈ X is bounded if StabΓ(x)\(X − {ξ}) is compact. The action
of Γ on X is called a geometrically finite convergence group action if every
point of X is either conical or bounded parabolic limit point. A typical
example of geometrically finite convergence group action is the action of a
geometrically finite Kleinian group on its limit set.

Let Γ be a finitely generated group and P a finite collection of finitely
generated infinite subgroups of Γ. We say that Γ is hyperbolic relative to
P (or that (Γ,P) is relatively hyperbolic), if Γ admits a geometrically finite
convergence group action on some compact perfect metrizable space X and
the collection of maximal parabolic subgroups is

PΓ := {γPγ−1 : P ∈ P, γ ∈ Γ}.

Bowditch [6] showed that for Γ hyperbolic relative to P, the space X satis-
fying the above hypothesis is unique up to a Γ-equivariant homeomorphism.
Hence this space is called Bowditch boundary and denoted by ∂(Γ,P).

The Groves-Manning cusp space. Let Γ be a hyperbolic group relative
to P. The Groves-Manning cusp space for (Γ,P) is a proper geodesic Gro-
mov hyperbolic space constructed by Groves-Manning [15] on which Γ acts
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properly discontinuously and by isometries. We briefly review the construc-
tion of the Groves-Manning cusp space. We first need a notion of combina-
torial horoballs: for a graph Y equipped with a simplicial distance dY , the
combinatorial horoball H(Y ) is the graph with the vertex set Y (0) × N and
two types of edges: vertical edges between vertices (y, n) and (y, n+ 1) for
y ∈ Y and n ∈ N, and horizontal edges between vertices (y1, n) and (y2, n)
for y1, y2 ∈ Y and n ∈ N if dY (y1, y2) ≤ 2n−1. We also equip H(Y ) with the
simplicial distance.

Now fix a finite generating set S of Γ such that for each P ∈ P, S ∩ P
generates P . We denote by C(Γ, S) and C(P, S ∩ P ) the Cayley graphs of
Γ and P with respect to S and S ∩ P respectively. For each γ ∈ Γ and
P ∈ P, we glue the horoball H(γC(P, S ∩ P )) to C(Γ, S), by identifying
γC(P, S ∩ P ) ⊂ C(Γ, S) with γC(P, S ∩ P ) × {1} ⊂ H(γC(P, S ∩ P )). The
resulting graph equipped with the simplicial distance is called the Groves-
Manning cusp space for (Γ,P) and S, which we denote by XGM (Γ,P, S).

Theorem 5.1. [15, Theorem 3.25] The space XGM (Γ,P, S) is a proper
geodesic Gromov hyperbolic space.

From the construction, the natural action of Γ on the Cayley graph
C(Γ, S) induces the isometric action of Γ on XGM (Γ,P, S) which is prop-
erly discontinuous. Hence the induced Γ-action on the Gromov boundary
∂XGM (Γ,P, S) is a convergence group action [5, Lemma 2.11], and more-
over is a geometrically finite convergence group action by the construction
of XGM (Γ,P, S). Therefore the Gromov boundary of XGM (Γ,P, S) is the
Bowditch boundary:

∂XGM (Γ,P, S) = ∂(Γ,P).

Relatively Anosov subgroups. Let Γ < G be a finitely generated non-
elementary θ-transverse subgroup with the limit set Λθ and P a finite col-
lection of finitely generated infinite subgroups of Γ.

Definition 5.2. We say that Γ is θ-Anosov relative to P if Γ is hyperbolic
relative to P and there exists a Γ-equivariant homeomorphism ∂(Γ,P) → Λθ.

Let Γ be a θ-Anosov relative to P in the rest of the section. We denote by
XGM := XGM (Γ,P, S) the associated Groves-Manning cusp space for some
fixed generating set S. We then have the Γ-equivariant homeomorphism

f : ∂XGM → Λθ,

which has the following property: Noting that the action of Γ is faithful
on XGM , we have a well-defined map Γx → Γo given by γx 7→ γo for any
x ∈ XGM .

Proposition 5.3. [11, Proposition 4.3] Let x ∈ XGM . Then the map
Γx → Γo extends continuously to a unique Γ-equivariant homeomorphism
f : ∂XGM → Λθ.
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By the antipodality of Γ, the canonical projections πθ : Λθ∪i(θ) → Λθ
and πi(θ) : Λθ∪i(θ) → Λi(θ) are Γ-equivariant homeomorphisms. This implies
that being relatively θ-Anosov implies being relatively θ ∪ i(θ)-Anosov as
well as relatively i(θ)-Anosov. In particular, setting the composition fi :=
πi(θ) ◦ π−1

θ ◦ f , two maps

f : ∂XGM → Λθ and fi : ∂XGM → Λi(θ)

have the property that if ξ, η ∈ ∂XGM are distinct, then (f(ξ), fi(η)) ∈ F (2)
θ .

Compatibility of shadows. We first define the shadows in the symmetric
space X: for p ∈ X and R > 0, let B(p,R) denote the metric ball {x ∈ X :
d(x, p) < R}. For q ∈ X, the θ-shadow OθR(q, p) ⊂ Fθ of B(p,R) viewed
from q is defined as

OθR(q, p) = {gPθ ∈ Fθ : g ∈ G, go = q, gA+o ∩B(p,R) ̸= ∅}.
The following two lemmas will be useful:

Lemma 5.4. [21, Lemma 5.7] There exists κ > 0 such that for any g, h ∈ G
and R > 0, we have

sup
ξ∈OθR(go,ho)

∥βθξ (g, h)− µθ(g
−1h)∥ ≤ κR.

Lemma 5.5. [18, Lemma 9.9] Let gn ∈ G and ξn ∈ Fθ be sequences both
converging to some ξ ∈ Fθ. Suppose that there exists a sequence ηn ∈
Fi(θ) converging to some η ∈ Fi(θ) such that (ξ, η) ∈ F (2)

θ and the sequence

g−1
n (ξn, ηn) is precompact in F (2)

θ . Then there exists R > 0 such that

ξn ∈ OθR(o, gno) for all n ≥ 1.

We also consider shadows in Groves-Manning cusp space. Let dGM be
the simplicial distance on XGM .

The following theorem is obtained in [11, Theorem 10.1]; although it
stated only the lower bound, the upper bound also follows from its proof:

Theorem 5.6. For any (Γ, θ)-proper linear form ψ ∈ a∗θ, there exists posi-
tive constants c, c′ and C such that for all γ ∈ Γ,

c dGM (e, γ)− C ≤ ψ(µθ(γ)) ≤ c′ dGM (e, γ) + C.

For y ∈ XGM and R > 0, we denote the R-ball centered at y by

BGM (y,R) := {z ∈ XGM : dGM (y, z) < R}.
For x, y ∈ XGM and R > 0, we define the shadow of BGM (y,R) viewed from
x as follows:

OGMR (x, y) :=

ß
ξ ∈ ∂XGM :

there exists a geodesic ray from x to ξ
passing through BGM (y,R)

™
.

Note that ξ ∈ ∂XGM is a conical limit point if and only if there exists R > 0
such that ξ ∈ OGMR (o, γno) for an infinite sequence γn ∈ Γ.

We prove the following compatibility of shadows under f : ∂XGM → Λθ:
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Proposition 5.7. Let x ∈ XGM and o ∈ X. For all sufficiently large R > 1,
there exist r1 = r1(R), r2 = r2(R) > 0 such that for any γ ∈ Γ, we have

Oθr1(o, γo) ∩ Λθ ⊂ f(OGMR (x, γx)) ⊂ Oθr2(o, γo) ∩ Λθ.

Moreover, we can take r1(R) → ∞ as R→ ∞.

We begin with some lemmas:

Lemma 5.8. For any x ∈ XGM , there exists R0 > 0 such that OGMR0
(x, γx) ̸=

∅ for any γ ∈ Γ.

Proof. Suppose not. Then there exists an infinite sequence γn ∈ Γ so that
OGMn (x, γnx) = ∅, and hence OGMn (γ−1

n x, x) = ∅ for all n ≥ 1. This forces
∂XGM to be a singleton, which contradicts the perfectness of ∂XGM . □

Lemma 5.9. Let x ∈ XGM and R > 0. Let γn ∈ Γ and ξn ∈ ∂XGM be
sequences such that ξn ∈ OGMR (x, γnx) for all n ≥ 1. If γnx → ξ ∈ ∂XGM

as n→ ∞, then ξn → ξ as n→ ∞.

Proof. Suppose to the contrary that the sequence ξn, after passing to a
subsequence, converges to ξ′ ∈ ∂XGM distinct from ξ. Since γnx → ξ as
n → ∞ and XGM is Gromov hyperbolic (Theorem 5.1), this implies that
there exist a constant R′ > 0 and a sequence of geodesic rays [γnx, ξn] from
γnx to ξn such that dGM (x, [γnx, ξn]) < R′ for all n ≥ 1. On the other
hand, since ξn ∈ OGMR (x, γnx), there exists a geodesic ray [x, ξn] from x
to ξn and a point cn ∈ [x, ξn] such that dGM (cn, γnx) < R for all n ≥ 1.
Since the distance between γnx and cn is uniformly bounded, the Haus-
dorff distance between two geodesic rays [γnx, ξn] and [cn, ξn] ⊂ [x, ξn]
is uniformly bounded, by the Gromov hyperbolicity of XGM (Theorem
5.1). Since the distance dGM (x, [γnx, ξn]) is uniformly bounded, this im-
plies that the distance dGM (x, [cn, ξn]) is uniformly bounded as well. Since
[cn, ξn] is the geodesic ray contained in the geodesic ray [x, ξn], we have that
dGM (x, cn) = dGM (x, [cn, ξn]) is uniformly bounded. Therefore, it follows
from the uniform boundedness of dGM (cn, γnx) that dGM (x, γnx) is uni-
formly bounded, which contradicts the hypothesis that γnx→ ξ as n→ ∞.
This finishes the proof. □

Proof of Proposition 5.7. Note that the first inclusion and the last claim
follow once we show that for any c > 0, there exists C > 0 such that
Oθc (o, γo) ⊂ f(OGMC (x, γx)) for all γ ∈ Γ. Suppose not. Then there exist se-

quences γn ∈ Γ and ξn ∈ ∂XGM−OGMn (x, γnx) such that f(ξn) ∈ Oθc (o, γno)
for all n ≥ 1. After passing to a subsequence, we may assume that the
sequence γ−1

n x converges to some point η ∈ ∂XGM as n → ∞. Since
γ−1
n ξn /∈ OGMn (γ−1

n x, x) for all n ≥ 1, we have that

(5.1) lim
n→∞

γ−1
n ξn = η.
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On the other hand, by Proposition 5.3, we have limn→∞ γ−1
n = fi(η) ∈ Λi(θ).

Since f(γ−1
n ξn) ∈ Oθc (γ

−1
n o, o) for all n ≥ 1 and limn→∞ γ−1

n = fi(η), it fol-
lows from (5.1) and the continuity of higher-rank shadows on viewpoints [19,
Proposition 3.4] that f(η) = limn→∞ f(γ−1

n ξn) ∈ Λθ is in general position
with fi(η). This yields contradiction.

We now prove the second inclusion. Let R0 > 0 be as given by Lemma
5.8 and fix R > R0. Let x ∈ XGM and o ∈ X. Suppose on the contrary
that there exists a sequence γn ∈ Γ such that

f(OGMR (x, γnx)) ̸⊂ Oθn(o, γno) for all n ≥ 1.

This means that there exists a sequence ξn ∈ OGMR (x, γnx) such that f(ξn) ̸∈
Oθn(o, γno) for all n ≥ 1. After passing to a subsequence, we may assume
that the sequence γnx converges to a point ξ ∈ ∂XGM . By Proposition 5.3,
we have

(5.2) γn → f(ξ) as n→ ∞.

In addition, it follows from Lemma 5.9 that ξn → ξ as n → ∞. For each
n ≥ 1, we choose a point ηn ∈ OGMR (γnx, x) which is possible by Lemma
5.8. We may assume that the sequence ηn converges to η ∈ ∂XGM , after
passing to a subsequence. Since γnx→ ξ as n→ ∞ and ηn ∈ OGMR (γnx, x)
for all n ≥ 1, we have ξ ̸= η. Therefore, we have the following convergence

of the sequence in F (2)
θ :

(5.3) (f(ξn), fi(ηn)) → (f(ξ), fi(η)) ∈ F (2)
θ as n→ ∞.

On the other hand, we also have γ−1
n ξn ∈ OGMR (γ−1

n x, x) and γ−1
n ηn ∈

OGMR (x, γ−1
n x) for all n ≥ 1. Together with the Γ-equivariance of f and fi,

a similar argument as above implies that

(5.4) the sequence γ−1
n (f(ξn), fi(ηn)) is precompact in F (2)

θ .

By (5.2), (5.3), and (5.4), we apply Lemma 5.5 and deduce that there exists
R′ > 0 so that f(ξn) ∈ OθR′(o, γno) for all n ≥ 1. This contradicts to

the choice of the sequence ξn that f(ξn) /∈ Oθn(o, γno) for all n ≥ 1. This
completes the proof. □

Lemma 5.10. Let x ∈ XGM and R > 0. Then there exists a compact
subset Q ⊂ aθ satisfying the following: if ξ, η ∈ ∂XGM are such that
dGM (x, [ξ, η]) < R for some bi-infinite geodesic [ξ, η], then

⟨f(ξ), fi(η)⟩ ∈ Q

where ⟨·, ·⟩ is the Gromov product defined in (2.5).

Proof. Suppose not. Then there exists a sequence of bi-infinite geodesics
[ξn, ηn] for some ξn, ηn ∈ ∂XGM such that we have supn dGM (x, [ξn, ηn]) <
R and the Gromov products ⟨f(ξn), fi(ηn)⟩ escape every compact subset
of aθ as n → ∞. After passing to a subsequence, we may assume that
ξn → ξ and ηn → η in ∂XGM . The hypothesis supn dGM (x, [ξn, ηn]) < R
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implies ξ ̸= η, since XGM is Gromov hyperbolic (Theorem 5.1). Therefore

(f(ξ), fi(η)) ∈ Λ
(2)
θ and hence ⟨f(ξ), fi(η)⟩ ∈ aθ is well-defined. On the other

hand, by the continuity of the Gromov product, we have ⟨f(ξn), fi(ηn)⟩ →
⟨f(ξ), fi(η)⟩ ∈ aθ as n→ ∞. This yields a contradiction. □

6. Reparameterization for relatively Anosov groups

Let Γ < G be a θ-Anosov subgroup relative to P andXGM = XGM (X,P, S)
the associated Groves-Manning cusp space for a fixed generating set S.
Fix a (Γ, θ)-proper linear form ψ ∈ a∗θ. Recall from section 3 the space

Ω̃ψ := Λ
(2)
θ × R equipped with the Γ-action given by

γ(ξ, η, s) = (γξ, γη, s+ ψ(βθξ (γ
−1, e))).

As stated in Theorem 3.1, the space

Ωψ := Γ\Ω̃ψ
is a locally compact second countable Hausdorff space. The translation flow
{ϕt} on the R-component of Ω̃ψ commutes with the Γ-action, and hence it
induces the translation flow on Ωψ which we also denote by {ϕt}. We will

relate Ω̃ψ and Ωψ with the Groves-Manning cusp space XGM in this section.
More precisely, let

G := {σ : R → XGM : bi-infinite geodesic}.

The space G admits the geodesic flow φs : G → G defined by (φsσ)(·) =
σ(·+s) for s ∈ R, and the inversion I : G → G defined by (Iσ)(s) = σ(−s) for
s ∈ R. The canonical isometric action of Γ on G commutes with the geodesic
flow and I, and is properly discontinuous. Hence we can also consider the
locally compact Hausdorff space Γ\G. This section is devoted to the proof
of the following reparameterization theorem:

Set

(6.1) a = lim inf
γ∈Γ

ψ(µθ(γ))

dGM (e, γ)
and a′ = 3 lim sup

γ∈Γ

ψ(µθ(γ))

dGM (e, γ)
.

By Theorem 5.6, we have 0 < a ≤ a′ <∞.

Theorem 6.1 (Reparameterization, Theorem 1.4(1)-(3)). There exists a
continuous, surjective, proper Γ-equivariant map

Ψ̃ : G → Ω̃ψ.

Moreover, we have a continuous cocycle t̃ : G × R → R such that for all
σ ∈ G and s ∈ R,

(1) Ψ̃(φsσ) = ϕt̃(σ,s)Ψ̃(σ);

(2) t̃(σ, s) = −t̃(φsσ,−s);
(3) there exists an absolute constant B > 0 such that

a|s| −B ≤ t̃(σ, |s|) ≤ a′|s|+B.
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In the above theorem, t̃ : G × R → R being a continuous cocycle means
that it is continuous and for all σ ∈ G and s1, s2 ∈ R,

t̃(σ, s1 + s2) = t̃(σ, s1) + t̃(φs1σ, s2).

Since Ψ̃ : G → Ω̃ψ in Theorem 6.1 is Γ-equivariant, this descends to the map
Ψ : Γ\G → Ωψ. The following is immediate from Theorem 6.1.

Corollary 6.2 (Reparameterization). There exists a continuous, surjective,
proper map

Ψ : Γ\G → Ωψ.

Moreover, we have a continuous cocycle t : Γ\G × R → R such that for all
σ ∈ G and s ∈ R,

(1) Ψ([φsσ]) = ϕt(σ,s)Ψ([σ]);
(2) t(σ, s) = −t(φsσ,−s);
(3) there exists an absolute constant B > 0 such that

a|s| −B ≤ t(σ, |s|) ≤ a′|s|+B.

Thick-thin decomposition of G. For P ∈ P, let ξP ∈ ∂XGM be the
bounded parabolic limit point fixed by P . We consider the open horoball
HP ⊂ XGM based at ξP invariant under P , defined as follows: let H ′

P ⊂
XGM be the subgraph induced by the vertices {(g, n) : g ∈ P, n ≥ 2} and

ĤP ⊂ XGM be the subgraph induced by the vertices {(g, 2) : g ∈ P}. We
then set

HP := H ′
P − ĤP .

For γ ∈ Γ, we also set

HγPγ−1 := γHP

which is the open horoball based at ξγPγ−1 := γξP and invariant under

γPγ−1 ∈ PΓ. The boundary ∂HγPγ−1 consists of the vertices γ{(g, 2) : g ∈
P}. We then have the Γ-invariant family {HP : P ∈ PΓ} of open horoballs
with disjoint closures.

We define the following subsets of G: for P ∈ PΓ, let

GP := {σ ∈ G : σ(0) ∈ HP };
∂GP := {σ ∈ G : σ(0) ∈ ∂HP }.

We have the thick-thin decomposition of G:

Gthin :=
⋃

P∈PΓ

GP and Gthick := G − Gthin.

Since the Groves-Manning cusp space XGM is constructed by attaching
combinatorial horoballs to the Cayley graph of Γ, the Γ-action on XGM −⋃
P∈PΓ HP is cocompact. Hence the Γ-action on Gthick which consists of

bi-infinite geodesics based at XGM −
⋃
P∈PΓ HP is also cocompact.
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We also introduce the following subsets of ∂GP for each P ∈ PΓ:

∂+GP := {σ ∈ ∂GP : σ(t) ∈ HP for all sufficiently small t > 0};
∂−GP := {σ ∈ ∂GP : σ(−t) ∈ HP for all sufficiently small t > 0}.

Note that ∂+GP ∩ ∂−GP = ∅. For σ ∈ ∂+GP , we set

T+
σ := min{t ∈ (0,∞] : σ(t) /∈ HP },

and for σ ∈ ∂−GP , we set

T−
σ := max{t ∈ [−∞, 0) : σ(t) /∈ HP },

which are the escaping times for the horoball HP . We then have

GP =

Ñ ⋃
σ∈∂+GP

⋃
t∈(0,T+

σ )

φtσ

é
∪

Ñ ⋃
σ∈∂−GP

⋃
t∈(T−

σ ,0)

φtσ

é
.

Construction of the reparameterization. To construct the reparame-
terization, we consider the trivial bundle

G × R+ → G.

Given σ ∈ G, we denote by σ+ = σ(∞) ∈ ∂XGM and σ− = σ(−∞) ∈
∂XGM the forward and backward endpoint of the bi-infinite geodesic σ.
Noting that we have Γ-equivariant homeomorphisms f : ∂XGM → Λθ and
fi : ∂XGM → Λi(θ), we identify ∂XGM , Λθ, and Λi(θ) in this section via the
homeomorphisms. We define the Γ-action on G × R+ as follows: for γ ∈ Γ
and (σ, v) ∈ G × R+,

γ(σ, v) =
(
γσ, veψ

Ä
βθ
σ+

(γ−1,e)
ä)
.

This action makes the following projection Γ-equivariant:

Ψ0 : G × R+ −→ Ω̃ψ

(σ, v) 7−→ (σ+, σ−, log v).

We construct the reparameterization Ψ : Γ\G → Ωψ in Theorem 6.1 by
constructing a nice Γ-equivariant section u : G → G × R+ of the trivial
bundle so that we obtain a Γ-equivariant map Ψ̃ : G → Ω̃ψ as follows, with
the desired properties:

G × R+

G Ω̃ψ

Ψ0

Ψ̃

u
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Norms on fibers. To construct a section of the trivial bundle G × R+ →
G, we define a continuous family of Γ-equivariant norms on fibers. More
precisely, we define a Γ-invariant continuous function

∥ · ∥ : G × R+ → R+

such that for each σ ∈ G, ∥(σ, ·)∥ is the restriction of a norm on R to R+.
We simply write

∥ · ∥σ := ∥(σ, ·)∥ for each σ ∈ G.

Once we define the norm, we will define a section u : G → G × R+ by
u(σ) = (σ, vσ) where vσ ∈ R+ is the unique unit vector with respect to the
norm ∥ · ∥σ, i.e., ∥vσ∥σ = 1. The Γ-equivariance and the continuity of the
norms imply that the section u is also Γ-equivariant and continuous. To
make the reparameterization Ψ̃ = Ψ0 ◦ u satisfy the conditions in Theorem
6.1, our norms should have a property that the contraction rate along the
geodesic flow is bounded from both above and below by uniform exponential
functions.

Our construction of the family of norms is motivated by [32] which con-
sidered flat bundles for relatively Anosov subgroups of SL(n,R) with respect
to a maximal parabolic subgroup. Our proof of the contraction property is
motivated by ([9], [32]) where the upper bound of the contraction rate of
norms on flat bundles for relatively Anosov subgroups of SL(n,R) with re-
spect to a maximal parabolic subgroup was proved. We also remark that the
contraction property was earlier studied in ([30], [12]) for Anosov subgroups.

We now define a family of norms as follows (compare to a similar con-
struction in [32]): first we fix a continuous family of Γ-equivariant norms
∥ · ∥σ for σ ∈ Gthick such that ∥ · ∥σ = ∥ · ∥Iσ for all σ ∈ Gthick. Let σ ∈ Gthin.
Then σ ∈ GP for some P ∈ PΓ. Let

(6.2) c > 0

be the constant given by Theorem 5.6. There are two cases indicated by the
Figures 1 and 2:

Case 1. If σ = φtσ0 for some σ0 ∈ ∂+GP and t ∈ (0, T+
σ0), we write T := T+

σ0
and

• if t ∈
(
0, 13T

]
, we set

∥ · ∥σ := e−ct∥ · ∥σ0 .

• if t ∈
[
2
3T, T

)
, we set

∥ · ∥σ := ec(T−t)∥ · ∥φT σ0 .

• if t ∈
(
1
3T,

2
3T
)
, we set

∥ · ∥σ := ∥ · ∥
2− 3

T t
φT/3σ0∥ · ∥

3
T t−1
φ2T/3σ0 .
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HP

ξP

σ

σ0
t

HP

ξP

σ

σ0 t

Figure 1. Two possible configurations of σ ∈ GP in Case 1
depending on whether T+

σ0 = ∞ or not. Only the first item
in Case 1 applies to the left figure.

Case 2. If σ = φsσ̃0 for some σ̃0 ∈ ∂−GP and s ∈ (T−
σ̃0
, 0), we write T := T−

σ̃0
and

• if s ∈
[
1
3T, 0

)
, we set

∥ · ∥σ := e−cs∥ · ∥σ̃0 .
• if s ∈

(
T, 23T

]
, we set

∥ · ∥σ := ec(T−s)∥ · ∥φT σ̃0 .
• if s ∈

(
2
3T,

1
3T
)
, we set

∥ · ∥σ := ∥ · ∥
3
T s−1

φ2T/3σ̃0
∥ · ∥

2− 3
T s

φT/3σ̃0
.

HP

ξP

σ

σ̃0

s
HP

ξP

σ

σ̃0

s

Figure 2. Two possible configurations of σ ∈ GP in Case 2
depending on whether T−

σ̃0
= −∞ or not. Only the first item

in Case 2 applies to the left figure.

Note that both cases can happen at the same time, and in that case
two definitions coincide. The resulting family of norms is continuous and
Γ-equivariant.
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Contraction rate along geodesic flow. For σ ∈ G, there exists a unique
vσ ∈ R+ such that ∥vσ∥σ = 1. For t ∈ R, we define

(6.3) κt(σ) := ∥vσ∥φtσ;

this measures the contraction rates of norms under the geodesic flow. It is
easy to see that for σ ∈ G and t, s ∈ R, we have

(6.4) vφtσ =
vσ

∥vσ∥φtσ
and κt+s(σ) = κs(φtσ)κt(σ).

Moreover, κt(·) is Γ-invariant.

Lemma 6.3. For σ ∈ G, t ∈ R, and γ ∈ Γ, we have

κt(γσ) = κt(σ).

Proof. By the Γ-equivariance of the norm, we have

1 = ∥vσ∥σ =
∥∥∥vσeψ(βθσ+ (γ−1,e))

∥∥∥
γσ
.

This implies

(6.5) vγσ = vσe
ψ(βθ

σ+
(γ−1,e)).

Since φtγσ = γφtσ, we have

κt(γσ) = ∥vγσ∥φtγσ = ∥vσ∥γφtσe
ψ(βθ

σ+
(γ−1,e))

=
∥∥∥vσeψ(βθγσ+ (γ,e))

∥∥∥
φtσ

eψ(β
θ
σ+

(γ−1,e))

= ∥vσ∥φtσ = κt(σ)

as desired. □

The following is the desired estimate on the contraction rate:

Theorem 6.4. There exists b > 1 such that for all σ ∈ G and t ≥ 0, we
have

1

b
e−a

′t ≤ κt(σ) ≤ be−at

where a = lim infγ∈Γ
ψ(µθ(γ))
dGM (e,γ) and a′ = 3 lim supγ∈Γ

ψ(µθ(γ))
dGM (e,γ) .

We begin by observing that the recurrence to a compact subset implies
the exponential contraction:

Lemma 6.5. For any compact subset Q ⊂ XGM , there exists CQ > 1 such
that if σ ∈ G, t ≥ 0, and γ ∈ Γ satisfy σ(0), γ−1σ(t) ∈ Q, then

1

CQ
e−ψ(µθ(γ)) ≤ κt(σ) ≤ CQe

−ψ(µθ(γ)).
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Proof. Suppose not. Then there exist sequences σn ∈ G, tn ≥ 0, and γn ∈ Γ
such that σn(0), γ

−1
n σn(tn) ∈ Q for all n ≥ 1 while the sequence

(6.6) log
Ä
κtn(σn)e

ψ(µθ(γn))
ä
= ψ(µθ(γn)) + log κtn(σn) is unbounded.

In particular, γn is an infinite sequence and tn → ∞ as n→ ∞.
By the hypothesis that σn(0), γ

−1
n σn(tn) ∈ Q, there exist q ∈ Q and R > 0

depending on Q so that we have σ+n ∈ OGMR (q, γnq) for all n ≥ 1. It follows

from Proposition 5.7 that for some r > 0, we have σ+n ∈ Oθr(o, γno) for all
n ≥ 1. By Lemma 5.4, we deduce from (6.6) that the sequence

(6.7) ψ
Ä
βθ
σ+
n
(e, γn)

ä
+ log κtn(σn) is unbounded.

On the other hand, by the Γ-equivariance of the norms ∥ · ∥, we have

κtn(σn) = ∥vσn∥φtnσn =

∥∥∥∥∥vσneψ
Å
βθ
σ+n

(γn,e)

ã∥∥∥∥∥
γ−1
n φtnσn

= e
ψ

Å
βθ
σ+n

(γn,e)

ã
∥vσn∥γ−1

n φtnσn

and therefore

(6.8) ψ
Ä
βθ
σ+
n
(e, γn)

ä
+ log κtn(σn) = log ∥vσn∥γ−1

n φtnσn
.

Since both σn(0) and γ−1
n σn(tn) = (γ−1

n φtnσn)(0) belong to the compact
subset Q for all n ≥ 1, there exists a compact subset of G containing σn and
γ−1
n φtnσn for all n ≥ 1. Therefore, the sequence (6.8) is uniformly bounded,

which contradicts (6.7). Hence the claim follows. □

We obtain the following estimate of the contraction rate between the
entrance and exit of a horoball.

Corollary 6.6. There exists a constant c0 ≥ 1 such that if σ ∈ ∂+GP for
some P ∈ PΓ with T+

σ <∞, then

1

c0
e−c

′T+
σ ≤ κT+

σ
(σ) ≤ c0e

−cT+
σ

where c and c′ are given by Theorem 5.6.

Proof. Let P ∈ PΓ and σ ∈ ∂+GP with T+
σ < ∞. By Lemma 6.3, we

may assume that P ∈ P and σ(0) = (e, 2) in the combinatorial horoball
attached to a Cayley graph of P . We then have σ(T+

σ ) = (γ, 2) for some

γ ∈ P . Setting Q = BGM (e, 1) which is a compact subset of XGM , we have
σ(0), γ−1σ(T+

σ ) ∈ Q. Hence by Lemma 6.5, we have

1

CQ
e−ψ(µθ(γ)) ≤ κT+

σ
(σ) ≤ CQe

−ψ(µθ(γ))
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where CQ is the constant therein. On the other hand, it follows from The-
orem 5.6 that

ψ(µθ(γ)) ≥ cdGM (e, γ)− C

≥ c(dGM ((e, 2), (γ, 2))− 2)− C

= cT+
σ − (2c+ C)

with the constants c, C in Theorem 5.6. Therefore, we have

κT+
σ
(σ) ≤ CQe

2c+Ce−cT
+
σ .

Similarly, we have

ψ(µθ(γ)) ≤ c′dGM (e, γ) + C

≤ c′(dGM ((e, 2), (γ, 2)) + 2) + C

= c′T+
σ + (2c′ + C)

where c′ is given in Theorem 5.6. Therefore, we have

κT+
σ
(σ) ≥ 1

CQ
e−(2c′+C)e−c

′T+
σ .

This finishes the proof. □

We now estimate the contraction rate in the thin part.

Lemma 6.7. There exists a constant c1 ≥ 1 with the following property: if
σ ∈ Gthin is such that φsσ ∈ Gthin for all 0 ≤ s ≤ t, then

c−1
1 e−(3c′−2c)t ≤ κt(σ) ≤ c1e

−ct

where c ≤ c′ are given by Theorem 5.6.

Proof. We fix σ ∈ Gthin such that φsσ ∈ Gthin for all 0 ≤ s ≤ t. Then there
exists P ∈ PΓ so that φsσ ∈ GP for all 0 ≤ s ≤ t. There are three cases to
consider:

Case 1. Suppose that σ([0,∞)) ⊂ GP . Then σ = φsσ0 for some σ0 ∈ ∂+GP
and s > 0. In this case, by the definition of the norm, we have

∥ · ∥φtσ = ∥ · ∥φt+sσ0 = e−c(t+s)∥ · ∥σ0 = e−ct∥ · ∥σ.

This implies κt(σ) = e−ct.

Case 2. Suppose that σ((−∞, 0]) ⊂ GP . Then σ = φsσ̃0 for some σ̃0 ∈
∂−GP and s < 0. We then have

∥ · ∥φtσ = e−c(s+t)∥ · ∥σ̃0 = e−ct∥ · ∥σ,
and hence κt(σ) = e−ct.

Case 3. Suppose that neither σ([0,∞)) ⊂ GP nor σ((−∞, 0]) ⊂ GP holds.
In this case, we have σ = φsσ0 for some s > 0 and σ0 ∈ ∂+GP such that
T+
σ0 < ∞. We simply write T := T+

σ0 and σ1 = φTσ0. We first consider the
following three subcases:
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• if s, s+ t ∈
(
0, 13T

]
, then

∥ · ∥φtσ = ∥ · ∥φs+tσ0 = e−c(s+t)∥ · ∥σ0 = e−ct∥ · ∥σ,
and hence κt(σ) = e−ct.

• if s, s+ t ∈
[
2
3T, T

)
, then

∥ · ∥φtσ = ec(T−(t+s))∥ · ∥σ1 = e−ct∥ · ∥σ,
and hence κt(σ) = e−ct.

• if s, s+ t ∈
[
1
3T,

2
3T
]
, then we first observe that

∥ · ∥σ = ∥ · ∥
2− 3

T s
φT/3σ0∥ · ∥

3
T s−1
φ2T/3σ0

=

Å
e−c

T
3 ∥ · ∥σ0

ã2− 3
T s
Å
ec
T
3 ∥ · ∥σ1

ã 3
T s−1

= ec(2s−T )∥ · ∥
2− 3

T s
σ0 ∥ · ∥

3
T s−1
σ1

and similarly that

∥ · ∥φtσ = ec(2(s+t)−T )∥ · ∥
2− 3

T (s+t)
σ0 ∥ · ∥

3
T (s+t)−1
σ1 .

Combining the above two computations, we obtain

∥ · ∥φtσ = ∥ · ∥σe2ct∥ · ∥
− 3
T t

σ0 ∥ · ∥
3
T t
σ1 .

Evaluating at vσ0 , the above becomes

κt+s(σ0) = κs(σ0)e
2ctκT (σ0)

3
T t.

Since κt+s(σ0) = κt(σ)κs(σ0) by (6.4), it follows from Corollary 6.6
and 0 ≤ t ≤ T

3 that

κt(σ) = e2ctκT (σ0)
3
T t

≤ e2ct(c0e
−cT )

3
T t = e2ctc

3
T t

0 e−3ct

≤ max(1, c0)e
−ct.

Similarly, we also obtain from Corollary 6.6 and 0 ≤ t ≤ T
3 that

κt(σ) = e2ctκT (σ0)
3
T
t

≥ e2ct(c−1
0 e−c

′T )
3
T
t = e2ctc

−3
T
t

0 e−3c′t

≥ min(1, c−1
0 )e−(3c′−2c)t.

We now set c1 := max(1, c0). Note also that c′ ≥ c and hence e−(3c′−2c)t ≤
e−ct for all t ≥ 0. In general, we consider the following three consecutive
subintervals

[s, s+ t] ∩
(
0, 13T

]
, [s, s+ t] ∩

[
1
3T,

2
3T
]
, and [s, s+ t] ∩

[
2
3T, T

]
,
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and then apply the each of the above three subcases to each subintervals.
Then by (6.4), we get

c−1
1 e−(3c′−2c)t ≤ κt(σ) ≤ c1e

−ct

as desired. □

We now combine estimates on the thick and thin parts and prove Theorem
6.4. We give proofs of the lower bound and the upper bound separately:

Proof of the lower bound in Theorem 6.4. Let σ ∈ G and t ≥ 0. If
φsσ ∈ Gthin for all 0 ≤ s ≤ t, then by Lemma 6.7, we have

(6.9) κt(σ) ≥ c−1
1 e−(3c′−2c)t

where constants c1, c
′, c are given in Lemma 6.7. Now suppose that φsσ ∈

Gthick for some s ∈ [0, t] and set

s1 := min{s ∈ [0, t] : φsσ ∈ Gthick};
s2 := max{s ∈ [0, t] : φsσ ∈ Gthick}

which are well-defined. It follows from (6.4) and Lemma 6.7 that

(6.10)

κt(σ) = κt−s2(φs2σ)κs2(σ)

= κt−s2(φs2σ)κs2−s1(φs1σ)κs1(σ)

≥ c−1
1 e−(3c′−2c)(t−s2)κs2−s1(φs1σ)c

−1
1 e−(3c′−2c)s1

= c−2
1 e−(3c′−2c)te(3c

′−2c)(s2−s1)κs2−s1(φs1σ).

To estimate κs2−s1(φs1σ), we fix a compact fundamental domain Q ⊂
XGM −

⋃
P∈PΓ HP for the Γ-action. We may assume that e ∈ Q. By the

definition of s1 and s2, there exist γ1, γ2 ∈ Γ such that (φs1σ)(0) ∈ γ1Q
and (φs2σ)(0) ∈ γ2Q. In other words, we have (γ−1

1 φs1σ)(0) ∈ Q and

(γ−1
1 φs2σ)(0) ∈ γ−1

1 γ2Q. Since (γ−1
1 φs1σ)(0) = γ−1

1 σ(s1) and (γ−1
1 φs2σ)(0) =

γ−1
1 σ(s2), this implies that for some constant q > 0 depending on Q, we have

|dGM (e, γ−1
1 γ2)− (s2 − s1)| ≤ q. Setting γ := γ−1

1 γ2, this is rephrased as

(6.11) |dGM (e, γ)− (s2 − s1)| ≤ q.

Moreover, noting that (φs2σ)(0) = (φs1σ)(s2 − s1), we have

(γ−1
1 φs1σ)(0), γ

−1(γ−1
1 φs1σ)(s2 − s1) ∈ Q.

Hence, by Lemma 6.3 and Lemma 6.5, we have

κs2−s1(φs1σ) = κs2−s1(γ
−1
1 φs1σ)

≥ 1

CQ
e−ψ(µθ(γ))

with the constant CQ given by Lemma 6.5. By Theorem 5.6 and (6.11), we
deduce

κs2−s1(φs1σ) ≥
1

CQ
e−c

′dGM (e,γ)−C ≥ e−c
′q−C

CQ
e−c

′(s2−s1).



FINITENESS, MEASURE OF MAXIMAL ENTROPY AND REPARAMETERIZATION29

Together with (6.10), we have
(6.12)

κt(σ) ≥ c−2
1 e−(3c′−2c)te(3c

′−2c)(s2−s1) e
−c′q−C

CQ
e−c

′(s2−s1)

=
c−2
1 e−c

′q−C

CQ
e−(3c′−2c)te(2c

′−2c)(s2−s1) ≥ c−2
1 e−c

′q−C

CQ
e−(3c′−2c)t

where the last inequality is due to c′ ≥ c and s2 ≥ s1.
Now note that a′ ≥ 3c′ − 2c by Theorem 5.6 and choose b > 1 such that

b−1 ≤ min

Å
c−1
1 ,

c−2
1 e−c

′q−C

CQ

ã
. Then it follows from (6.9) and (6.12) that

κt(σ) ≥
1

b
e−a

′t

as desired. □

Proof of the upper bound in Theorem 6.4. Let σ ∈ G and t ≥ 0. If
φsσ ∈ Gthin for all 0 ≤ s ≤ t, then by Lemma 6.7, we have

(6.13) κt(σ) ≤ c1e
−ct

where c1 and c are constants given in Lemma 6.7. We now assume that
φsσ ∈ Gthick for some s ∈ [0, t]. As in the proof of the lower bound, we set

s1 := min{s ∈ [0, t] : φsσ ∈ Gthick};
s2 := max{s ∈ [0, t] : φsσ ∈ Gthick}

We then have from (6.4) and Lemma 6.7 that

(6.14)
κt(σ) = κt−s2(φs2σ)κs2−s1(φs1σ)κs1(σ)

≤ c21e
−ctec(s2−s1)κs2−s1(φs1σ).

By the similar argument as in the proof of the lower bound, we have

κs2−s1(φs1σ) ≤ CQe
−ψ(µθ(γ))

where Q ⊂ XGM −
⋃
P∈PΓ HP is a compact fundamental domain for the

Γ-action, CQ is the constant given by Lemma 6.5, and γ ∈ Γ is such that
|dGM (e, γ) − (s2 − s1)| ≤ q for some constant q ≥ 0 depending only on Q.
By Theorem 5.6, this implies

κs2−s1(φs1σ) ≤ CQe
−cdGM (e,γ)+C ≤ CQe

cq+Ce−c(s2−s1)

with the constant C therein. Plugging this into (6.14), we have

(6.15) κt(σ) ≤ c21CQe
cq+Ce−ct.

We then choose b ≥ max
(
c1, c

2
1CQe

cq+C
)
. By (6.13) and (6.15), we finally

obtain

κt(σ) ≤ be−ct.

Since a = c by Theorem 5.6, this completes the proof. □
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Proof of Theorem 6.1. As described above, we define the Γ-equivariant
continuous section u : G → G × R+ by setting u(σ) = (σ, vσ), and set
Ψ̄ = Ψ0 ◦ u so that we have the following commutative diagram:

G × R+

G Ω̃ψ

Ψ0

Ψ̃

u

In other words, Ψ̃(σ) = (σ+, σ−, log vσ).

We first prove that Ψ̃ is proper, from which the properness of Ψ follows.
Suppose not. Then there exists a sequence σn ∈ G such that σn escapes every
compact subset of G as n→ ∞ while Ψ̃(σn) = (σ+n , σ

−
n , log vσn) converges in

Ω̃ψ. Since the sequence (σ+n , σ
−
n ) converges in Λ

(2)
θ , two sequences σ+n and

σ−n converge to two distinct points in ∂XGM . This implies that there exist
a sequence tn ∈ R and a compact subset Q ⊂ G so that φtnσn ∈ Q for all

n ≥ 1. Moreover, since the sequence Ψ̃(σn) = (σ+n , σ
−
n , log vσn) converges in

Ω̃ψ, the sequence vσn converges in R+. This implies that, after passing to a
subsequence,

(6.16) the sequence ∥vσn∥φtnσn converges to a positive number.

On the other hand, since the sequence σn escapes any compact subset of
G as n → ∞, we have either tn → ∞ or tn → −∞ as n → ∞, after passing
to a subsequence. Suppose first that tn → ∞ as n → ∞. It follows from
Theorem 6.4 that for all sufficiently large n ≥ 1,

∥vσn∥φtnσn = κtn(σn) ≤ be−atn → 0 as n→ ∞.

This contradicts (6.16). We now assume that tn → −∞ as n → ∞. Then
for all sufficiently large n ≥ 1, we have

∥vσn∥φtnσn =
1

∥vφtnσn∥σn
=

1

κ−tn(φtnσn)
≥ b−1e−atn

by (6.4) and Theorem 6.4. Therefore, ∥vσn∥φtnσn → ∞ as n → ∞, contra-
dicting (6.16). This proves the properness.

We now prove items (1), (2), and (3). Since the Γ-action on G and Ω̃ψ
commute with flows on G and Ω̃ψ, it suffices to prove the statement for

Ψ̃ : G → Ω̃ψ. For (σ, s) ∈ G × R → R, define a continuous function

t̃(σ, s) := log vφsσ − log vσ.

By (6.4), we have

vφsσ =
vσ

∥vσ∥φsσ
=

vσ
κs(σ)

.

Therefore

(6.17) t̃(σ, s) = − log κs(σ),
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is Γ-invariant (Lemma 6.3) and hence induces a continuous map t : Γ\G ×
R → R. The cocycle property of t̃ follows from (6.4). By the definition of

Ψ̃, we have

Ψ̃(φsσ) = ϕt̃(σ,s)Ψ̃(σ),

from which (1) follows. This also implies (2), noting that

ϕ−t̃(σ,s)Ψ̃(φsσ) = Ψ̃(σ) = Ψ̃(φ−sφsσ) = ϕt̃(φsσ,−s)(φsσ).

Moreover, by Theorem 6.4 and (6.17), we have that for all s ≥ 0,

(6.18) as− log b ≤ t̃(σ, s) ≤ a′s+ log b

where a, a′ > 0 and b ≥ 1 are given in Theorem 6.4. This shows (3).

To see the surjectivity of Ψ̃, note first that for each (ξ, η, t0) ∈ Ω̃ψ, there
exists σ ∈ G with σ+ = ξ and σ− = η as XGM is a proper geodesic Gromov
hyperbolic space. For s0 ≥ 0, it follows from (6.18) that

t̃(σ, s0) ≥ as0 − log b and t̃(φ−s0σ, s0) ≥ as0 − log b.

Since t̃(φ−s0σ, s0) = −t̃(σ,−s0) due to the cocycle property (6.4), we have

t̃(σ, s0) ≥ as0 − log b and t̃(σ,−s0) ≤ −as0 + log b.

Since Ψ̃ is continuous, this implies that the image of Ψ̃ restricted on {φsσ :

−s0 ≤ s ≤ s0} contains {ϕtΨ̃(σ) : −as0 + log b ≤ t ≤ as0 − log b}. Since

σ+ = ξ and σ− = η, Ψ̃(σ) = (ξ, η, t1) for some t1 ∈ R. We then take s0
large enough so that

−as0 + log b+ t1 ≤ t0 ≤ as0 − log b+ t1.

Then (ξ, η, t0) ∈ {ϕtΨ̃(σ) : −as0+log b ≤ t ≤ as0−log b}, and hence (ξ, η, t0)

belongs to the image of Ψ̃. Therefore, Ψ̃ is surjective. This completes the
proof. □

7. Uniformity of fibers of reparameterization

Recall the reparameterization Ψ̃ : G → Ω̃ψ constructed in section 6. The
main goal of this section is to establish a uniform bound on the diameters
of the fibers of Ψ̃:

Theorem 7.1 (Theorem 1.4(4)). The fibers of Ψ̃ have uniformly bounded
diameter. That is, there exists C > 0 such that for any σ, σ′ ∈ G,

Ψ̃(σ) = Ψ̃(σ′) =⇒ dGM (σ(0), σ′(0)) < C.

We prove this result by analyzing the explicit form of our reparameteri-
zation. For σ ∈ G,

Ψ̃(σ) = (σ+, σ−, log vσ)

where vσ ∈ R+ is the unit vector with respect to the norm ∥ · ∥σ, as con-
structed in section 6. Thus, Theorem 7.1 follows from the next proposition:
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Proposition 7.2. There exists a constant C0 > 0 such that the following
holds: for any σ, σ′ ∈ G with σ± = σ′±, there exists s ∈ R such that

dGM (σ(0), σ′(s)) < C0 and | log vσ − log vφsσ′ | < C0.

Moreover, the shift parameter s satisfies:

• if s ≥ 0, then

(log vσ − log vσ′)− C0 −B

a′
≤ s ≤ (log vσ − log vσ′) + C0 +B

a
.

• if s < 0, then

(log vσ − log vσ′)− C0 −B

a
≤ s ≤ (log vσ − log vσ′) + C0 +B

a′
.

Here 0 < a < a′ and B > 0 are the constants appearing in Theorem 6.1.

To prove Proposition 7.2, we require several preparatory lemmas. We
begin by recalling the definition of the Gromov product on XGM ∪ ∂XGM .
For x, y, z ∈ XGM , define

(y|z)x :=
1

2
(dGM (x, y) + dGM (x, z)− dGM (y, z)).

For y, z ∈ XGM ∪ ∂XGM , define

(y|z)x := sup lim inf
i,j→∞

(yi|zj)x

where the supremum is taken over all sequences yi, zj ∈ XGM converging to
y, z, respectively. By the Gromov hyperbolicity of XGM (Theorem 5.1), the
Gromov product (y|z)x estimates the distance from x to a geodesic [y, z],
up to a uniformly bounded additive error.

Lemma 7.3. Let σn ∈ G be a sequence such that {σn(0) ∈ XGM : n ≥ 1} is
uniformly bounded. Then there do not exist sequences Tn, Sn > 0 tending to
∞ such that both σn(Tn) and σn(−Sn) lie in the same horoball HP for some
P ∈ P.

Proof. Suppose such sequences exist. Then since σ±n belong to the shadows
OGM1 (σn(0), σn(Tn)) and σ−n ∈ OGM1 (σn(0), σn(−Sn)), and {σn(0) : n ≥
1} is bounded, we must have limn→∞ σ±n = ξP . On the other hand, the
boundedness of σn(0) implies that {σn} is relatively compact, yielding a
contradiction. □

It is a standard fact in the Gromov hyperbolic geometry (cf. [8, Theorem
III.H.1.7]) that there exists a constant c0 > 0 such that any two geodesics
with same endpoints have Hausdorff distance at most c0.

Lemma 7.4. There exists T ′
h > 0 such that for each P ∈ PΓ and σ ∈

∂+GP with T+
σ > 3T ′

h, the c0-neighborhood of the segment σ([T ′
h, T

+
σ − T ′

h])
is entirely contained in HP .
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Proof. Suppose not. Since P is finite, there exist P ∈ P and sequences
σn ∈ ∂+GP with T+

σn > 3n and tn ∈ [n, T+
σn − n] such that σn(tn) is not

contained in the c0-neighborhood ofHP . Hence there exists pn ∈ P such that
dGM (σn(tn), (pn, 2)) < c0. Replacing σn with p−1

n σn, we may assume that
pn = e, so σn(tn) lies in a fixed bounded neighborhood of (e, 2). Applying
Lemma 7.3 to φtnσn with Tn = T+

σn − tn and Sn = tn yields a contradiction.
□

Lemma 7.5. There exists T̃ > 0 such that for any P ∈ PΓ and σ ∈ ∂+GP
with σ+ = ξP , we have σ(t) ∈ HP for all t > T̃ .

Proof. Suppose not. As in the proof of Lemma 7.4, for some P ∈ P, there
exist σn ∈ ∂+GP with σ+n = ξP and tn > n such that σn(tn) = (e, 2). Since
σ+n = ξP , there exist Tn > n+ tn such that σn(Tn) ∈ HP and σn(0) ∈ ∂HP .
Applying Lemma 7.3 to φtnσn gives a contradiction. □

Let T ′
h, T̃ > 0 be constants given in Lemma 7.4 and Lemma 7.5 respec-

tively.

Lemma 7.6. There exists Th > T ′
h+ T̃ + c0+2 with the following property:

let P ∈ PΓ, σ ∈ ∂+GP with T+
σ > 5Th, and t ∈ [2Th, T

+
σ − 2Th]. Suppose

σ′ ∈ ∂+GP satisfies σ′± = σ± and dGM (σ′([0, T+
σ′ ]), σ(t)) < c0. Then

(1) dGM (σ(0), σ′(0)) < Th;
(2) T+

σ <∞ if and only if T+
σ′ <∞, and in this case,

dGM (σ(T+
σ ), σ′(T+

σ′ )) < Th.

Proof. Suppose that there exist P ∈ P, σn, σ
′
n ∈ ∂+GP with T+

σn > 5n and

σn(0) = (e, 2), σ±n = σ′±n , and tn ∈ [2n, T+
σn − 2n], sn ∈ [0, T+

σ′
n
] such that

dGM (σn(tn), σ
′
n(sn)) < c0 and dGM (σn(0), σ

′
n(0)) > n.

Since σn(tn) ∈ HP , σn(0) = (e, 2), and dGM (σn(tn), σn(0)) = tn → ∞, we
have σn(tn) → ξP as n→ ∞. Write σ′n(0) = (pn, 2) with pn ∈ P . We claim
that

(7.1) dGM (σn(tn), σ
′
n(0)) → ∞;

if not, the sequence p−1
n σn(tn) is contained in a fixed compact subset. Since

p−1
n σn(T

+
σn), p

−1
n σn(0) ∈ ∂HP and T+

σn − tn, tn → +∞, this contradicts
Lemma 7.3.

Let s′n ∈ R be such that dGM (σn(0), σ
′
n(s

′
n)) < c0, which exists by the

Gromov hyperbolicity.
We now divide the argument into two cases:

Case 1: s′n ≥ 0 for infinitely many n. Then the Gromov product
(σ′n(0)|σ′+n )σn(0) is uniformly bounded, passing to a subsequence. Since
σn(0) = (e, 2), it follows that after passing to a subsequence, σ′n(0) → ξ
and σ′+n → ξ′ with ξ ̸= ξ′. But σ′n(0) = (pn, 2) with pn ∈ P , and since
dGM (σn(0), σ

′
n(0)) > n, we conclude that pn → ∞ in P , hence σ′n(0) → ξP .

On the other hand, since σ′+n = σ+n ∈ OGM1 ((e, 2), σn(T
+
σn)) and σn(T

+
σn) =
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(qn, 2) with qn → ∞ in P , it follows from Lemma 5.9 that σ′+n → ξP , This
contradicts the distinctness ξ ̸= ξ′.

Case 2: s′n < 0 for all but finitely many n ≥ 1. In this case, two geo-
desic segments σn([0, tn]) and σ

′
n([s

′
n, sn]) have c0-close endpoints. Hence, by

Gromov hyperbolicity, there exists t′n ∈ [0, tn] such that σn(t
′
n) is uniformly

close to σ′n(0). This implies that the Gromov product (σn(0)|σn(tn))σ′
n(0)

=

(p−1
n σn(0)|p−1

n σn(tn))p−1
n σ′

n(0)
is uniformly bounded. It follows from pn → ∞

that p−1
n σn(0) = (p−1

n , 2) converges to ξP , after passing to a subsequence.
Since p−1

n σ′n(0) = (e, 2), p−1
n σn(tn) must converge to a point distinct from

ξP . On the other hand, we have p−1
n σn(tn) ∈ HP , and from (7.1), we know

it diverges from (e, 2), thus converging to ξP again, which is a contradiction.

Now let Th > 0 be the constant obtained from the first part. Let P ∈ P,
σ ∈ ∂+GP with T+

σ > 5Th, and t ∈ [2Th, T
+
σ − 2Th]. Let σ′ ∈ ∂+GP

satisfy σ′± = σ±, and suppose that there exists s ∈ [0, T+
σ′ ] such that

dGM (σ′(s), σ(t)) < c0. If σ+ = σ′+ ̸= ξP , then both T+
σ and T+

σ′ are fi-
nite. So it suffices to consider the case where σ+ = σ′+ = ξP . Since
T+
σ > 5Th > T̃ , Lemma 7.5 implies T+

σ = ∞. By the first part, we have
dGM (σ(0), σ′(0)) < Th, and since t > 2Th, we have T+

σ′ ≥ s > t− Th − c0 >

Th − c0 > T̃ , so Lemma 7.5 again implies T+
σ′ = ∞. Finally, when T+

σ <∞,

and hence T+
σ′ < ∞, we can apply the same argument to the time-reversed

geodesics of φT+
σ
σ and φT+

σ′
σ′, completing the proof. □

Proof of Proposition 7.2. Fix two geodesics σ, σ′ ∈ G with the same
endpoints σ± = σ′±. Since the norm ∥ · ∥σ used to define vσ depends on the
position of σ(0), we divide the proof into cases based on the geometry of
σ(0).

Case 1. Suppose that σ(0) lies within 5Th-neighborhood of the Cayley
graph of Γ in XGM . That is, dGM (Γ, σ(0)) < 5Th. By the definition of
c0 > 0, we can find s ∈ R so that

dGM (σ(0), σ′(s)) < c0.

Let γ ∈ Γ be such that dGM (γσ(0), e) < 5Th. Then both γσ(0) and γσ′(s)
lie in the (5Th+c0)-neighborhood of the identity. Hence the shifted geodesics
γσ and γφsσ

′ = φsγσ
′ lie in a uniformly compact subset of G. Therefore,

there exists a uniform constant C1 > 0 such that

| log vγσ − log vγφsσ′ | < C1.

By the equivariance formula for vγσ (see (6.5)), we have

log vγσ = log vσ + ψ(βθσ+(γ
−1, e))

log vγφsσ′ = log vφsσ′ + ψ(βθσ′+(γ
−1, e)).

Since σ+ = σ′+, the Busemann maps in both expressions coincide and we
conclude

| log vσ − log vφsσ′ | < C1.
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Choosing C0 > max(c0, C1) completes the proof in this case.

Case 2. Suppose that dGM (Γ, σ(0)) > 5Th, σ(0) ∈ HP , and σ+ = ξP for
some P ∈ PΓ. In this case, we can write σ = φtσ0 for some σ0 ∈ ∂+GP and
t > 0. By hypothesis, t > 5Th > T̃ , and hence T+

σ0 = ∞ by Lemma 7.5.
Then

(7.2) ∥ · ∥σ = e−ct∥ · ∥σ0
where c > 0 is the constant defined in (6.2).

By the definition of c0 > 0, there exists s ∈ R such that dGM (σ′(s), σ(0)) <
c0. Since t > 5Th > T ′

h and T+
σ0 = ∞, Lemma 7.4 implies σ′(s) ∈ HP . So we

may write φsσ
′ = φt′σ

′
0 for some σ′0 ∈ ∂+GP and t′ > 0. Applying Lemma

7.6 to σ0 and σ′0, we obtain

(7.3) dGM (σ0(0), σ
′
0(0)) < Th and T+

σ′
0
= ∞.

This gives

(7.4) ∥ · ∥φsσ′ = e−ct
′∥ · ∥σ′

0
.

Combining (7.2) and (7.4), we compute:

log vσ = ct+ log vσ0

log vφsσ′ = ct′ + log vσ′
0
.

Hence it suffices to bound |t− t′| and | log vσ0 − log vσ′
0
|. First,

t = dGM (σ0(0), σ(0))

≤ dGM (σ0(0), σ
′
0(0)) + dGM (σ′0(0), σ

′(s)) + dGM (σ′(s), σ(0)) < Th + t′ + c0.

Similarly, t′ < Th + t+ c0, and hence

|t− t′| < Th + c0.

Since σ0, σ
′
0 ∈ ∂+GP and their basepoints σ0(0) and σ′0(0) lie in the 2-

neighborhood of the Cayley graph of Γ, with distance less than Th by (7.3),
we may apply Case 1 to σ0, σ

′
0 to obtain

| log vσ0 − log vσ′
0
| < C2

for some uniform constant C2 > 0. Therefore,

| log vσ − log vφsσ′ | < c(Th + c0) + C2.

Taking C0 > max(c0, c(Th + c0) + C2) verifies the claim in this case.

Case 3. Suppose dGM (Γ, σ(0)) > 5Th, σ(0) ∈ HP and σ− = ξP for some
P ∈ PΓ. In this case, we apply Lemma 7.5 to the time reversal of σ,
obtaining σ = φtσ̃0 for some σ̃0 ∈ ∂−GP with T−

σ̃0
= −∞ and t < 0. The

norm ∥ · ∥σ is given by

∥ · ∥σ = e−ct∥ · ∥σ̃0 .
This case is symmetric to Case 2 and follows by the same argument, which
we omit.
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Case 4. Suppose that none of Cases 1-3 applies. Then for some P ∈ PΓ,
σ0 ∈ ∂+GP with finite T := T+

σ0 < ∞, and some t ∈ [5Th, T − 5Th], we have
σ = φtσ0. In particular, T > 5Th and t ∈ [2Th, T − 2Th]. We may assume
that P ∈ P and σ0(0) = (e, 2).

By definition of c0 > 0, there exists s′′ ∈ R such that

(7.5) dGM (σ(0), σ′(s′′)) < c0.

By Lemma 7.4, σ′(s′′) ∈ HP , and hence

(7.6) φs′′σ
′ = φt′′σ

′
0 for some t′′ > 0 and σ′0 ∈ ∂+GP .

By Lemma 7.6, we have T ′ := T+
σ′
0
<∞ and

(7.7) dGM (σ0(0), σ
′
0(0)) < Th and dGM (σ0(T ), σ

′
0(T

′)) < Th.

In particular,

(7.8) |T − T ′| < 2Th.

Since all points σ0(0), σ
′
0(0), σ0(T ), and σ

′
0(T

′) lie in the 2-neighborhood of
the Cayley graph of Γ, we may apply the argument of Case 1 to σ0 and σ′0
to obtain a uniform constant C3 > 0 such that

(7.9) | log vσ0 − log vσ′
0
| < C3 and | log vφT σ0 − log vφT ′σ′

0
| < C3

As the norm ∥ · ∥σ is defined according to the time parameter t, we now
proceed to subcases depending on how t compares the ends of the segment
[0, T ].

Case 4-1. Suppose that 0 < t ≤ T/3. By (7.5), (7.6), (7.7), and (7.8), we
have

−(Th+c0) < t−(Th+c0) ≤ t′′ ≤ t+(Th+c0) ≤
T

3
+(Th+c0) <

T ′

3
+(2Th+c0).

Hence, we can take t′ ∈ (t′′ − (2Th + c0), t
′′ + (Th + c0)) so that

0 < t′ <
T ′

3
.

This implies

(7.10) |t− t′| < 3Th + 2c0 and

(7.11)
dGM (σ(0), σ′0(t

′)) ≤ dGM (σ(0), σ′(s′′)) + dGM (σ′0(t
′′), σ′0(t

′)) < 2(Th + c0)

where the last inequality follows from (7.5) and |t′ − t′′| < 2Th + c0. From
the construction, we have

∥ · ∥σ = e−ct∥ · ∥σ0 and ∥ · ∥φt′σ′
0
= e−ct

′∥ · ∥σ′
0
.

and hence

log vσ = ct+ log vσ0 and log vφt′σ′
0
= ct′ + log vσ′

0
.

Hence, using (7.10) and (7.9), we deduce

| log vσ − log vφt′σ′
0
| < c(3Th + 2c0) + C3.
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Since φsσ
′ = φt′σ

′
0 for some s ∈ R, we conclude the claim in this case hold

with C0 > max(2(Th + c0), c(3Th + 2c0) + C3).

Case 4-2. Suppose that 2T/3 ≤ t < T . In this case, the norm ∥ ·∥σ is given
by

∥ · ∥σ = ec(T−t)∥ · ∥φT σ0 .

This case is symmetric to Case 4-1 and follows by the same argument using
T − t in place of t, together with (7.8). We omit the details.

Case 4-3. Suppose that T/3 < t < 2T/3. Then from the same bounds
(7.5), (7.6), (7.7), and (7.8),

T ′

3
− (2Th + c0) <

T

3
− (Th + c0) < t− (Th + c0) ≤ t′′

≤ t+ (Th + c0) ≤
2T

3
+ (Th + c0) <

2T ′

3
+ (3Th + c0).

Hence we can find t′ ∈ (t′′ − (3Th + c0), t
′′ + (2Th + c0)) so that

T ′

3
< t′ <

2T ′

3
.

This gives

(7.12) |t− t′| < 4Th + 2c0 and

(7.13)
dGM (σ(0), σ′0(t

′)) ≤ dGM (σ(0), σ′(s′′)) + dGM (σ′0(t
′′), σ′0(t

′)) < 3Th + 2c0

using again (7.5) and |t′ − t′′| < 3Th + c0.
Now using the interpolation formula for the norm, we get

∥ · ∥σ = ∥ · ∥
2− 3

T t
φT/3σ0∥ · ∥

3
T t−1
φ2T/3σ0 = ec(2t−T )∥ · ∥

2− 3
T t

σ0 ∥ · ∥
3
T t−1
φT σ0

∥ · ∥φt′σ′
0
= ∥ · ∥

2− 3
T ′ t

′

φT ′/3σ
′
0
∥ · ∥

3
T ′ t

′−1

φ2T ′/3σ
′
0
= ec(2t

′−T ′)∥ · ∥
2− 3

T ′ t
′

σ′
0

∥ · ∥
3
T ′ t

′−1

φT ′σ′
0
.

Therefore,

log vσ = cT − 2ct+

Å
2− 3

T
t

ã
log vσ0 +

Å
3

T
t− 1

ã
log vφT σ0

= cT − 2ct+ 2 log vσ0 − log vφT σ0 +
3t

T
(log vφT σ0 − log vσ0)

log vφt′σ′
0
= cT ′ − 2ct′ + 2 log vσ′

0
− log vφT ′σ′

0
+

3t′

T ′

Ä
log vφT ′σ′

0
− log vσ′

0

ä
.
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Now using the triangle inequality, (7.8), (7.12), (7.9), and the fact that
t′ < 2T ′/3, we estimate

| log vσ − log vφt′σ′
0
|

≤ 2cTh + 2c(4Th + 2c0) + 2C3 + C3 +

∣∣∣∣3tT − 3t′

T ′

∣∣∣∣ | log vφT σ0 − log vσ0 |

+
3t′

T ′ | log vφT ′σ′
0
− log vφT σ0 |+

3t′

T ′ | log vσ′
0
− log vσ0 |

≤ 2c(5Th + 2c0) + 3C3 +

∣∣∣∣3tT − 3t′

T ′

∣∣∣∣ | log vφT σ0 − log vσ0 |+ 4C3.

Now recall that σ0(0) = (e, 2) as noted earlier, and denote σ0(T ) = (γ, 2)
for some γ ∈ P . Let Q ⊂ XGM denote the closed 2-ball centered at e. Then
σ0(0) ∈ Q and σ0(T ) ∈ γQ. From (6.3) and (6.4), we have vφT σ0 =

vσ0
κT (σ0)

.

In particular,

log vφT σ0 − log vσ0 = − log κT (σ0).

By Lemma 6.5, there exists cQ > 0 depending only on Q, such that

| log vφT σ0 − log vσ0 − ψ(µθ(γ))| < cQ.

Therefore,

| log vσ − log vφt′σ′
0
|

≤ 2c(5Th + 2c0) + 7C3 +

∣∣∣∣3tT − 3t′

T ′

∣∣∣∣ cQ +

∣∣∣∣3tT − 3t′

T ′

∣∣∣∣ |ψ(µθ(γ))|
≤ 2c(5Th + 2c0) + 7C3 + cQ +

∣∣∣∣3tT − 3t′

T ′

∣∣∣∣ |ψ(µθ(γ))|
where the last inequality is from T

3 < t < 2T
3 and T ′

3 < t′ < 2T ′

3 . Estimate
the final term:∣∣∣∣3tT − 3t′

T ′

∣∣∣∣ |ψ(µθ(γ))| ≤ 3|t− t′|
T

|ψ(µθ(γ))|+ 3t′
∣∣∣∣ 1T − 1

T ′

∣∣∣∣ |ψ(µθ(γ))|
≤ 3|t− t′|

T
|ψ(µθ(γ))|+ 3t′

|T − T ′|
T ′T

|ψ(µθ(γ))|

≤ (16Th + 6c0)

∣∣∣∣ψ(µθ(γ))T

∣∣∣∣ ,
using (7.12), (7.8), and t′ < 2T ′/3. It follows from T = dGM (σ0(0), σ0(T )) =
dGM ((e, 2), (γ, 2)) that

|T − dGM (e, γ)| ≤ 2.

Then, by Theorem 5.6, there exist uniform constants c1, c2 > 1 such that

c−1
1 T − c2 ≤ ψ(µθ(γ)) ≤ c1T + c2.

Since T > Th, we conclude:∣∣∣∣ψ(µθ(γ))T

∣∣∣∣ ≤ c1 +
c2
Th
.
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Combining all altogether,

| log vσ − log vφt′σ′
0
| ≤ 2c(5Th + 2c0) + 7C3 + cQ + (16Th + 6c0)(c1 + c2/Th).

Since φsσ
′ = φt′σ

′
0 for some s ∈ R, and using (7.13), the claim follows by

setting

C0 > 2c(5Th + 2c0) + 7C3 + cQ + (16Th + 6c0)(c1 + c2/Th) > 3Th + 2c0.

This completes the proof of the first part of Proposition 7.2.

We now prove the second assertion. Let C0 > 0 be the constant from the
first part and let σ, σ′ ∈ G be such that σ± = σ′±. Then for some s ∈ R, we
have

dGM (σ(0), σ′(s)) < C0 and | log vσ − log vφsσ′ | < C0.

Therefore,

log vσ − log vσ′ − C0 < log vφsσ′ − log vσ′ < log vσ − log vσ′ + C0.

Now, from Theorem 6.1, we have

Ψ̃(φsσ
′) = ϕtΨ̃(σ′)

for some t with as− B ≤ t ≤ a′s+ B if s ≥ 0 and a′s− B ≤ t ≤ as+ B if
s < 0, where 0 < a < a′ and B > 0 are constants in the theorem. Since

log vφsσ′ = t+ log vσ′ ,

we deduce the bounds on s as follows

• if s ≥ 0,

log vφsσ′ − log vσ′ −B

a′
≤ s ≤

log vφsσ′ − log vσ′ +B

a
.

Therefore,

(log vσ − log vσ′)− C0 −B

a′
≤ s ≤ (log vσ − log vσ′) + C0 +B

a
.

• if s < 0,

log vφsσ′ − log vσ′ −B

a
≤ s ≤

log vφsσ′ − log vσ′ +B

a′
.

Therefore,

(log vσ − log vσ′)− C0 −B

a
≤ s ≤ (log vσ − log vσ′) + C0 +B

a′
.

This completes the proof. □
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Proof of Theorem 7.1. Let σ, σ′ ∈ G be such that

Ψ̃(σ) = Ψ̃(σ′).

This implies that σ± = σ′± and log vσ − log vσ′ = 0. By Proposition 7.2,
there exist uniform constants a,B,C0 > 0 so that

dGM (σ(0), σ′(s)) < C0 for some s ∈
ï
−C0 +B

a
,
C0 +B

a

ò
.

Therefore,

dGM (σ(0), σ′(0)) ≤ dGM (σ(0), σ′(s)) + dGM (σ′(s), σ′(0)) < C0 +
C0 +B

a
.

This finishes the proof. □

Disjointness of Ψ̃-images of horoballs. We deduce from Theorem 7.1
that Ψ̃-images of deep horoballs are disjoint. This implies that the repa-
rameterization Ψ̃ : G → Ω̃ψ and Ψ : Γ\G → Ωψ respectively give genuine

decompositions of Ω̃ψ and Ωψ into the non-cuspidal part and disjoint cusp-
idal components.

To be precise, for each n ≥ 2, we define the depth-n horoballs, similar to
the definition of open horoballs HP , as follows: for P ∈ P, let H ′

P (n) ⊂
XGM be the subgraph induced by the vertices {(g, k) : g ∈ P, k ≥ n} and

ĤP (n) ⊂ XGM be the subgraph induced by the vertices {(g, n) : g ∈ P}.
We then set

HP (n) := H ′
P − ĤP .

For γ ∈ Γ, we set
HγPγ−1(n) := γHP (n).

This results in the collection of depth-n open horoballs {HP (n) : P ∈ PΓ}.
Note that HP = HP (2) for P ∈ PΓ. For P ∈ PΓ, we consider the set

GP (n) := {σ ∈ G : σ(0) ∈ HP (n)}
which consists of bi-infinite geodesics based at HP (n). We now obtain the
following disjointness:

Corollary 7.7. There exists n0 ≥ 2 such that for P, P ′ ∈ PΓ,

P ̸= P ′ =⇒ Ψ̃(GP (n0)) ∩ Ψ̃(GP ′(n0)) = ∅.

Proof. Let C > 0 be the constant given by Theorem 7.1. We fix n0 >
C
2 +1

and show that the desired disjointness holds. Suppose on the contrary that
for some distinct P, P ′ ∈ PΓ, there exist σ ∈ GP (n0) and GP ′(n0) such that

Ψ̃(σ) = Ψ̃(σ′). Since σ(0) ∈ HP (n0), the distance from σ(0) to the Cayley
graph of Γ is at least n0 − 1. Similarly, the distance from σ′(0) to the
Cayley graph of Γ is at least n0 − 1. Since two basepoints σ(0) and σ′(0)
are contained in distinct horoballs, a geodesic segment between them must
pass through the Cayley graph. Therefore, we have

dGM (σ(0), σ′(0)) ≥ 2n0 − 2 > C.
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On the other hand, since Ψ̃(σ) = Ψ̃(σ′), we have dGM (σ(0), σ′(0)) < C by
Theorem 7.1, which is a contradiction. This shows the claim. □

Remark 7.8. By the above corollary, the reparameterization given in Corol-
lary 6.2 gives us a thick-thin decomposition of Ωψ where the thin part is the
disjoint union of Ψ-images of bi-infinite geodesics based at the horoballs in
Γ\XGM corresponding to elements of P.

8. Exponential expansion on unstable foliations

Let Γ < G be a θ-Anosov subgroup relative to P. Fix a (Γ, θ)-proper

linear form ψ ∈ a∗θ. Recall the space Ω̃ψ = Λ
(2)
θ × R equipped with the

Γ-action given by

γ(ξ, η, s) = (γξ, γη, s+ ψ(βθξ (γ
−1, e)))

for γ ∈ Γ and (ξ, η, s) ∈ Λ
(2)
θ × R, and Ωψ = Γ\Ω̃ψ as defined in section

3. Recall from (4.1) and (4.2) the unstable and stable foliations W± on

Ωψ and their lifts W̃± on Ω̃ψ. The goal of this section is to establish the
following exponential expansion (resp. contraction) property of the flow
{ϕt} on unstable (resp. stable) foliations.

Theorem 8.1. We have the following:

(1) There exist a Γ-invariant non-negative symmetric function d+ : Ω̃ψ×
Ω̃ψ → R and constants α, α′ > 0 and b ≥ 1 such that for z ∈ Ω̃ψ,

the restriction of d+ defines a semi-metric3 on W̃+(z) and for any

w1, w2 ∈ W̃+(z) and t ≥ 0,

1

b
eαtd+(w1, w2) ≤ d+(ϕtw1, ϕtw2) ≤ beα

′td+(w1, w2).

(2) Similarly, there exists a Γ-invariant non-negative symmetric func-

tion d− : Ω̃ψ × Ω̃ψ → R such that for z ∈ Ω̃ψ, the restriction of d−

defines a semi-metric on W̃−(z) and for any w1, w2 ∈ W̃−(z) and
t ≥ 0,

1

b
e−α

′td−(w1, w2) ≤ d−(ϕtw1, ϕtw1) ≤ be−αtd−(w1, w2).

(3) For any small enough ε > 0, there exists a non-negative symmetric

function d+ε : Ω̃ψ × Ω̃ψ → R such that for z ∈ Ω̃ψ, the restriction of

d+ε defines a metric on W̃+(z). Moreover, for any compact subset

Q ⊂ Ω̃ψ, there exists a constant cQ ≥ 1 such that for any w1, w2 ∈ Q,

1

cQ
d+(w1, w2)

ε ≤ d+ε (w1, w2) ≤ cQd
+(w1, w2)

ε.

3A semi-metric on X is a non-negative symmetric function X × X → R that vanishes
precisely on the diagonal.



42 DONGRYUL M. KIM AND HEE OH

Remark 8.2. Even though Theorem 8.1 states the exponential expansion and
contraction for t ≥ 0, replacing w1 and w2 with ϕ−tw1 and ϕ−tw2 implies
the corresponding estimates for negative-time flow.

The proof of Theorem 8.1 is based on our coarse reparameterization (The-
orem 6.1) and the coarse geometry of the Groves-Manning cusp space as a
Gromov hyperbolic space.

Groves-Manning cusp space as a Gromov hyperbolic space. Let
XGM be the associated Groves-Manning cusp space of (Γ,P), which is a
proper geodesic Gromov hyperbolic space ([15, Theorem 3.25], Theorem
5.1). We refer to [8, Chapter III.H] for general facts about Gromov hyper-
bolic spaces.

Recall that G is the space of all parameterized bi-infinite geodesics in
XGM . We define d± : G × G → [0,∞) as follows: for σ1, σ2 ∈ G,

(8.1)

d+(σ1, σ2) := lim sup
t→∞

edGM (σ1(t),σ2(t))−2t;

d−(σ1, σ2) := lim sup
t→∞

edGM (σ1(−t),σ2(−t))−2t.

Their well-definedness follows once we explain another formula for d± using
Gromov products and Busemann functions on XGM . We recall that for
x, p, q ∈ XGM , the Gromov product of p, q with respect to x is

(p|q)x :=
1

2
(dGM (x, p) + dGM (x, q)− dGM (p, q)) ≥ 0,

and this extends to ∂XGM as follows: for ξ, η ∈ ∂XGM , we set

(ξ|η)x := sup lim inf
i,j→∞

(pi|qj)x

where the supremum is taken over all sequences pi, qj ∈ XGM such that
pi → ξ and qj → η as i, j → ∞. Since XGM is Gromov hyperbolic, there
exists a uniform constant δ > 0 such that for any x ∈ XGM , ξ, η ∈ ∂XGM ,
and sequences pi, qj ∈ XGM with ξ = limi→∞ pi and η = limj→∞ qj , we have

(8.2) (ξ|η)x −
δ

2
≤ lim inf

i,j→∞
(pi|qj)x ≤ (ξ|η)x.

For σ ∈ G and p, q ∈ XGM , the following Busemann function is well-defined:

βσ+(p, q) := lim
t→∞

dGM (p, σ(t))− dGM (q, σ(t)).

We note that the Busemann function is defined for each geodesic σ ∈ G, not
for a point in ∂XGM . The notation + in βσ+(p, q) is to indicate that the
limit is taken along t→ ∞. Indeed, this makes the above limit well-defined
since the function fp : R → R defined as

fp(t) = dGM (p, σ(t))− dGM (σ(0), σ(t))

is non-increasing and bounded from above by dGM (p, σ(0)), and we have
dGM (p, σ(t))− dGM (q, σ(t)) = fp(t)− fq(t).
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We have for any x ∈ XGM that

(8.3) d+(σ1, σ2) = e
β
σ+1

(x,σ1(0))+βσ+2
(x,σ2(0))

lim sup
t→∞

e−2(σ1(t)|σ2(t))x .

Since (σ1(t)|σ2(t))x ≥ 0 for all t, it follows that d+(σ1, σ2) <∞. Since

(8.4) d−(σ1, σ2) = d+(Iσ1, Iσ2),

d− is well-defined as well. The definition of d± is motivated by the Hamenstädt
distance in a negatively curved compact manifold [16].

Since Γ acts on XGM by isometries, both d+ and d− are Γ-invariant. The
geodesic flow on G exponentially expand and contract d+ and d− respec-
tively:

Lemma 8.3. Let σ1, σ2 ∈ G and s1, s2 ∈ R. Then we have

e−δes1+s2d+(σ1, σ2) ≤ d+(φs1σ1, φs2σ2) ≤ eδes1+s2d+(σ1, σ2);

e−δe−(s1+s2)d−(σ1, σ2) ≤ d−(φs1σ1, φs2σ2) ≤ eδe−(s1+s2)d−(σ1, σ2).

Proof. Fix x ∈ XGM . By (8.3) and (8.2), we have

(8.5)
d+(σ1, σ2) ≥ e

β
σ+1

(x,σ1(0))+βσ+2
(x,σ2(0))

e−2(σ+
1 |σ+

2 )x ;

d+(σ1, σ2) ≤ eδe
β
σ+1

(x,σ1(0))+βσ+2
(x,σ2(0))

e−2(σ+
1 |σ+

2 )x .

By the definition of β, we have

(8.6)
βσ+

1
(x, (φs1σ1)(0)) = βσ+

1
(x, σ1(0)) + βσ+

1
(σ1(0), σ1(s1))

= βσ+
1
(x, σ1(0)) + s1,

and similarly

(8.7) βσ+
2
(x, (φs2σ2)(0)) = βσ+

2
(x, σ2(0)) + s2.

Since φs1σ
+
1 = σ+1 and φs2σ

+
2 = σ+2 , it follows from (8.5), (8.6), and (8.7)

that

e−δes1+s2d+(σ1, σ2) ≤ d+(φs1σ1, φs2σ2) ≤ eδes1+s2d+(σ1, σ2).

The exponential contraction of d− follows from the exponential expansion
of d+ shown above and (8.4). □

We fix a basepoint x ∈ XGM . It is a standard fact about Gromov hy-
perbolic spaces that for ε > 0 small enough, there exists 0 < cε < 1 and a
metric dε on ∂XGM such that

(8.8) cεe
−2ε(ξ|η)x ≤ dε(ξ, η) ≤ e−2ε(ξ|η)x

for all ξ, η ∈ ∂XGM , with the convention that e−∞ = 0 [8, Proposition 3.21].
We fix one such ε > 0 and a metric dε as above.
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Lemma 8.4. For any compact subset Q ⊂ G, there exists a constant bQ ≥ 1
such that for any σ1, σ2 ∈ Q, we have

1

bQ
d+(σ1, σ2)

ε ≤ dε(σ
+
1 , σ

+
2 ) ≤ bQd

+(σ1, σ2)
ε.

Proof. First note that for any σ ∈ G,

|βσ+(x, σ(0))| ≤ dGM (x, σ(0)).

Given a compact subset Q ⊂ G, we set

b′ := sup
σ∈Q

dGM (x, σ(0)) <∞.

Then it follows from (8.8) and (8.5) that

dε(σ
+
1 , σ

+
2 ) ≤ e

−ε
Å
β
σ+1

(x,σ1(0))+βσ+2
(x,σ2(0))

ã
d+(σ1, σ2)

ε

≤ e2εb
′
d+(σ1, σ2)

ε.

Similarly, we also have

dε(σ
+
1 , σ

+
2 ) ≥ cεe

−ε(δ+2b′)d+(σ1, σ2)
ε

where 0 < cε < 1 is given in (8.8). Setting bQ := eε(δ+2b′)/cε completes the
proof. □

Reparameterization revisited. Recall the reparameterization Ψ : Γ\G →
Ωψ in Theorem 6.1, which is induced from the Γ-equivariant map Ψ̃ : G →
Ω̃ψ. Since Ψ̃ is proper and surjective, for w1, w2 ∈ Ω̃ψ, we define

(8.9)

d+(w1, w2) := sup
σ1∈Ψ̃−1(w1), σ2∈Ψ̃−1(w2)

d+(σ1, σ2);

d−(w1, w2) := sup
σ1∈Ψ̃−1(w1), σ2∈Ψ̃−1(w2)

d−(σ1, σ2).

Since Ψ̃ is Γ-equivariant, if σ1 ∈ Ψ̃−1(w1) and σ2 ∈ Ψ̃−1(w2), then γσ1 ∈
Ψ̃−1(γw1) and γσ2 ∈ Ψ̃−1(γw2) for all γ ∈ Γ. Since d±(γσ1, γσ2) =
d±(σ1, σ2) as well, we have

(8.10) d±(γw1, γw2) = d±(w1, w2) for all γ ∈ Γ.

We also have the following expansion and contraction of d+ and d− via the
flow {ϕt} respectively:

Lemma 8.5. There exist α, α′ > 0 and b ≥ 1 such that for any w1, w2 ∈ Ω̃ψ
and t ≥ 0, we have

(8.11)

1

b
eαtd+(w1, w2) ≤ d+(ϕtw1, ϕtw2) ≤ beα

′td+(w1, w2);

1

b
e−α

′td−(w1, w2) ≤ d−(ϕtw1, ϕtw2) ≤ be−αtd−(w1, w2).
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Proof. Let w1, w2 ∈ Ω̃ψ and t ≥ 0. Let σ1 ∈ Ψ̃−1(w1) and σ2 ∈ Ψ̃−1(w2).
By Theorem 6.1, there exist s1, s2 ∈ R such that

φs1σ1 ∈ Ψ̃−1(ϕtw1) and φs2σ2 ∈ Ψ̃−1(ϕtw2),

and moreover, for constants a, a′, B > 0 in Theorem 6.1, we have:

(1) if s1 ≥ 0, then

as1 −B ≤ t ≤ a′s1 +B

(resp. if s2 ≥ 0, then as2 −B ≤ t ≤ a′s2 +B).
(2) if s1 ≤ 0, then

a′s1 −B ≤ t ≤ as1 +B

(resp. if s2 ≤ 0, then a′s2 −B ≤ t ≤ as2 +B).

By Lemma 8.3, we have

(8.12) e−δes1+s2d+(σ1, σ2) ≤ d+(φs1σ1, φs2σ2) ≤ eδes1+s2d+(σ1, σ2).

Suppose first that s1, s2 ≥ 0. Then by (1) above, we deduce from (8.12)
that

d+(φs1σ1, φs2σ2) ≤ eδe
2B
a e

2t
a d+(σ1, σ2) ≤ eδe

2B
a e

2t
a d+(w1, w2).

Since σ1 ∈ Ψ̃−1(w1) and σ2 ∈ Ψ̃−1(w2) are arbitrary, φs1σ1 and φs2σ2 are

arbitrary elements of Ψ̃−1(ϕtw1) and Ψ̃−1(ϕtw2) respectively. Hence we have

(8.13) d+(ϕtw1, ϕtw2) ≤ eδe
2B
a e

2t
a d+(w1, w2).

Similarly, we deduce from (1) and (8.12) that

d+(ϕtw1, ϕtw2) ≥ d+(φs1σ1, φs2σ2) ≥ e−δe−
2B
a′ e

2t
a′ d+(σ1, σ2).

Since σ1 ∈ Ψ̃−1(w1) and σ2 ∈ Ψ̃−1(w2) are arbitrary, we have

(8.14) d+(ϕtw1, ϕtw2) ≥ e−δe−
2B
a′ e

2t
a′ d+(w1, w2).

Now consider the case when at least one of s1 and s2 is negative. Then
by (2), we must have 0 ≤ t ≤ B, and hence we deduce from (1) and (2) that
s1, s2 ∈ [−B/a, 2B/a]. It then follows from (8.12) that

d+(φs1σ1, φs2σ2) ≤ eδe
4B
a d+(σ1, σ2) ≤ eδe

4B
a d+(w1, w2)

and that

d+(ϕtw1, ϕtw2) ≥ d+(φs1σ1, φs2σ2) ≥ e−δe−
2B
a d+(σ1, σ2).

Again, since σ1 ∈ Ψ̃−1(w1) and σ2 ∈ Ψ̃−1(w2) are arbitrary, these imply

e−δe−
2B
a d+(w1, w2) ≤ d+(ϕtw1, ϕtw2) ≤ eδe

4B
a d+(w1, w2).

Since 0 ≤ t ≤ B, we in particular have
(8.15)

e−δe−
2B
a
− 2B
a′ e

2t
a′ d+(w1, w2) ≤ d+(ϕtw1, ϕtw2) ≤ eδe

4B
a e

2t
a d+(w1, w2).

Combining (8.13), (8.14), and (8.15), the inequalities for d+ in (8.11) follows.
The inequalities for d− in (8.11) can be shown by a similar argument. □
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For w1, w2 ∈ Ω̃ψ, we also define

(8.16) d+ε (w1, w2) := dε(σ
+
1 , σ

+
2 )

where σ1 ∈ Ψ̃−1(w1) and σ2 ∈ Ψ̃−1(w2). Since every elements of Ψ̃−1(w)

has the common forward endpoint for each w ∈ Ω̃ψ, this is well-defined.

Lemma 8.6. For any compact subset Q ⊂ Ω̃ψ, there exists a constant cQ ≥
1 such that for any w1, w2 ∈ Q, we have

1

cQ
d+(w1, w2)

ε ≤ d+ε (w1, w2) ≤ cQd
+(w1, w2)

ε.

Proof. Let Q ⊂ Ω̃ψ be a compact subset. Since Ψ̃ is proper, it follows
from Lemma 8.4 that there exists a uniform constant cQ ≥ 1 such that if

w1, w2 ∈ Q and σ1 ∈ Ψ̃−1(w1) and σ2 ∈ Ψ̃−1(w2), then

1

cQ
d+(σ1, σ2)

ε ≤ d+ε (w1, w2) ≤ cQd
+(σ1, σ2)

ε ≤ cQd
+(w1, w2)

ε.

Since σ1 ∈ Ψ̃−1(w1) and σ2 ∈ Ψ̃−1(w2) are arbitrary, the claim follows. □

Proof of Theorem 8.1. Let d± : Ω̃ψ × Ω̃ψ → R be functions defined in
(8.9). From the definition, d± are non-negative and symmetric. Moreover,
they are Γ-invariant by (8.10).

Let z ∈ Ω̃ψ. We show that the restriction on d+ defines a semi-metric

on W̃+(z); the corresponding statement for d− can be shown by the same

argument. It suffices to show that for w1, w2 ∈ W̃+(z), d+(w1, w2) = 0 if
and only if w1 = w2. Suppose first that w1 = w2. Then for any σ1, σ2 ∈
Ψ̃−1(w1) = Ψ̃−1(w2), we have σ+1 = σ+2 . This implies (σ1|σ2)x = ∞. Hence,

by (8.5), we have d+(σ1, σ2) = 0. Since σ1, σ2 ∈ Ψ̃−1(w1) = Ψ̃−1(w2) are
arbitrary, we have d+(w1, w2) = 0. Conversely, suppose that d+(w1, w2) = 0.

Let σ1 ∈ Ψ̃−1(w1) and σ2 ∈ Ψ̃−1(w2). We then have d+(σ1, σ2) = 0, and
hence (σ+1 |σ

+
2 )x = ∞ by (8.5), from which we deduce σ+1 = σ+2 . Since

Ψ̃(σ1) = w1 and Ψ̃(σ2) = w2, it follows from w1, w2 ∈ W̃+(z) and Lemma
4.5 that w1 = w2, showing the claim.

The inequalities in (1) and (2) follow from Lemma 8.5, finishing the proofs
of (1) and (2).

We now show (3). For small enough ε > 0, we consider the function

d+ε : Ω̃ψ × Ω̃ψ → R defined in (8.16), that is, for w1, w2 ∈ Ω̃ψ,

d+ε (w1, w2) = dε(σ
+
1 , σ

+
2 )

where σ1 ∈ Ψ̃−1(w1) and σ2 ∈ Ψ̃−1(w2), and dε is the visual metric on
∂XGM given in (8.8). Since dε is a metric, d+ε is symmetric and satisfies

the triangle inequality. Let z ∈ Ω̃ψ and w1, w2 ∈ W̃+(z). As discussed

above, for σ1 ∈ Ψ̃−1(w1) and σ2 ∈ Ψ̃−1(w2), we have w1 = w2 ⇔ σ+1 = σ+2
since w1, w2 ∈ W̃+(z). Hence d+ε (w1, w2) = 0 if and only if w1 = w2, and
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therefore the restriction of d+ε defines a metric on W̃+(z). The inequality
stated in (3) is proved in Lemma 8.6. This completes the proof. □

9. Finiteness of Bowen-Margulis-Sullivan measures

Let Γ < G be a θ-Anosov subgroup relative to P and XGM the asso-
ciated Groves-Manning cusp space. Let ψ ∈ a∗θ be a (Γ, θ)-proper linear

form tangent to the θ-growth indicator ψθΓ. By [11], there exists a unique
(Γ, ψ)-Patterson-Sullivan measure νψ on Λθ and a unique (Γ, ψ◦i)-Patterson-
Sullivan measure νψ◦i on Λi(θ). Let mψ be the Bowen-Margulis-Sullivan
measure on Ωψ associated with the pair (ν, νi) defined in (3.2).

The relatively Anosov subgroups are regarded as the higher-rank gener-
alization of geometrically finite subgroups. Indeed, same as geometrically
finite subgroups, relatively Anosov subgroups have finite Bowen-Margulis-
Sullivan measures:

Theorem 9.1. We have

|mψ| := mψ(Ωψ) <∞.

We prove this finiteness of the Bowen-Margulis-Sullivan measure as a
consequence of our reparameterization theorem (Theorem 6.1).

Thick-thin decomposition of Ωψ. Let Ψ : Γ\G → Ωψ be the reparame-
terization given in Theorem 6.1. Via Ψ, the decomposition G = Gthick∪Gthin
gives the thick-thin decomposition

Ωψ = Ψ(Γ\Gthick) ∪Ψ(Γ\Gthin)

into the compact thick part Ψ(Γ\Gthick) and the thin part Ψ(Γ\Gthin).
The followings are extra ingredients in the proof:

Lemma 9.2 (Shadow lemma). [18, Lemma 7.2] For all large enough R > 0,
there exists c0 = c0(ψ,R) ≥ 1 such that for all γ ∈ Γ,

c−1
0 e−ψ(µθ(γ)) ≤ νψ(O

θ
R(o, γo)) ≤ c0e

−ψ(µθ(γ)).

We denote by 0 ≤ δψ(Γ) ≤ ∞ the abscissa of convergence of the Poincaré

series s 7→
∑

γ∈Γ e
−sψ(µθ(γ)); this is well-defined by the (Γ, θ)-properness

hypothesis on ψ. Indeed, the (Γ, θ)-properness implies δψ(Γ) <∞ as shown

in [11, Theorem 1.3]. Since ψ is tangent to ψθΓ, we furthermore have

δψ(Γ) = 1

[18, Theorem 4.5]. On the other hand, we have the following:

Theorem 9.3 (Canary-Zhang-Zimmer, [11, Lemma 8.2, Corollary 7.2]).
If ψ ∈ a∗θ is (Γ, θ)-proper and tangent to ψθΓ, then the Patterson-Sullivan
measure νψ is atomless and for each P ∈ P, we have

δψ(P ) < 1.
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Proof of Theorem 9.1. As before, we identify Λθ and Λi(θ) with ∂XGM

through the boundary maps. Recall the norm ∥·∥σ on R+ for each σ ∈ G and

the Γ-equivariant surjective proper map Ψ̃ : G → Ω̃ψ, σ 7→ (σ+, σ−, log vσ),
defined in the proof of Theorem 6.1 where vσ ∈ R+ is the unique vector such
that ∥vσ∥σ = 1. We then have

Ω̃ψ = Ψ̃(Gthick) ∪ Ψ̃(Gthin).
We will use this specific decomposition to show the finiteness of mψ. Since

Γ acts cocompactly on Ψ̃(Gthick), it suffices to show that the measure of thin

part mψ(Γ\Ψ̃(Gthin)) is finite. Moreover, since Gthin = Γ ·
⋃
P∈P GP and P

is a finite collection, it suffices to show mψ(P\Ψ̃(GP )) <∞ for each P ∈ P.
Let us fix P ∈ P and denote by ξP ∈ ∂XGM the parabolic limit point

fixed by P . Since ξP is bounded parabolic, we have a compact fundamental
domain for the P -action on ∂XGM −{ξP }, which we denote by D. Since νψ
and νψ◦i are atomless by Theorem 9.3, we have

(9.1) mψ(P\Ψ̃(GP )) =
∑
γ∈P

∫
(γD×D×R)∩Ψ̃(GP )

eψ(⟨ξ,η⟩)dνψ(ξ)dνψ◦i(η)dt.

We first estimate the integration with respect to dt. We claim that there
exists C > 0 such that for any γ ∈ P and σ ∈ GP such that σ− ∈ D and
σ+ ∈ γD, we have

(9.2) −C ≤ log vσ ≤ C + ψ(µθ(γ)).

Let us fix γ ∈ P and let σ ∈ GP be such that σ+ ∈ γD and σ− ∈ D.
Recalling that HP denotes the open horoball in XGM associated to P , this
implies that the following two constants are well-defined:

s0 := min{s < 0 : σ(s) ∈ ∂HP }
s1 := max{s > 0 : σ(s) ∈ ∂HP }.

In other words, s0 is the first time that σ enters into ∂HP and s1 is the last
time that σ exits ∂HP . We then have from (6.4) and Theorem 6.4 that

vφs0σ = ∥vφs0σ∥σvσ = κ−s0(φs0σ)vσ

≤ beas0vσ ≤ bvσ;

vφs1σ =
1

∥vσ∥φs1σ
vσ =

1

κs1(σ)
vσ

≥ b−1eas1vσ ≥ b−1vσ.

Therefore, we have

(9.3) − log b+ log vφs0σ ≤ log vσ ≤ log b+ log vφs1σ.

Now fix x ∈ ∂HP . Then there exists R > 0 with the following property:
for any σ0 ∈ GP such that σ−0 ∈ D, the entering point of σ0 into ∂HP , i.e.
σ0(s) ∈ ∂HP with minimal s, must be contained in the R-ball BGM (x,R).
Indeed, if not, then there exists a sequence σn ∈ GP such that σ−n ∈ D
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and the entering point of σn into ∂HP is not contained in BGM (x, n) for all
n ≥ 1. However, since σn ∈ GP and σ−n ∈ D for all n ≥ 1, two sequences σ+n
and σ−n converge to two distinct points in ∂XGM as n → ∞, after passing
to a subsequence. Hence the images of the bi-infinite geodesics σn intersect
a single ball centered at x, which contradicts the choice of the sequence σn.

Hence we have (φs0σ)(0) = σ(s0) ∈ BGM (x,R). Since I(γ−1σ) ∈ GP also
satisfies that I(γ−1σ)− = γ−1σ+ ∈ D and its entering point into ∂HP is
given by I(γ−1σ)(−s1) = γ−1σ(s1), we also have γ−1σ(s1) ∈ BGM (x,R). In
other words, we have (γ−1φs0σ)(s1− s0) ∈ BGM (x,R). Hence we can apply

Lemma 6.5 to φs0σ by setting Q = BGM (x,R) and obtain

(9.4)
1

CQ
e−ψ(µθ(γ)) ≤ κs1−s0(φs0σ) ≤ CQe

−ψ(µθ(γ)).

Since

vφs1σ =
1

∥vφs0σ∥φs1σ
vφs0σ =

1

κs1−s0(φs0σ)
vφs0σ

by (6.4), it follows from (9.4) that

log vφs1σ ≤ logCQ + log vφs0σ + ψ(µθ(γ)).

Hence we deduce from (9.3) that

− log b+ log vφs0σ ≤ log vσ ≤ log(bCQ) + log vφs0σ + ψ(µθ(γ)).

Since (φs0σ)(0) ∈ BGM (x,R) where x is fixed and R is determined by x and
P , the constant log vφs0σ is also uniformly bounded. Therefore, the claim
(9.2) follows.

By the claim (9.2), we deduce from (9.1) that

mψ(P\Ψ̃(GP ))

≤
∑
γ∈P

(2C + ψ(µθ(γ)))

∫
(γD×D)∩{(σ+,σ−):σ∈GP }

eψ(⟨ξ,η⟩)dνψ(ξ)dνψ◦i(η).

As we already observed, for x ∈ ∂HP and R > 0 above, we have that if
σ ∈ GP is such that σ− ∈ D and σ+ ∈ γD, then the image of the bi-infinite
geodesic σ must intersect BGM (x,R) and BGM (γx,R). Hence it follows
from Lemma 5.10 that

(9.5) ψ(⟨σ+, σ−⟩) is uniformly bounded.

Moreover, we also have that σ+ ∈ OGMR′ (x, γx) for some R′ > 0 depending
on x and R. By Proposition 5.7, we then have for some uniform r > 0 that

(9.6) σ+ ∈ Oθr(o, γo).

By (9.5) and (9.6), we now have

mψ(P\Ψ̃(GP )) ≪ 4
∑
γ∈P

(2C + ψ(µθ(γ)))νψ(O
θ
r(o, γo)).

4The notation f ≪ g means that there is a constant c > 0 such that f ≤ cg
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Applying the shadow lemma (Lemma 9.2), we finally obtain

mψ(P\Ψ̃(GP )) ≪
∑
γ∈P

(2C + ψ(µθ(γ)))e
−ψ(µθ(γ)).

Let 0 < ε < 1. Since ψ is (Γ, θ)-proper, lim infγ∈P ψ(µθ(γ)) = ∞, and

hence ψ(µθ(γ)) ≪ eεψ(µθ(γ)). Hence

mψ(P\Ψ̃(GP )) ≪
∑
γ∈P

(2C + ψ(µθ(γ)))e
−ψ(µθ(γ)) ≪

∑
γ∈P

e−(1−ε)ψ(µθ(γ)).

By Theorem 9.3, for ε > 0 sufficiently small, we have

mψ(P\Ψ̃(GP )) ≪
∑
γ∈P

e−(1−ε)ψ(µθ(γ)) <∞.

This completes the proof of Theorem 9.1. □

10. Unique measure of maximal entropy

Let Γ be a relatively θ-Anosov subgroup and ψ ∈ a∗θ a (Γ, θ)-proper form

tangent to ψθΓ. Let mψ be the Bowen-Margulis-Sullivan measure on Ωψ.
This section is devoted to the proof of the following: by Theorem 9.1, mψ

is of finite measure.

Theorem 10.1. Let m be a probability {ϕt}-invariant measure on Ωψ. Then
the metric entropy hm({ϕt}) is at most δψ = 1, and hm({ϕt}) = 1 if and
only if m = mψ/|mψ|, the normalized probability measure of mψ.

We recall some basic notions about entropy; we refer to ([17], [14]) for
details.

Measurable partitions and entropy. Let (X ,M,m) be a probability
space, whereM is a σ-algebra andm is a probability measure. By a partition
ζ of X , we mean a collection of disjoint non-empty measurable subsets of
X whose union is X . For a partition ζ of X and x ∈ X , we denote by ζ(x)
the element of ζ containing x, called the atom at x. Let Mζ ⊂ M be the
sub σ-algebra generated by the atoms of ζ. A partition ζ of X is called
m-measurable if it admits a separation by countably many elements in Mζ .
More precisely, ζ is m-measurable if there exist a m-conull subset Y ⊂ X
and a sequence {Yi ∈ Mζ : i ∈ N} such that for any distinct atoms z, z′ of
ζ, there exists i ∈ N such that either z ∩ Y ⊂ Yi and z′ ∩ Y ⊂ X − Yi, or
z ∩ Y ⊂ X − Yi and z

′ ∩ Y ⊂ Yi.
For an m-measurable partition ζ and m-a.e. x ∈ X , we denote by mζ(x)

the conditional measure on the atom ζ(x) so that the following holds [14,
Theorem 5.9]: for any measurable Y ⊂ X , we have

• x 7→ mζ(x)(Y ∩ ζ(x)) is measurable;

• m(Y ) =
∫
X mζ(x)(Y ∩ ζ(x)) dm(x).
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For two m-measurable partitions ζ, ζ ′, we say that ζ is finer than ζ ′ and
write ζ ≻ ζ ′ if for m-a.e. x ∈ X , ζ(x) ⊂ ζ ′(x). For a sequence of m-
measurable partitions ζi, we denote by

∨
i ζi the smallest m-measurable par-

tition finer than all ζi.
Given anm-measurable partition ζ and anm-measurable map φ : X → X ,

the pull-back φ−1ζ is an m-measurable partition with atoms (φ−1ζ)(x) =
φ−1(ζ(φ(x))). We say that ζ is φ-decreasing if φ−1ζ ≻ ζ and φ-generating
if
∨
i∈N φ

−iζ is m-equivalent to the partition consisting of points.
Let φ : X → X be an m-measure-preserving transformation. For a count-

able partition ζ, the entropy of ζ relative to m is

Hm(ζ) :=

∫
X
− logm(ζ(x)) dm(x)

with the convention that ∞ · 0 = 0. The average entropy of ζ is defined as

Hm(φ, ζ) := lim
n→∞

1

n
Hm

(
n−1∨
i=0

φ−iζ

)
.

The metric entropy of φ with respect to m is defined as

hm(φ) := supHm(φ, ζ)

where the supremum is taken over all countable partitions ζ with Hm(ζ) <
∞. For a flow {ϕt}t∈R on X , we have hm(ϕt) = |t|hm(ϕ1) for all t ̸= 0. The
metric entropy of the flow {ϕt} with respect to m is defined as

hm({ϕt}) := hm(ϕ1).

For a φ-decreasing m-measurable partition ζ, we also define

hm(φ, ζ) :=

∫
X
− logmζ(x)((φ

−1ζ)(x)) dm(x).

Partition realizing the entropy. Recall the foliations W̃± of Ω̃ψ and
W± of Ωψ from (4.1) and (4.2). Let m be a probability measure on Ωψ and

m̃ the Γ-invariant lift of m to Ω̃ψ. A Γ-invariant partition ζ̃ of Ω̃ψ is called
m̃-measurable if the induced partition ζ on Ωψ ism-measurable. We say that

an m̃-measurable partition ζ̃ is subordinated to W̃+ if for m̃-a.e. x̃ ∈ Ω̃ψ,

there exist precompact open neighborhoods Ũ1 and Ũ2 of x̃ in W̃+(x̃) such
that

Ũ1 ⊂ ζ̃(x̃) ⊂ Ũ2

Proposition 10.2. Let τ > 0. Let m be a probability measure on Ωψ which

is invariant and ergodic under ϕτ and m̃ its lift to Ω̃ψ. Then there exists a

Γ-invariant m̃-measurable partition ζ̃ of Ω̃ψ subordinated to W̃+ such that
its projection ζ is an m-measurable ϕτ -decreasing and generating partition
of Ωψ which satisfies

hm(ϕτ ) = hm(ϕτ , ζ) <∞.
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The most delicate part of the proof of this proposition lies in the con-
struction of the partition which is subordinated to the unstable foliation
W̃+. The exponential expansion property of the flow {ϕt} on Ωψ (Theorem
8.1) was obtained precisely for this purpose. Other parts of Proposition 10.2
can be obtained by similar argument in [24].

Proof of Proposition 10.2. Let d± and d+ε be functions on Ω̃ψ×Ω̃ψ given

in Theorem 8.1 for some fixed ε > 0. Fix u ∈ Ω̃ψ. For r > 0, we set

C̃(u, r) =

®
v ∈ Ω̃ψ :

∃s ∈ (−r, r), w ∈ W̃−(ϕsu) with d
−(ϕsu,w) < r

s.t. v ∈ W̃+(w) and d+ε (w, v) < r

´
.

Fix ρ > 0 small enough so that the projection Ω̃ψ → Ωψ is injective on

C̃(u, 4ρ). For 0 < r < 4ρ, we denote by C(u, r) the image of C̃(u, r) under

the projection Ω̃ψ → Ωψ.
We define a function ℓ : Ωψ → R as follows: for each x ∈ C(u, ρ), let

x̃ ∈ C̃(u, ρ) be the unique lift of x. It follows from the description of W̃± in

Lemma 4.5 that there exist unique s ∈ (−ρ, ρ) and ỹ ∈ W̃−(ϕsu) such that

x̃ ∈ W̃+(ỹ), d−(ϕsu, ỹ) < ρ and d+ε (ỹ, x̃) < ρ. We set

ℓ(x) := max(s, d−(ϕsu, ỹ), d
+
ε (ỹ, x̃)).

For x ∈ Ωψ − C(u, ρ), we then set ℓ(x) := ρ.

For each 0 < r < ρ, let ζ̃ ′r be the partition of Ω̃ψ with atoms γC̃(u, r) ∩
W̃+(x̃) for x̃ ∈ Ω̃ψ, γ ∈ Γ and Ω̃ψ − ΓC̃(u, r). We then define

ζ̃r :=

∞∨
i=0

ϕiτ ζ̃
′
r.

Let ζ ′r and ζr be the partitions obtained by projecting ζ̃ ′r and ζ̃r to Ωψ
respectively. Then ζr =

∨∞
i=0 ϕ

i
τζ

′
r since the Γ-action commutes with the

flow {ϕt}. It is clear that ζr is ϕτ -decreasing. In view of the construction of

ζ̃ which uses atoms γC̃(u, r)∩W+(x̃), we can verity that ζr is m-measurable
by a same argument as in [24, Proposition 1]. Denote by m̃ is the lift of m

to Ω̃ψ. Let d be the metric on Ωψ considered in Proposition 4.6. By the

ergodicity of m, we have that for m-a.e. x ∈ Ωψ, ϕ
k
τx ∈ C(u, r) for infinitely

many k ∈ N, and hence ζ ′r(ϕ
k
τx) is contained in a uniformly bounded set

C(u, r) ∩W+(ϕkτx) with respect to d. Since (ϕ−kτ ζr)(x) ⊂ ϕ−kτ (ζ ′r(ϕ
k
τx)), it

follows from Proposition 4.6 that ζr is ϕτ -generating. Similarly, for m̃-a.e.
x̃ ∈ Ω̃ψ, we have ϕ−kτ x̃ ∈ γC̃(u, r) for some k ∈ N and γ ∈ Γ. Hence we

have ζ̃r(x̃) ⊂ ϕkτ (ζ̃
′
r(ϕ

−k
τ x̃)) ⊂ ϕkτγC̃(u, r) ∩ W̃+(x̃), and therefore ζ̃r(x̃) is a

precompact subset of W̃+(x̃).
We now show the most delicate part of the proof that we can take r > 0 so

that ζ̃r(x̃) contains an open neighborhood of x̃ in W+(x̃) for m̃-a.e. x̃ ∈ Ω̃ψ.
We use Theorem 8.1 in a crucial way.
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Consider the push-forward ℓ∗m of the measure m by ℓ, which is a proba-
bility measure on [0, ρ] ⊂ R. For any ε0 ∈ (0, 1), we have that

Leb

({
r ∈ (0, ρ) :

∞∑
k=0

(ℓ∗m)([r − εk0, r + εk0]) <∞

})
= ρ

by [20, Proposition 3.2]. Since m is ϕτ -invariant, this is same to say that

Leb

({
r ∈ (0, ρ) :

∞∑
k=0

m({x : |ℓ(ϕ−kτ x)− r| < εk0}) <∞

})
= ρ.

We fix a constant e−εατ < ε0 < 1 where α > 0 is a constant given in
Theorem 8.1. We can therefore choose 0 < r < ρ/2 so that m(∂C(u, r)) = 0
and that

∞∑
k=0

m({x : |ℓ(ϕ−kτ x)− r| < εk0}) <∞.

Let Ω′
ψ be the set of all x ∈ Ωψ−

⋃∞
k=0 ϕ

k∂C(u, r) satisfying that for some

N0 = N0(x) > 0, we have

(10.1) ℓ(ϕ−kτ x) < r − εk0 or ℓ(ϕ−kτ x) > r + εk0

for all k ≥ N0. Since m(∂C(u, r)) = 0, it follows from the classical Borel-
Cantelli lemma that m(Ω′

ψ) = 1. Let x ∈ Ω′
ψ be an arbitrary point and

corresponding N0 = N0(x). We fix a lift x̃ ∈ Ω̃ψ of x.

For ỹ ∈ Ω̃ψ, we write y for its projection to Ωψ. Fix a compact subset

Q ⊂ Ω̃ψ containing ⋃
v0∈C̃(u,ρ)

{v ∈ W̃+(v0) : d
+(v, v0) ≤ b}

where b ≥ 1 is the constant given in Theorem 8.1.
We set

r1 := min

Å
1

2
,

1

b(2c)1/ε

ã
> 0

where c = cQ ≥ 1 is as given in Theorem 8.1(3). Let

Ũ = {ỹ ∈ W̃+(x̃) : d+(x̃, ỹ) < r1};

this is a precompact neighborhood of x̃ in W̃+(x̃). Let U be the image of Ũ
in Ωψ. We claim that for each k ≥ N0, either

(10.2) ϕ−kτ (Ũ) ⊂ γ−1C̃(u, r) for some γ ∈ Γ or ϕ−kτ (Ũ) ∩ ΓC̃(u, r) = ∅.

Fix k ≥ N0. Recall that x satisfies either ℓ(ϕ−kτ x) < r − εk0 or ℓ(ϕ−kτ x) >
r + εk0. Consider the first case. This implies that there exists γ ∈ Γ such

that γϕ−kτ x̃ ∈ C̃(u, r − εk0). We then have

d+(γϕ−kτ x̃, γϕ−kτ ỹ) = d+(ϕ−kτ x̃, ϕ−kτ ỹ) ≤ be−ατkd+(x̃, ỹ).
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by (8.10) and Theorem 8.1(1). In particular, we have γϕ−kτ ỹ ∈ Q and hence

(10.3) d+ε (γϕ
−k
τ x̃, γϕ−kτ ỹ) ≤ cd+(γϕ−kτ x̃, γϕ−kτ ỹ)ε ≤ cbεe−εατkd+(x̃, ỹ)ε

by Theorem 8.1(3). Let ỹ ∈ Ũ , and hence d+(x̃, ỹ) < r1. Since e−εατ < ε0,
we then have

d+ε (γϕ
−k
τ x̃, γϕ−kτ ỹ) < εk0

by (10.3), and therefore γϕ−kτ ỹ ∈ C̃(u, r). Hence

ϕ−kτ (Ũ) ⊂ γ−1C̃(u, r),

proving (10.2) in this case.
Now consider the case when ℓ(ϕ−kτ x) > r+ εk0. In this case, we claim that

ϕ−kτ (Ũ) ∩ ΓC̃(u, r) = ∅. Suppose not. Then there exists γ ∈ Γ and some

ỹ ∈ W̃+(x̃) such that d+(x̃, ỹ) < r1 and γϕ−kτ ỹ ∈ C̃(u, r). By the same
argument as above, γϕ−kτ x̃ ∈ Q and hence

d+ε (γϕ
−k
τ x̃, γϕ−kτ ỹ) ≤ cbεe−εατkd+(x̃, ỹ)ε.

Since d+(x̃, ỹ) < r1, we have γϕ−kτ x̃ ∈ C̃(u, r + εk0). This is a contradiction
since ℓ(ϕ−1

τ x) > r + εk0, proving the claim.

The claim (10.2) implies that ϕ−kτ (Ũ) lies in a single atom of ζ̃ ′r for each
k ≥ N0.

Since ϕ−kτ x̃ /∈ ∂γ−1C̃(u, r) for all k ∈ N and γ ∈ Γ, we can find a small

neighborhood Ũ ′ ⊂ Ũ of x̃ in W̃+(x̃) such that ϕ−kτ (Ũ ′) is entirely contained

in some γ−1C̃(u, r), γ ∈ Γ or disjoint from ΓC(u, r) for each 0 ≤ k ≤ N0.

Therefore ϕ−kτ (Ũ ′) is contained in a single atom of ζ̃ ′r for all k ∈ N. This

proves that the atom of ζ̃r containing x̃ also contains Ũ ′. Since x ∈ Ω′
ψ is

arbitrary, ζ̃r is subordinated to W̃+.
The rest of the argument is a similar entropy computation as in the de-

duction of [24, Proposition 4] from [24, Proposition 1]. □

Proof of Theorem 10.1. The deduction of Theorem 10.1 from Proposition
10.2 can be done similarly to [24].

First, note that δψ = 1 since ψ is tangent to ψθΓ ([11, Theorem 10.1], [18,

Theorem 4.5]). For g ∈ G such that [g] ∈ Ω̃ψ, we consider the measure

µW̃+([g]) on W̃
+([g]) given by

dµW̃+([g])([gn]) = e
ψ(βθ

(gn)+
(e,gn))

dν((gn)+)

for n ∈ N+
θ . It follows from the definition that for all a ∈ Aθ, we have

(10.4)
da∗µW̃+([g])

dµW̃+([ga])

(x) = e−ψ(log a).

We write mpr for the normalized probability measure mψ/|mψ|. Denote

by m̃pr its lift to Ω̃ψ. The following can be obtained by directly checking
the condition for conditional measures:



FINITENESS, MEASURE OF MAXIMAL ENTROPY AND REPARAMETERIZATION55

Lemma 10.3. Let ζ̃ be an m̃pr-measurable partition of Ω̃ψ subordinated to

W̃+. Then the family of conditional measures of m̃pr with respect to ζ̃ is
given by

dm̃pr

ζ̃(x̃)
(w) :=

1ζ̃(x̃)(w)

µW̃+(x̃)(ζ̃(x̃))
dµW̃+(x̃)(w) for x̃ ∈ Ω̃ψ.

By Theorem 9.1, mψ is finite, and hence it follows from Theorem 4.2
that mpr is {ϕt}-ergodic. It is a general fact that mpr is ergodic for the
transformation ϕt for uncountably many t [24, Lemma 7]. Fix τ > 0 so that
mpr is ϕτ -ergodic. Now let m be a probability {ϕt}-invariant measure on
Ωψ. Considering the ergodic decomposition of m, we may assume that m is
ϕτ -ergodic without loss of generality [14, (3.5a)].

We now consider the partition ζ̃ given by Proposition 10.2 for the measure
m, its lift m̃, and the transformation ϕτ . Since ζ̃ is subordinated to W̃+,
the measure

dm̃pr

ζ̃(x̃)
(w) :=

1ζ̃(x̃)(w)

µW̃+(x̃)(ζ̃(x̃))
dµW̃+(x̃)(w)

and the function

G̃(x̃) := − logµW̃+(x̃)(ζ̃(x̃))

are well-defined for m̃-a.e. x̃ ∈ Ω̃ψ. Note that since ζ̃ is a partition for the
measure m̃, it may not be m̃pr-measurable and hence Lemma 10.3 does not
apply to ζ̃. It follows from (10.4) that for m̃-a.e. x̃ ∈ Ω̃ψ, we have

(10.5) − log m̃pr

ζ̃(x̃)
((ϕ−1

τ ζ̃)(x̃)) = τ + (G̃ ◦ ϕτ )(x̃)− G̃(x̃).

This implies

G̃ ◦ ϕτ − G̃ ≥ −τ
m̃-a.e. Since G̃ is Γ-invariant, it induces the function G : Ωψ → R. By [24,
Lemme 8], we have

∫
G ◦ ϕτ −G dm = 0 and therefore

(10.6)

∫
− logmpr

ζ(x)((ϕ
−1
τ ζ)(x)) dm(x) = τ.

where mpr
ζ(x) is the measure on ζ(x) induced by m̃pr

ζ̃(x̃)
.

We can now show hmpr({ϕt}) = 1. Indeed, if we consider the special case
that m = mpr, then the partition ζ becomes an mpr-measurable partition
given by Proposition 10.2. Hence by Lemma 10.3, the measure mpr

ζ(x) forms

the family of conditional measure for mpr. Therefore the above identity
(10.6) yields

hmpr(ϕτ ) = hmpr(ϕτ , ζ) =

∫
− logmpr

ζ(x)((ϕ
−1
τ ζ)(x)) dm(x) = τ.

Hence

hmpr({ϕt}) = hmpr(ϕτ )/τ = 1.
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It remains to show that for a generalm, hm({ϕt}) ≤ 1 and that hm({ϕt}) =
1 implies m = mpr. We define the following function: for m-a.e. x ∈ Ωψ,

F (x) :=
mpr
ζ(x)((ϕ

−1
τ ζ)(x))

mζ(x)((ϕ
−1
τ ζ)(x))

if mζ(x)((ϕ
−1
τ ζ)(x)) > 0,

and F (x) := 0 otherwise. By [24, Fait 9], both functions F and logF are
m-integrable and

∫
F dm ≤ 1. Since∫

logF dm = −τ + hm(ϕτ , ζ) = −τ + hm(ϕτ ) = −τ + τhm({ϕt})

by (10.6) and the choice of ζ, we apply Jensen’s inequality and obtain

−τ + τhm({ϕt}) ≤ log

Å∫
F dm

ã
≤ 0.

This proves

hm({ϕt}) ≤ 1.

Now suppose that hm({ϕt}) = 1. This implies that the equality holds
in Jensen’s inequality, that is, log

(∫
F dm

)
= 0, which means that F = 1

m-a.e. It follows that the two conditional measures mpr
ζ(x) and mζ(x) coincide

on the σ-algebra generated by (ϕ−1
τ ζ)(x) for m-a.e. x. Since this holds after

replacing ϕτ with ϕkτ for any k ∈ N and the partition ζ is ϕτ -generating, we
have

mpr
ζ(x) = mζ(x) for m-a.e. x ∈ Ωψ.

Then the equality between measures m = mpr follows from the Hopf
argument. Indeed, let f : Ωψ → R be a compactly supported continuous
function. By the Birkhoff ergodic theorem, the set

Z :=

ß
x ∈ Ωψ : lim

t→∞

1

t

∫ t

0
f(ϕsx)ds = mpr(f)

™
has a full mpr-measure. Then Z is invariant under the flow {ϕt} and more-
over, since f is uniformly continuous, x ∈ Z implies W−(x) ⊂ Z by Propo-
sition 4.6. By the quasi-product structure of the BMS measure mpr, this
implies that for all x ∈ Ωψ, Z ∩ W+(x) has full µW+(x)-measure. Hence

Z ∩ ζ(x) has full mpr
ζ(x)-measure for m-a.e. x ∈ Ωψ by the definition of

mpr
ζ(x). Hence Z ∩ ζ(x) has full mζ(x)-measure for m-a.e. x ∈ Ωψ. Since

mζ(x) is a conditional measure for m, this implies m(Z) = 1, and therefore
m(f) = mpr(f) by applying the Birkhoff ergodic theorem again to m. This
finishes the proof. □
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